Dimension Estimation-based Spectrum Sens-
ing for Cognitive Radio

Bassem Zayen and Aawatif Hayar

Abstract. In this paper, we will derive closed-form expressions of false alarm
probabilities for a given threshold for the dimension estimation-based detector
(DED) using Akaike information criterion (AIC) and the minimum description
length (MDL) criterion. Specifically, the DED algorithm will be formulated as a
binary hypothesis test using AIC and MDL curves. Based on the proposed statis-
tic test, we will express the probability of false alarm of the DED algorithm for
a fixed threshold using the cumulative density function (CDF) for the distribu-
tion of Tracy-Widom of order two. The derived analytical decision thresholds
are verified with Monte-Carlo simulations and a comparison between simula-
tion and analytical results to confirm the theoretical results are presented. These
results confirm the very good match between simulation and theoretic results.
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1. Introduction

The discrepancy between current-day spectrum allocation and spectrum use sug-
gests that radio spectrum shortage could be overcome by allowing a more flexible
usage of the spectrum. Flexibility would mean that radios could find and adapt to any
immediate local spectrum availability. A new class of radios that is able to reliably
sense the spectral environment over a wide bandwidth detects the presence/absence
of legacy users (primary users) and uses the spectrum only if the communication
does not interfere with primary users (PUs). It is defined by the term cognitive ra-
dio [1, 2, 3]. Cognitive Radio (CR) technology has attracted worldwide interest and
is believed to be a promising candidate for future wireless communications in het-
erogeneous wideband environments.

CR has been proposed as the means to promote efficient utilization of the
spectrum by exploiting the existence of spectrum holes. The spectrum use is concen-
trated on certain portions of the spectrum while a significant amount of the spectrum
remains unused. It is thus key for the development of CR to invent fast and highly
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robust ways of determining whether a frequency band is available or occupied. This
is the area of spectrum sensing for CR which will be considered in this paper.

There are several spectrum sensing strategies that were proposed for CR.
These strategies are categorized in two families: feature detection strategies and
blind detection strategies. The feature detection approaches assume that a PU is
transmitting information to a primary receiver when a secondary user (SU) is sens-
ing the primary channel band. The elaboration of sensing techniques that use some
prior information about the transmitted signal is interesting in terms of performance.
In fact, feature detection algorithms employ knowledge of structural and statistical
properties of PU signals when making the decision. The most known feature sens-
ing technique is the cyclostationarity based detector (CD) [4]. Completely blind
spectrum sensing techniques that do not consider any prior knowledge about the PU
transmitted signal are more convenient to CR. A few methods that belong to this cat-
egory have been proposed, but most of them suffer from the noise uncertainty and
fading channels variations [5, 6, 7, 8]. One of the most popular blind detectors is the
energy detector (ED) [9]. This detector is the most common method for spectrum
sensing because of its non-coherency and low complexity. [10] is an excellent refer-
ence on spectrum sensing methods. It gives a literature survey on feature detection
and blind detection strategies. In this paper, the CD and ED will serve as references
when evaluating the performance of the dimension estimation-based detectors.

It is stated that current spectrum sensing techniques suffer from challenges in
the low signal to noise range. The reasons for this have to be analyzed. It is suggested
that information theoretic criteria is a possible area to look for a solution to over-
come the problem. It is apparent that the problem at hand is wide and challenging.
The initial attempt to apply information theoretic criteria for spectrum sensing was
presented in [11] [12]. The work presented in [11] suggested to use model selection
tools like Akaike information criterion (AIC) and the minimum description length
(MDL) criterion to conclude on the nature of the sensed band. These tools were used
as detection rules for the dimension estimation detector (DED) [12]. AIC criterion
was first introduced by Akaike in [13, 14] for model selection. It was shown in [13]
that the classical maximum likelihood principle can be considered to be a method of
asymptotic realization of an optimum estimate with respect to a very general infor-
mation theoretic criterion [13]. In [11] and [12], however, the AIC and MDL criteri-
ons were investigated in order to sense the signal presence. Specifically, the number
of significant eigenvalues determined by the value which minimizes the AIC and/or
MDL criterion was used as detection rule to decide on the presence/absance of data
in the signal. The same idea was applied in [15] and [16], published after [11],
to develop two spectrum sensing algorithms exploiting the maximum or/and the
minimum eigenvalue as detection rule. One is based on the ratio of the maximum
eigenvalue to the minimum eigenvalue, the other is based on the ratio of the aver-
age eigenvalue to the minimum eigenvalue. However, in [15] and [16], the model
selection has not been considered. In [17], the authors ...

The work presented in [11] and [12] was a preliminary step for this idea. In-
deed, no threshold expression was given and the decision was taken using the values
minimizing the AIC and/or MDL criterion computed by simulation. Also, in [12]
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all AIC and MDL values are computed to find the minimum values and to decide
then on the availability of the PU band. In this paper, however, we will simply com-
pute the first and the second values of AIC and MDL to make this decision. For this
purpose, we will present the DED detector as a binary hypothesis test. We will then
give the exact threshold expressions of the DED detector using the two selection
tools AIC and MDL. Specifically, we will derive closed-form expressions of false
alarm probabilities for a given threshold using both AIC and MDL criterion. We
will use in this derivation the cumulative density function (CDF) for the distribution
of Tracy-Widom of order two [18]. The analytical results will be compared with
simulation results.

The rest of this paper is organized as follows. In Section 2 we will formulate
the two users selection tools used throughout the development of the proposed al-
gorithm. The DED algorithm will be presented in Section 3 using AIC and MDL
criterion. We will derive in Section 4 closed-form expressions of false alarm prob-
abilities for a given thresholds using both AIC and MDL criterion. Performance
evaluation and advantages will be described in Section 5 and a comparison of the
proposed detector with reference detectors will be given. The performance will be
assessed under different conditions, using three simulation scenarios. Finally, Sec-
tion 6 presents the conclusions of this paper.

2. Background of Information Theoretic Criteria

In this section, we will provide the background of information theoretic criteria. The
general problem for model selection using information theoretic criteria is: Given
a set of N observations {X1,Xs,...,Xxy} and a family of operating models which
are represented by a parameterized family of probability density functions f, de-
termine the best fit model. The operating models are usually unknown, since only
a finite number of observations is available. Therefore, approximating probability
model must be specified using the observed data, in order to estimate the operating
model. The approximating model is denoted as gy, where the subscript 6 indicates
the U-dimensional parameter vector, which in turn specifies the probability density
function.

Considering a system model composed of N observations {xj,Xa, ..., Xy }.
The transmitted signal by a PU is convolved with a multi-path channel where Gauss-
ian noise is added. The received signal at a sensor node (i.e. one observation), de-
noted by the complex vector x € {x1,Xa, ..., Xy }, can be modeled as

Xx=As+n 2.1)

where A is the channel matrix whose columns are determined by the unknown pa-
rameters associated with each signal. s is the PU transmitted signal and n is the
corresponding complex, stationary, and Gaussian noise with zero mean. Let p be
the length of one observation x and g the length of the transmitted signal s and the
additive noise n. Our goal within this part is to determine the value of ¢ from N
observations (i.e. the dimension of the PU received signal). The number of signals
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q is determined from the estimated covariance matrix R defined by:

1 N
D H
R= n§=1 X x/ 2.2)

The first step of the proposed sensing algorithm is the calculation of the covari-
ance matrix R of received N signals. Then, we obtain the eigenvalues of this ma-
trix (;\17 5\2, e 5\1,) through eigenvalue decomposition technique, and we compute
finally AIC and MDL values to estimate the dimension of the PU signal; The mini-
mum of these values gives the number of significant eigenvalues. The AIC criterion
is a widely used tool for model selection. Assuming a candidate model g, the idea
is to decide if the observed model fits this candidate model. This criterion is defined
by:

N

AIC = —2) "log gg(xp) + 2U (2.3)
n=1

Inspired by Akaike work, Schwartz [14] and Rissanen [19] have an approach quite

different. In [14], Schwartz approached the problem by bayesian arguments. How-

ever Rissanen based his work on information theoretic arguments [19]. It turns out

that in the large-sample limit, both Schwartz’s and Rissanen’s approaches yield the

same criterion, given by [20]:

N
MDL = — ) " log g5(xy) + 2U log N (2.4)

n=1

Using the estimated eigenvalues of the covariance matrix R, the resulting cost func-
tions AIC and MDL have the following forms:

1 (p—k)N
)\P
AIC(k) = —2log g—l + 2k(2p — k) (2.5)
p—k 1=k+1
/\pl (p—k)N
MDL (k) = —log Hgl + g(zp —k)log N (2.6)
p—k 7 k+1

3. Spectrum Sensing Algorithms

The goal of spectrum sensing is to decide between the following two hypothe-

sizes [2] [3]:
n HO
X:{ As+n H, G-
We decide that a spectrum band is unoccupied if there is only noise, as defined in
Hp. On the other hand, once there exists a PU signal besides noise in a specific
band, as defined in H;, we say that the band is occupied. Thus the probability of
false alarm can be expressed as

Prps = Pr(Hy | Hy) = Pr(xis present | Hy) (3.2)



Dimension Estimation-based Spectrum Sensing for Cognitive Radio 5

The decision threshold is determined by using the required probability of false
alarm Pr 4 given by (3.2). The threshold v for a given false alarm probability is
determined by solving the equation

Pra = Pr(Y(x) > v[Hyp) (3.3)
where T'(x) denotes the test statistic for the given detector.

3.1. ED Algorithm

Conventional energy detectors can be simply implemented like spectrum analyzers.
The energy detector measures the received energy during a finite time interval and
compares it to a predetermined threshold. The test statistic of the energy detector is

p
Trp(x) = Z 2 (3.4)
i=1

The performance of the energy detector in AWGN is well known and can be written
in closed form. The probability of false alarm is given by

2
Prapp = 1—@( VaiD,p> (3.5)

where Q) denotes the cumulative distribution function [21] of a x2 distributed ran-
dom variable with 2p degrees of freedom. vg p is the detection threshold of the ED
and o2 is the noise variance [9].

3.2. CD Algorithm

CD has received a considerable amount of attention in the literature. Recent bibli-
ography on cyclostationarity, including a large number of references on cyclosta-
tionarity based detection, is provided in [22]. The CD algorithm used in this paper
was presented in [23]. We will give in this subsection a brief description of this
algorithm.

The cyclic autocorrelation function at some lag [ and some cyclic frequency «
can be estimated from samples x by

p—1l—1

> appane "> 0 (3.6)
n=0

. 1
nx,a) = —
1(x, @) P
The cyclic autocorrelations are non-zero for cyclostationarity based PU. This prop-
erty is exploited to detect a PU by testing whether the expected value of the es-
timated cyclic autocorrelation is zero or not. In [23], authors introduce a detector
based on multiple cyclic frequencies. Assuming that s is cyclic with cycle frequency

a,

r = [Re{r,(a)},...,Re{f ()}, Im {7, (a)},....Im {7 ()} (3.7)

denotes a 1 x 2K vector containing the real and imaginary parts of the estimated
cyclic autocorrelations for K time delays at the cyclic frequency stacked in a single
vector [23]. The test statistic is given by [23]

Tep(x) = 271" (3.8)
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where 3 is an estimate of the covariance matrix ¥ 2 cov {r} [23]. The (asymptotic)
probability of false alarm for this detector with threshold y¢p is given by

Praop = 1-G(X2K) (3.9)
where G(.) is the (lower) incomplete gamma function [23]. The main advantage of
the cyclic autocorrelation function is that it differentiates the noise energy from the
modulated signal energy. Therefore, a CD can perform better than other detectors in
discriminating against noise due to its robustness to the uncertainty in noise power.
However, it is computationally complex and requires a significantly long observa-
tion time.

3.3. DED Algorithm

In [12], the authors demonstrate that the number of DoF, possibly the number of
significant eigenvalues, is determined as the value of k£ € {0,1,...,p — 1} which
minimizes the value of AIC and/or the value of MDL. Figures 1 (a) and (b) present
the computed number of DoF obtained by AIC and MDL criterion following (2.5)
and (2.6), respectively. We show in these two figures the behavior of the AIC and
MDL curves as function of the eigenvalues index for an occupied and vacant UMTS
band, respectively. The dimension of the covariance matrix is equal to 800 (i.e.
N = 800 observations) and the length of the received signals is 20480 samples.
Based on (2.5) and (2.6), we determine the minimum of AIC and MDL and we
obtain then the number of significant eigenvalues. From Figures 1 (a), we see clearly
that the position of AIC,,,;;, and MDL,,;,, are located at a position of k£ # 0 for the
occupied spectrum band, and, at k = 0 for the vacant spectrum band as given by
Figures 1 (b). We tested also other communication signal types (GSM, WiFi, DVB-
T OFDM with different channel models, etc.), and we found similar results.
Therefore, when the PU is absent, the received signal x is only the white
noise samples, so the AIC curve, for example, monotonically increases. Therefore,
AIC(0) < AIC(k), Vk € {1, ...,p—1}, which can be rewired as AIC(0) < AIC(1).
On the other hand, when the PU is present, the AIC curve monotonically decreases
from AIC(0) to AIC,,;y,. Similarly, we can write that AIC(0) > AIC(1) if PU is
present. Hence, the generalized blind DED using AIC criteria can be given by

AIC(0) — AIC(1) < varc Hy

Taro(x) = { AIC(0) — AIC(1) > yasc H, (3.10)

The same properties can be founded using MDL criteria and the DED static test is
given in this case by

_ [ MDL(0) — MDL(1) < ympr. Hop
Tapr(x) = { MDL(0) — MDL(1) > vap,  Hy G.11)
We define here the two thresholds v47¢ and yaspr in order to decide on the nature
of the received signal. These thresholds depend only on Pr 4 and are calculated in
the following section.
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FIGURE 1. Akaike information criterion and minimum descrip-
tion length of captured noise block samples and data block sam-
ples using an UMTS signal.

4. False Alarm Probability Computation

A theoretical probability of false alarm will be derived in this section using AIC and
MDL criterion. The analytical results will be compared with simulation results to
confirm the theoretical expression of thresholds and probabilities of false alarm.

4.1. DED-AIC False Alarm Probability

According to the sensing steps in Section 3, the false alarm of the DED using AIC
criteria occurs when the estimated AIC values verify (3.10) given that the PU is
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absent or present. The test static Y 47¢(x) of the proposed detector is
T 47¢(x) = AIC(0) — AIC(1) (4.12)

Therefore, the probability of false alarm can be expressed as

Praarc = Pr <AIC(0) — AIC(1) > 'VAICHO> (4.13)
According to the AIC function defined in (2.5), we can obtain
1 pN 1 (p—1)N
f*l )‘lp =2 )\p
PFA,AIC = Pr —210g # +210g 171“ —4p+2>’YA]C
» 2im1 i p—1 Lai=2 Ai
P p
(1xr, ﬁi)p p—2+
= Pr|log P = > P N RELE Hy
( 11 P ) >\z> )\1
P 1=
and at hypothesis Hy we have
Ly VP Zp: A 2 (4.15)
— P~ i = O .
P r-13

In fact, the sum of the eigenvalues of the estimated covariance matrix R, given
by (4.15), is equivalent to LNT T (Zﬁ[ 1 Xn X, ) At hypothesis Hyp, the received

vector involves only the noise samples, thats Why, NIr (Zﬁle X, xH ) is the un-

biased estimation of the covariance of the white noise and it is equivalent to o2,
Substituting now (4.15) into (4.14) yields:

o?P dp — 2+ varc
P =Pr|{——> —————— | |H
FAAIC r (02p2/\1 exTp ( IN ) ’ 0)

Ho> (4.16)

A
Nﬁf

con-

Letu:(\/ﬁ—k\/ﬁ) andu—(\/>+\f)(r f) . Then

verges, with probability one, to the Tracy-Widom distribution of order two [18]. The

false alarm probability can be rewritten as

&7;11 Nexp(2 4p]\7AIC)_M’H>
0

N =
Pra arc=Pr
12 14

(4.17)

Let F; denote the CDF for the distribution of Tracy-Widom of order two given
by [18]:

Fy(t) = exp (—/ (u— t)h2(u)du> (4.18)
¢
where h(u) is the solution of the nonlinear Painlevé II differential equation [18]:

h(u) = wuh(u)+ 2h3(u) (4.19)
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Therefore, the probability of false alarm of the DED algorithm using AIC criteria
can be approximated as

Praarc = b (Nexp (2 4:;1\7“0) — M) (4.20)
or, equivalently
Neap (= 4213 I R (Prae) “21)
we finally obtain the threshold
vare = 2—4p—2N1n (”FZ‘_l (PF]‘\“["A’C) * “) 4.22)

Generally, it is difficult to evaluate the function F5. Fortunately, it can be computed
using Matlab [18].

4.2. DED-MDL False Alarm Probability

Similar with the above derivation, when the MDL criterion is applied, we only need
to modify the step in (4.14) as the one given in the following equation

p <t pN (p—1)N
A )\1’ 7 1
p &=l p—1 Lui=2 "\
“\P
157p /\,)
- (P =L YmprL + (p— logN
= Pr|log X PRV > N
(pj i=2 /\z') A1

We consider the same supposition given by (4.15), where the received signal in-
volves only the noise samples. Therefore, (4.23) can be written as

b\ YMDL + ;D—l log N
PFA,]\/[DL:PT (O'; < exp < ( 2) Hy 4.24)

N

Using the Tracy-Widom proposition, the false alarm probability of the DED algo-
rithm using MDL criteria can be rewritten as

Nexp <’YMDL+(ZZ)V;) logN) —u

14

Pravmpr = I (4.25)

where 1 and v are defined in the previous subsection, and the threshold of the DED-
MDL algorithm is given by

1 Fh(p
YMDI= ( _) 10gN Nln (V 2 ( F?\}MDL)‘FHJ) (4.26)
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4.3. Simulation and Analytical Results Comparison

When deriving the probabilities of false alarm using AIC and MDL criterion, was
assumed the assumption given by (4.15) at hypothesis Hy. This assumption is known
not to be correct, but it was argued that it should be sufficient to obtain good theo-
retical results for the probability of false alarm. Note that, for the DED the threshold
is not related to noise power and is computed based only on IV, p and Prg4, irre-
spective of signal and noise, for the two cases using AIC and MDL criterion. The
comparison results for threshold and Pr 4 using AIC and MDL criterion are given
in TABLE 1. This table shows that the simulated false alarm and thresholds perfor-
mance matches the theoretical results with a high degree of accuracy.

p=100 | p=150 | p =200
Pra arc | 0.0531 0.0518 0.0504
Pramvpr | 0.0549 0.0533 0.0520
YAIC 3.857e04 | 2.590e04 | 2.152e04
YMDL 3.613e04 | 2.097¢04 | 1.956e04
Praarc | 0.0500 0.0500 0.0500
Prpayvpr | 0.0500 0.0500 0.0500
YAIC 3.762e04 | 2.527e04 | 1.984e04
YMDL 3.484e04 | 1.825¢04 | 1.754e04
TABLE 1. Simulation and analytical results comparison.

Simulation results

Analytical results

5. Performances Evaluation

Actual sensing results and performance studies will be provided in this section in
the case of non-cooperative and cooperative CR network. The evaluation framework
for all simulations has been implemented in Matlab and all results are obtained as
the average of a number of Monte Carlo simulations. For the Monte Carlo simula-
tion, each signal block consists of one symbol which contains 2048 samples. 500
iterations are performed in the simulation. The primary system used is a DVB-T sys-
tem. Its communications are considered as PU communications. DVB-T abbreviates
Digital Television Broadcast - Terrestrial, and as the name implies it is a standard
for wireless digital transmission of TV signals. The standard is administered by the
European Telecommunications Standards Institute (ETSI). The official ETSI web
page can be found at [24]. The choice of the DVB-T PU system is justified by the
fact that most of the PU systems utilize the OFDM modulation format. The channel
models implemented are AWGN, Rician and Rayleigh channels. The latter two cor-
respond to the two different types of propagation that have to be handled in practice,
namely line-of-sight (LOS) and non-line-of-sight (NLOS). Slow fading is simulated
by adding log-normal shadowing. The simulation scenarios are generated by using
different combinations of parameters given in Table 2.

Three different scenarios with different properties have been chosen to evalu-
ate the spectral detection performance, subject to provide different attributes so that
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Bandwidth 8MHz

Mode 2K

Guard interval 1/4

Channel models Rayleigh/Rician (K=1)
Maximum Doppler shift | 100Hz

Frequency-flat Single path

Sensing time 1.25ms

Location variability 10dB

TABLE 2. The transmitted DVB-T primary user signal parameters

the performance can be assessed under different conditions, aiming to provide fair
conditions before making conclusions. OFDM is the modulation of choice for the
three simulation scenarios to be used as evaluation tools in this report. In OFDM,
a wideband channel is divided into a set of narrowband orthogonal subchannels.
OFDM modulation is implemented through digital signal processing via to the FFT
algorithm [25]. In scenario 1, we use a DVB-T OFDM signal in an AWGN chan-
nel. It is assumed that the detection performance in AWGN will provide a good
impression of the performance, but it is necessary to extend the simulations to in-
clude signal distortion due to multipath and shadow fading. Scenario 2 utilizes the
same DVB-T OFDM signal as scenario 1, but to make the simulations more realis-
tic, the signal is subjected to Rayleigh multipath fading and shadowing following a
log normal distribution in addition to the AWGN. The maximum Doppler shift of
the channel is 100Hz and the standard deviation for the log normal shadowing is
10dB. Since the fading causes the channel to be time variant, it is necessary to apply
longer averaging than in scenario 1 to obtain good simulation results. Thus the num-
ber of iterations in the Monte Carlo simulation is increased from 500 to 1000. The
third simulation scenario utilizes also a DVB-T OFDM signal in Rician multipath
fading with shadowing. The K-factor for the Rician fading is 10, which represents a
very strong line of sight component. The maximum Doppler shift of the channel and
the standard deviation for the log normal shadowing are the same as in the second
scenario.

5.1. Non-cooperative Sensing Evaluation

In this subsection, we will assess the performance of the proposed detector in terms
of PU signal detection using the binary hypothesis test expressed in (3.10) and (3.11)
for the DED-AIC and the DED-MDL detectors, respectively. The results from these
simulations can be seen in the batch Fig. 2. The best performance is obtained from
the CD detector. Subsequent is the DED using AIC criteria which has a perfor-
mance in the range from approximately 0.5dB to approximately 2.5dB below the
CD detector. The worst performance is displayed by the DED-MDL detector and
ED. DED-MDL performs approximately 3dB above DED-AIC, while ED differs
from the DED-AIC curves with as much as approximately 8dB. In total, DED-MDL
and ED can be seen to perform an average about 6dB worse than the best perfor-
mance, which is obtained by the CD detector. From Fig. 2, we remark also that
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FIGURE 2. Performance evaluation of the DED detector in terms
of PU signal detection using an DVB-T OFDM PU system: Prob-
ability of detection versus SNR curves with Pr 4 = 0.05, sensing
time = 1.12ms and p = 2048.

relative detection results for scenario 2 and scenario 3 are to a large extent aligned
with the results for scenario 1. This is expected as the underlying used signals are
the same. The main difference is in absolute performance which is caused by the
addition of multipath and shadow fading.

It is obvious from Fig. 2 (b) and (c) how the absolute detection performance
deteriorates when the signal is subjected to channel fading. The Pp slope for all
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the detectors starts dropping at higher SNR values than for the AWGN case. While
the Pp curves started dropping off in the range from approximately —3dB to about
—5dB for the four detectors in the AWGN channel of scenario 1, all curves start
dropping off before 8dB under the fading applied in scenarios 2 and 3.

5.2. Cooperative Sensing Evaluation

The challenges of cooperative sensing include the development of efficient infor-
mation sharing algorithms and increased complexity. Cooperative sensing decreases
also the probability of false alarms considerably. In addition, cooperation can solve
the hidden PU problem and can decrease sensing time. It can also mitigate the multi-
path fading and shadowing effects, which improve the detection probability. How-
ever, the cooperation causes adverse effects on resource-constrained networks due
to the additional operations and overhead traffic.

In this paper the cooperative spectrum sensing is performed as follows:

Step 1 Every SU performs local spectrum measurements independently and
then makes a binary decision.

Step 2 All the SUs forward their binary decisions to a FC.

Step 3 The FC combines those binary decisions and makes a final decision to
infer the absence or presence of the PU in the observed band.

In the above mentioned cooperative spectrum sensing algorithms, each co-
operative partner makes a binary decision based on its local observation and then
forwards one bit of the decision to the FC. At the FC, all one-bit decisions are fused
together according to an "OR” logic. This cooperative sensing algorithm is referred
to as decision fusion.

Results from the simulations can be seen in the batch Fig. 3. These figures
show the impact of cooperative SUs number M in the detection performance. We
plot the SNR for different numbers of cooperative users M, over the three scenarios.
The false alarm probability is set to 0.05. From the presented curves we can see that
the cooperative sensing (M > 1) does increase the detection probability to its single
user counterpart (M = 1), and the performance enhancement depends largely on the
number of cooperative users. When M increases, the performance is getting better.
5.3. Complexity Study

This subsection provides a brief discussion on computational complexity of the
DED algorithm. In order to give an idea of the complexity of the DED algorithm,
we provide in Fig. 4 simulation results assessing the performance in terms of exe-
cution time of this algorithm in comparison with CD and ED algorithms. Execution
time has been measured by using the Matlab stopwatch function fic/foc. Simulations
were performed on a laptop computer with a 1.6GHz CPU. From these results, we
find that the CD is the most complex among all, with over 2 time complexity com-
pared to DED. The ED is the least complex among all compared spectrum sensing
algorithms.

Complexity terminology will be the asymptotic O — notation, which is stan-
dard when analyzing algorithms [26]. The complexity of the DED algorithm is
computed according to the different steps of the algorithm, namely computation of
the covariance matrix and its corresponding eigenvalues and the derivation of AIC
and MDL criterion for the DED-AIC and DED-MDL algorithms, respectively. Note
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FIGURE 3. Performance evaluation of the DED detector in terms
of PU signal detection in cooperative way using an DVB-T
OFDM primary user system: Probability of detection versus SNR
curves with Pr 4 = 0.05, sensing time = 1.12ms and p = 2048.

that the complexity of AIC and MDL equations are equivalent because of the same
number of multiplication/addition in the two equations. From the algorithm given
in Section 3, we remark that the major complexity of this method comes from the
computation of the covariance matrix and the eigenvalue decomposition. The co-
variance matrix is block Toeplitz matrix and hermitian, then Np multiplications are
sufficient. For the computation of eigenvalues, O (p3) multiplications are needed.
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FIGURE 4. Simulation results assessing the performance in terms
of execution time for the DED detector: Execution time versus the
number of samples of the received DVB-T OFDM primary user
signal.

MDL and AIC values are computed according to (2.5) and (2.6) with Np? multipli-
cations. The total complexity of the DED algorithm is therefore

Np®>+ Np+0 (p*) 5.1

This section provided a discussion on the computational complexity of the
DED algorithm. We summarize the number of multiplications required for DED,
CD and ED algorithms in Table 3. From this table, it was argued that the DED
algorithm asymptotically should have a better running time than the CD algorithm.
This argument was further strengthened by simulation results. The simulations also

showed that the DED algorithm have running times of approximately one to two
order of magnitudes greater than the ED algorithm.

Sensing Method Complexity

CD p* + O(plog(p))
ED p

DED Np*+ Np+ O (p°)

TABLE 3. Complexity comparison of the different sensing techniques.

6. Conclusion

In this paper, we derived the exact threshold expressions of the dimension estima-
tion based spectrum sensing using AIC and MDL criterion. This is based on the
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distribution of Tracy-Widom of order two. Simulations using three different scenar-
ios with different properties DVB-T PU systems were presented in order to verify
the derived threshold values based on the probability of detection performance. It
has been shown that analytical and empirical results are coincide with each other.
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