
EURECOM
Department of Multimedia Communications

2229, route des Crêtes
B.P. 193

06560 Sophia-Antipolis
FRANCE

Research Report RR-11-261

Online Non-Negative Convolutive Pattern Learning for Speech Signals

Dec 7th, 2011
Last update June 12th, 2012

Dong Wang, Ravichander Vipperla, Nicholas Evans and Thomas Fang Zheng

Tel : (+33) 4 93 00 81 00
Fax : (+33) 4 93 00 82 00

Email : dong.wang@ed.ac.uk, {vipperla, evans}@eurecom.fr, fzheng@tsinghua.edu.cn

1EURECOM’s research is partially supported by its industrial members: BMW Group, Cisco, Monaco Telecom, Orange, SAP, SFR, Sharp,
STEricsson, Swisscom, Symantec, Thales.

Online Non-Negative Convolutive Pattern Learning for Speech Signals

Dong Wang, Ravichander Vipperla, Nicholas Evans and Thomas Fang Zheng

Abstract

The unsupervised learning of spectro-temporal patterns within speech signals is of interest in a broad range
of applications. Where patterns are non-negative and convolutive in nature, relevant learning algorithms include
convolutive non-negative matrix factorization (CNMF) and its sparse alternative, convolutive non-negative sparse
coding (CNSC). Both algorithms, however, place unrealistic demands on computing power and memory which
prohibit their application in large scale tasks. This technical report presents a new online implementation of CNMF
and CNSC which processes input data piece-by-piece and updates learned patterns gradually with accumulated
statistics. The proposed approach facilitates pattern learning with huge volumes of training data that are beyond
the capability of existing alternatives. We show that, with unlimited data and computing resources, the new online
learning algorithm almost surely converges to a local minimum of the objective cost function. In more realistic
situations, where the amount of data is large and computing power is limited, online learning tends to obtain lower
empirical cost than conventional batch learning.

Index Terms

Non-negative matrix factorization, convolutive NMF, online pattern learning, sparse coding, speech processing,
speech recognition

v

CONTENTS

I Introduction 1

II Online convolutive pattern learning 2
II-A Problem formulation . 2
II-B Online CNSC . 3

III Complexity and convergence analysis 5
III-A Computational complexity . 5
III-B Convergence of perfect learning . 6
III-C Convergence of imperfect learning . 12
III-D Batch learning and online learning . 14

IV Experiments 15
IV-A Speech separation . 15

IV-A1 Convergence and computing resource . 15
IV-A2 Convergence and piece length . 16
IV-A3 Convergence and data volume . 16
IV-A4 Speech separation . 17

IV-B Denoising for speech recognition . 18
IV-B1 Experimental setup . 19
IV-B2 Incomplete noise pattern learning . 20
IV-B3 Complete noise pattern learning . 21

V Conclusion 22

Appendix 22

References 23

vi

LIST OF FIGURES

1 An example of patterns learned with active learning. 16
2 Value of the cost function for the first 100 iterations with online and batch learning. 16
3 Average run-time for the first 100 iterations with online and batch learning. 17
4 Value of the cost function for U = 1 to 10 pieces and after 10 iterations for active and inertial online

learning. 17
5 Average run-time for between U = 1 to 10 pieces and after 10 iterations for active and inertial online

learning. 18
6 Value of the cost function with the multiplicative update fixed to 100 iterations and the speech data

duplicated up to 50 times. 18
7 Value of the cost function with the multiplicative update fixed to 10 iterations and the speech data

duplicated 50 times. 19
8 SDR of speech separation. 19
9 Average run-time for 10 iterations with online and batch learning. 20
10 ASR accuracies with CNSC-based noise cancelation where the background noise patterns are learnt

on a set of randomly sampled background audio segments with batch, active online and inertial online
learning. 20

11 Accuracies with CNSC-based noise cancelation where the background noise patterns are learnt using
active and inertial online CNSC. 21

12 Accuracy with online CNSC-based noise cancelation where the 100 background noise patterns are
learnt based on random or entire data respectively. Results using both active and inertial learning are
presented. 22

1

I. INTRODUCTION

Many signals exhibit clear spectro-temporal patterns; the discovery and learning of such patterns with automatic
approaches is often needed for signal interpretation and for the design of suitable algorithms in practical applications.
In speech signals, for instance, patterns of interest might be related to the speaker identity or the phonetic content.
Whilst some of these patterns might be readily defined and learned with supervised approaches, e.g. neural networks,
other, more complex patterns are difficult to pre-define and annotate particularly when they involve large datasets,
hence the need for unsupervised approaches.

Various unsupervised learning techniques have been developed for automatic pattern discovery. The general idea
behind such learning approaches involves the search for a number of patterns which can be used to reconstruct a
set of training signals according to a certain cost function, e.g. minimum reconstruction loss, and an appropriate
set of constraints. This can be written formally as:

W̃ = arg min
W
{min
H

`(X, X̃(W,H))} s.t. {gi(W,H)} (1)

where X represents a set of training signals and X̃ their reconstructed approximations. `(·, ·) represents the objective
function and {gi(W,H)} represents the set of constraints. The reconstruction usually takes a linear form:

X̃(W,H) = W ×H

where H represents the projection of X̃ onto a set of patterns W . Pattern learning is thus closely related to matrix
factorization, a field that has been studied extensively in mathematics and statistics. In signal processing and pattern
learning, W is referred to as a dictionary whereas in statistics, W is referred to as a basis. The coefficient matrix
H is known as a factor matrix or a code matrix in some literature. In this paper we refer to W and H as ‘patterns’
and ‘coefficients’ respectively.

Different cost functions and constraints lead to different learning techniques. An l-2 reconstruction loss or
Kullback-Leibler divergence cost function and a non-negative constraint applied to both patterns and coefficients
leads to non-negative matrix factorization (NMF) [1]–[6]. In contrast to other pattern learning approaches NMF is
capable of learning partial patterns and has thus proved to be popular in applications such as data analysis, speech
processing, image processing and pattern recognition [3], [7]–[19].

A number of extensions have been introduced to improve the basic NMF approach, e.g. [20]–[31]. Convolutive
NMF (CNMF) [32], [33] and sparse NMF [34]–[36] are among the most significant. Patterns learned with convo-
lutive NMF span a number of consecutive frames and thus capture spectro-temporal features. With sparse NMF,
sparsity constraints imposed on both patterns and coefficients generally lead to improved representation and noise
robustness. The two extensions can be combined, resulting in a more powerful learning approach referred to as
convolutive non-negative sparse coding (CNSC) [37]–[40].

While promising results have been demonstrated in some tasks such as speech enhancement [41] and source
separation [42], NMF and its variants such as CNMF and CNSC place high demands on both computing resources
and memory when the training database is large. The original form of the multiplicative update procedure [4]
requires all the signals to be read into memory and processed in each iteration; this is prohibitive in large scale
applications such as large vocabulary speech recognition which usually involves thousands of gigabytes of training
data. This problem is more pronounced for both CNMF, where patterns cover a greater number of signal frames
and so are usually large, and CNSC, which not only involves larger patterns but also a greater number of patterns.
In some cases their number might even be larger than the signal dimension (sometimes referred as ‘over-complete
patterns’). Most related publications in speech processing accordingly focus on small databases, e.g. TIDIGITS or
TIMIT and learning is often based on even smaller subsets or random samples [43], [44]. Such ad-hoc learning
schemes are clearly unacceptable for complex tasks.

To address this problem, we propose in this article a novel on-line learning approach for CNMF and CNSC,
which processes input signals piece-by-piece and updates learned patterns gradually using accumulated statistics.
With this approach, only a limited segment of the input signal is processed at a time. This approach resolves the
problem of memory usage and computing cost from which conventional NMF suffers, thereby facilitating learning
from large databases. As is the case for batch learning, we prove that the proposed online approach almost surely
converges to a local minimum of the objective cost function when the amount of data and computational resources

2

are unlimited. We furthermore demonstrate that the new online approach tends to obtain lower empirical cost than
batch learning in practical applications.

In the following section, we first formulate the learning task and present the online CNSC algorithm (CNMF
can be regarded as a special case of CNSC with zero sparsity). Section III presents a complexity analysis and
convergence study. Experimental results are reported in Section IV. Our conclusions are presented in Section V
with ideas for further work.

II. ONLINE CONVOLUTIVE PATTERN LEARNING

A. Problem formulation

CNSC can be formulated according to different cost functions [39], [45]. We adopt the formulation in [39] which
defines the learning problem as the minimization of the following cost function:

f(W,H) = `(X, X̃(W,H)) s.t. Wi,j,k, Hi,j ≥ 0 (2)

where X ∈ RM×N0,+ represents the original signal of length N in M -dimensional space1 and X̃ is its reconstructed
approximation. It is obtained from a pattern matrix W ∈ RM×R×P0,+ with R patterns of convolution range P and a
coefficient matrix H ∈ RR×N0,+ according to:

X̃(W,H) =

P−1∑
p=0

W (p)
p→
H s.t. Hi,j ≥ 0 (3)

where
p→
H shifts H by p columns to the right and where W (p) ∈ RM×R0,+ is the pattern matrix corresponding to

p→
H .

Finally, the cost function is the sparse-regularized least square distance given by:

`(X, X̃) = ||X − X̃||22 + λ||H||l (4)

where || . ||l denotes the element-wise l-norm, which is equivalent to the sum of squares of the matrix elements
when l = 2 or the sum of their absolute values when l = 1. The factor λ is introduced to control the sparsity of
H . To avoid a nullified H , the pattern matrix in W are forced to be unity, i.e., ||W (p)||2 = 1 for any p.

Note that in the optimization problem (2), both patterns W and coefficients H are free variables and need to be
optimized simultaneously, even if patterns W are the primary target. This co-optimization problem is not convex
and it is impossible to find a globally optimal solution. A multiplicative update approach is presented in [39] to
search for a local minimum solution by extending the procedure presented in the seminal NMF paper [4]. This is
formulated as follows:

H ← H � [W (p)]T
←p
X

[W (p)]T
←p
X̃ +λΞ

(5)

W (p)←W (p)� X
p→
H

T

X̃
p→
H

T
(6)

where � is the element-wise product and where the division is also element-wise. Ξ is a matrix whose elements
are all equal to 1. Note that the update of H is different for different p and so, in practice, H is averaged over all
p to obtain the updated coefficients.

The above equations show that most of the computation is involved in calculating the reconstruction X̃ , which
has a complexity of O(M × N × R × P). This is highly demanding for large pattern sets (large R) and large
databases (large N). More importantly, since all signals must be loaded into memory and processed together, both
the memory and computational requirements become prohibitive when the training corpus is large.

1The term “signal” here denotes any sequential data which may be non-negative in its natural form. In general, however, they are alternative
or transformed non-negative representations of the original signal, such as power spectra.

3

B. Online CNSC

In order to extend the application of CNSC to large scale tasks which involve large volumes of training data and
complex patterns, we present an online learning approach which reads in and processes only a part of the training
data at a time and updates patterns gradually until the whole training corpus is processed. The online approach has
been presented previously to train probabilistic models in machine learning (e.g., [46], [47]), however it has seldom
been studied in a multiplicative update setting such as in CNSC. A recent contribution presented by Mairal et al. is
online dictionary learning (ODL) [48]. ODL reads in and decomposes signals frame-by-frame and updates patterns
as each frame is processed. The authors show that such ‘partial learning’ almost surely converges to a stationary
point of the objective function, given unlimited training data and a few reasonable assumptions. Similar research
can be found in [49], [50].

In this paper we present an alternative online learning approach which is based on the simple NMF-style
multiplicative update rule, and employ this approach to learn temporal patterns based on CNSC. Note that, while
ODL supports NMF or sparse NMF by enforcing the non-negativity constraint on both patterns and coefficients,
our work is the first to couple online and convolutive learning.

We start by designing a partial learning formulation which retains the temporal information within training data.
We define a signal piece as a number of neighboring frames within which the signal is correlated, while different
pieces are assumed to be independent. Temporal patterns can be learned by processing pieces sequentially and
separately. Through a simple re-arrangement, the pattern update rule (6) can be re-written as follows:

W (p)←W (p)�
∑

u Ḃ(p, u)∑
qW (q)

∑
u Ȧ(q, p, u)

(7)

where u is the piece index and

Ȧ(q, p, u) =
q→
Hu

p→
Hu

T

Ḃ(p, u) = Xu

p→
Hu

T

are the statistics contributed by piece u. The contribution of the first u pieces can then be ‘memorized’ in two
auxiliary variables defined as follows:

A(q, p;u) =

u∑
t=1

Ȧ(q, p, t)

and

B(p;u) =

u∑
t=1

Ḃ(p, t).

The most significant difference between rules (7) and (6) is that the training data are broken into small pieces and
processed sequentially. The application of rule (7) is thus more suitable in applications involving live, streamed
data and the adaptive learning of new patterns in time-variant data. Second, through rule (7) the contribution of
processed signals is stored in two auxiliary variables. Their size is independent of training data quantities and
thus reduces memory and computational demands and hence enables the learning of complex patterns from large
corpora. Finally, piece-wise learning allows the updating of patterns with each new signal piece. This leads to ‘early
learning’ which significantly increases convergence speed as presented in Sections III and IV.

This leads to online CNSC which is presented in Algorithm 1. The flag variable activeW defines two different
learning schemes: if activeW = True, both patterns and coefficients are updated K times iteratively when
processing each piece; if activeW = False, only coefficients are iteratively updated. The former approach is
referred to as active learning whereas the second approach is referred to as inertial learning. Note that, in both
cases, patterns are nonetheless learned actively with the first piece to ensure reasonable initialization of the pattern
matrix. In general, active learning converges with fewer iterations than inertial learning but places a greater demand
on computing resources. We address this point further in Sections III and IV. Algorithm 2 illustrates the pattern
update process (7). Matlab code for these algorithms is available online2.

2http://audio.eurecom.fr/software

4

Algorithm 1 Online CNSC learning
1: U: number of pieces
2: K: iteration
3: A(i, j) ∈ RR×R, 0 < i, j < P
4: B(i) ∈ RM×R, 0 < i < P
5: A(i, j)← 0, ∀i, j
6: B(i)← 0, ∀i
7: for u := 0 to U-1 do
8: randomize(H)
9: for k := 0 to K-1 do

10: if (activeW=true) or (k = 0) then
11: W = updateW (A,B,Xu,W,H)
12: end if
13: H = updateH(X,W,H)(Eq.5)
14: end for
15: [Ȧ, Ḃ,W] = updateW (A,B,Xu,W,H)
16: A(i, j)← A(i, j) + Ȧ(i, j)
17: B(i)← B(i) + Ḃ(i)
18: end for

Algorithm 2 CNSC pattern update
Require: A,B,X,W,H

1: Ȧ ∈ RR×R, 0 < i, j < P
2: Ḃ ∈ RM×R, 0 < i < P

3: Ȧ(i, j) =
i→
H

j→
H

T

∀i, j

4: Ḃ(i) = X
i→
H
T

∀i
5: A = A+ Ȧ
6: B = B + Ḃ
7: for p :=0 to P-1 do
8: F ← 0
9: for q :=0 to P-1 do

10: F = F +WqA(q, p)
11: end for
12: Ẇp = Wp � B(p)

F
13: end for
14: Wp = Ẇp

||Ẇp||22
∀p s.t. Wp ∈ RM×R0,+

15: return [Ȧ, Ḃ,W]

We note that the online CNSC algorithm emphasizes pattern learning and thus coefficients obtained for each
signal piece might be sub-optimal as a result of early learning. This is in contrast to batch learning where patterns
and coefficients are optimized simultaneously with respect to the objective cost function. With the learned patterns,
however, the coefficients can be optimized easily either by iteratively applying (5) or by more efficient techniques
such as quadratic optimization; both are amenable to parallel computation. Finally we note that the choice of
segmentation of signals into pieces is a trade-off between intra-piece correlation and inter-piece independence. For
speech signals, a segmentation according to sentence boundaries avoids the splitting of voiced patterns and is thus
a natural choice.

5

III. COMPLEXITY AND CONVERGENCE ANALYSIS

In this section we analyze the computational complexity and convergence of the online CNSC algorithm. We
show that online learning requires comparable (for active learning) or less (for inertial learning) computations and
almost surely converges to a local minimum of the same cost as in the batch learning. Here ‘almost surely’ means
that the convergence is guaranteed with probability one. In practice, with the same computational load, online
learning tends to learn better patterns than batch learning.

A. Computational complexity

The computing demand for both conventional batch learning and online learning consists of updating the
coefficient matrix H and the pattern matrix W . We start the analysis with the computation required for one
iteration.

Firstly for the coefficient update rule (5) which is shared by both batch and online learning, one update requires

(2M + PM + 2)RN

multiplications and RN divisions. Considering updates for various shifts p, the computational complexity is in the
order of

O(M ×N ×R× P)

for one iteration and is identical for both batch and online learning.
In addition, rule (6) shows that one iteration of pattern update in the batch learning requires

(3N + 1)MRP

multiplications and MRP divisions for one iteration, while online pattern update (7) requires

(N +M)R2P 2 + (N + 1)MRP

multiplications and MRP divisions. If the signals are segmented into U pieces, the computing demand to process
the entire signals amounts to

U−1∑
u=0

(Nu +M)R2P 2 + (Nu + 1)MRP

or

NR2P 2 +NMRP + UMR2P 2 + UMRP

multiplications and UMRP divisions.
In the case where N is dominant, batch learning and online learning require approximately

3MRPN

and

(RP +M)RPN

multiplications respectively.
A simple calculation shows that online learning is more efficient if 2M > RP . This implies that, with high

dimensional features and when learning a small number of patterns with a small convolution range, online learning
update rule (7) is more efficient than batch learning update rule (6). For example, in speech processing we usually
choose M = 128 for power spectra, and the convolution range is often chosen to be small, e.g., P = 4. If we learn
a modest number of patterns, i.e., R < 64, then the online algorithm is more efficient than the batch algorithm. For

6

sparse coding where the pattern matrix is over-complete e.g., R > M , then online learning is slower than batch
learning. The compensation, however, is that a greater volume of training data can be handled.

Now consider computing complexity for multiple iterations. To simplify the comparison, we assume that both
online and batch learning use update rule (7) and therefore have the same complexity for a single update. For batch
learning, K iterations require K times the computation required for one iteration. For online learning, without
considering the special treatment for the first piece, the active learning invokes K iterations for coefficient update
and K + 1 iterations for pattern update, while inertial learning invokes K iterations for coefficient update and
1 iteration for pattern update. Thus active learning always requires more computation than batch learning, while
inertial learning is always more efficient than batch learning. As we discuss in the next section, both active and
inertial learning converge almost surely and the greater computational demand for active learning is compensated
for by faster convergence.

B. Convergence of perfect learning

We here study the convergence behavior of the online CNSC algorithm. As in ODL, we define the learning task
as an optimization problem which aims to minimize an objective cost function fu(W) with respect to the pattern
matrix W , where fu(W) is defined as follows:

fu(W) ≡ 1

u

u∑
t=1

`Xt
(W)

where
`X(W) = min

H

1

|X|
`(X, X̃(W,H))

is the cost of signal X and |X| denotes the number of frames of X . The limit of the objective cost function is
defined as the expected cost function, denoted by f(W) and given as follows:

f(W) ≡ EX [`X(W)]

= lim
u→∞

fu(W)

where EX represents expectation over X .
Note the definitions of fu(W) and f(W) are independent of specific learning process. In order to study the

convergence of the proposed CNSC online learning algorithm, we define Wt as the pattern matrix learned at the tth

step, and Ht as the coefficient matrix of the tth signal obtained in learning. An empirical cost function is defined
as follows to evaluate quality of the learning process:

ḟu(W) =
1

u

u∑
t=1

`Xt
(W,Ht) (8)

where
`X(W,H) =

1

|X|
`(X, X̃(W,H))

is the empirical cost of signal X . Note that the coefficients Ht are ‘imperfect’ in general, which means the
multiplicative update does not converge for each piece of signal, usually due to limitations on computing resource.
We therefore call ḟu(W) imperfect empirical cost function, and `Xt

(W,Ht) imperfect cost of Xt.
If the computing resource is unlimited and the learning is ‘perfect’, the coefficient matrix Ht is optimized and

explicitly denoted by:
Ĥt = arg min

H
`(Xt, X̃(Wt, H)

or
Ĥt = arg min

H
`(Xt, X̃(Wt−1, H)

with active and inertial learning respectively. The corresponding empirical cost function is referred to as perfect
empirical cost function and is explicitly denoted by f̂ :

f̂u(W) =
1

u

u∑
t=1

`Xt
(W, Ĥt) (9)

7

where `Xt
(W, Ĥt) is referred to as perfect cost of Xt.

We now seek to prove that the empirical cost f̂u(Wu) of online learning almost surely converges to the objective
cost fu(Wu) when u approaches infinity. Before presenting the proof, we first state a few necessary assumptions.
(A) The training signals follow a time-invariant distribution supported by a compact set. This assumption is

reasonable for many signals such as audio and video due to the acquisition process.
(B) The update rules (5) and (6) are well-defined so that the multiplicative update converges to local minima

with unlimited iterations. Theoretically the convergence with this simple rule is not guaranteed, but it has
little impact in practice. In addition, with a simple modification, the convergence can be enforced [6], [15].
We do not consider such complexity in this work, and just assume convergence. Reasonable initialization for
the update process and a bounded denominator matrix in the update rules help to respect this assumption.

(C) The empirical cost function f̂u is strictly convex with lower-bounded Hessians. This assumption can be
guaranteed with a threshold on the smallest eigenvalue of the accumulated statistics 1

uA(u) [48]3.
(D) The existence of a unique solution for the coefficient matrix is satisfied for signal pieces. For CNMF, this

means the rank of the pattern matrix is not larger than the feature dimension; for CNSC, this means a unique
sparse code exists and can be found by l-1 optimization [51].

First notice that assumption (B) implies batch learning converges to a local minimum of the cost function (4).
Convergence proof for online learning is not straightforward and involves several lemmas regarding the convergence
of variation and the Lipschitz property of the objective and empirical cost functions.

We first prove several lemmas regarding convergence of variation and the Lipschitz property of the objective and
empirical cost functions. These lemmas are required to prove convergence of online learning.

Lemma 31: Given assumptions (A)-(D), the following convergence properties hold for the objective cost:
(1) |fu+1(W)− fu(W)| = O(1

u)
(2) |fu+1(Wu+1)− fu(Wu)| = O(1

u)

Proof:

fu+1(W)− fu(W) =
ufu(W) + `Xu+1

(W)

u+ 1
− fu(W)

=
`Xu+1

(W)− fu(W)

u+ 1

Note that both `Xu+1
(W) and fu(W) are bounded due to assumption (A) and the non-negative constraint. This

leads to result (1).
Moreover, if fu+1(Wu+1) ≥ fu(Wu), we have:

|fu+1(Wu+1)− fu(Wu)| = fu+1(Wu+1)− fu(Wu)

≤ fu+1(Wu)− fu(Wu)

= O(
1

u
)

Since fu(Wu) is lower bounded by 0 and the positive sequence fu+1(Wu+1) − fu(Wu) is O(1
u), the negative

sequence must be at most O(1
u), i.e., [|fu+1(Wu+1)−fu(Wu)| = O(1

u) if fu+1(Wu+1) < fu(Wu). Therefore result
(2) is proved.

Lemma 32: Given assumptions (A)-(D), if the update process converges for each signal piece, then f̂u+1 − f̂u
is Lipschitz with a factor k = O(1

u)
Proof:

First notice for any matrix Q,
||Q||22 = Tr(QQT)

and for any square matrix Q

3Precisely, A(u) =
∑u

t=1
Ȧ(t)
|Xt| following the utterance-averaged cost function (9). This is different from the statistics in Algorithm 1

where the cost function is frame-averaged. The use of utterance-averaged costs in the proof simplifies notation; the proof presented here can
be applied similarly to the frame-averaged cost function.

8

Tr(
Q

||Q||2
) ≤ dim(Q).

where Tr(·) denotes trace, and dim(·) denotes dimension.
We then can re-write the empirical cost function in a trace form as follows:

f̂u(W) =
1

u

u∑
t=1

1

|Xt|
(||Xt −WHt||22 + λ||Ht||1)

=
1

u
{Tr(W TWÃu)− 2Tr(W T B̃u)}

+
1

u

u∑
t=1

1

|Xt|
(Tr(XtX

T
t) + λ||Ht||1)

where Ãu and B̃u are the accumulated statistics at the uth step. This results in variation of the empirical cost as
follows:

δf̂ (W) = f̂u+1(W)− f̂u(W)

=
1

u
Tr(W TW (Ãu+1 − Ãu))

+
2

u
Tr(W T (B̃u − B̃u+1))

+ε

where ε is a factor independent of W . Therefore we have:

δf̂ (W1)− δf̂ (W2) =
1

u
||∆W ||22Tr(

∆(W TW)∆Ã

||∆W ||22
)

+
2

u
||∆W ||2Tr(

∆W T∆B̃

||∆W ||2
)

where ∆W = W1 −W2 and ∆(W TW) = W T
1 W1 −W T

2 W2.
According to our assumptions, W is in a compact set and so ||∆W ||2 is bounded; furthermore, ∆Ã and ∆B̃ are
bounded since the signals and coefficients are bounded. Then there exists a value k with which δf (W) is Lipschitz,
i.e.,

|δf̂ (W1)− δf̂ (W2)| ≤
k

u
||W1 −W2||2.

With these results, the following property holds for online learning:
Lemma 33: Given assumptions (A)-(D), if the update process converges for each signal piece, then inertial online

learning ensures that:

f̂u(Wu+1)− f̂u(Wu) = O(
1

u
)

Proof:

9

f̂u(Wu+1)− f̂u(Wu) = f̂u(Wu+1)− f̂u+1(Wu+1)

+f̂u+1(Wu+1)− f̂u+1(Wu)

+f̂u+1(Wu)− f̂u(Wu)

≤ [f̂u(Wu+1)− f̂u+1(Wu+1)]

−[f̂u(Wu)− f̂u+1(Wu)]

= −δf̂ (Wu+1) + δf̂ (Wu)

≤ k

u
||Wu+1 −Wu||2

where k is a constant. Note that we have applied Lemma 32 and used the fact that f̂u+1(Wu+1) ≤ f̂u+1(Wu).

Compared to inertial learning where Hu is first optimized with respect to Wt−1 and then Wu is updated once
but not optimized, active learning jointly optimizes the patterns Wu and coefficients Hu at the uth step. This joint
optimization usually leads to faster pattern learning with active learning, although it comes at the risk of overfit to
initial data. The following lemma states that active learning converges faster than inertial learning.

Lemma 34: Given assumptions (A)-(D), if the update process converges for each signal piece, active online
learning ensures that:

f̂u(Wu+1)− f̂u(Wu) = O(
1

u2
)

Proof:
Following the same procedure as in inertial learning, it can be proved that

f̂u(Wu+1)− f̂u(Wu) ≤ k

u
||Wu+1 −Wu||2.

On the other hand, since the empirical cost f̂u is strictly convex according to Assumption (C), the second-order
growth condition can be verified as:

f̂u(Wu+1)− f̂u(Wu) ≥ k′||Wu+1 −Wu||22
where k′ is a constant.
This results in

||Wu+1 −Wu||2 ≤
kk′

u

and therefore:

f̂u(Wu+1)− f̂u(Wu) ≤ k2k′

u2
.

We can now prove the convergence of online learning using Lemma 33 and Lemma 34. For that, we first prove
that the empirical cost variation is O(1

u) with both active and inertial learning.
Proposition 35: Given assumptions (A)-(D), if the multiplicative update converges for each signal piece, the

following property holds with both active and inertial online learning:

f̂u+1(Wu+1)− f̂u(Wu) = O(
1

u
).

Proof:
For active learning,

f̂u+1(Wu+1) =
uf̂u(Wu+1) + `Xu+1

(Wu+1)

u+ 1
.

10

Therefore

f̂u+1(Wu+1)− f̂u(Wu) =
u(f̂u(Wu+1)− f̂u(Wu))

u+ 1

+
`Xu+1

(Wu+1)− f̂u(Wu)

u+ 1

It is easy to verify that f̂u+1(Wu+1)− f̂u(Wu) is O(1
u) according to Lemma 34 and the fact that `(W) and f̂(W)

are bounded.
For inertial learning,

f̂u+1(Wu+1) =
uf̂u(Wu+1) + `Xu+1

(Wu)

u+ 1
.

We therefore have

f̂u+1(Wu+1)− f̂u(Wu) =
u(f̂u(Wu+1)− f̂u(Wu))

u+ 1

+
`Xu+1

(Wu)− f̂u(Wu)

u+ 1

Again, this is O(1
u) according to Lemma 33 and the bounded `(W) and f̂(W).

The convergence of variation f̂u+1 − f̂u with O(1
u) suggests that online learning tends to be stable with a large

amount of data, however it does not ensure convergence of f̂u. A faster convergence of the variation is required to
prove convergence of the learning process.

We show that this convergence is almost sure with both active and inertial learning, conditioned on sufficient
training data. As Proposition (3) in [48], our proof applies Theorem A1 from [52], which states that if the sum of
the positive variations of a sequence vu is bounded, then vu is quasi-martingale, which converges with probability
one (see Theorem A1 in Appendix). We first prove the convergence of active learning, and then apply the same
approach to inertial learning with a minor change.

Proposition 36: Given assumptions (A)-(D), if the multiplicative update converges for each signal piece, the
empirical cost converges to the object cost almost surely with active online learning, i.e.,

lim
u→∞

f̂u(Wu) = lim
u→∞

fu(Wu) a.s.

Proof:
Defining vu ≡ f̂u(Wu), we have:

vu+1 − vu = f̂u+1(Wu+1)− f̂u(Wu)

≤ u(f̂u(Wu+1)− f̂u(Wu))

u+ 1

+
`Xu+1

(Wu)− fu(Wu)

u+ 1

+
fu(Wu)− f̂u(Wu)

u+ 1
(10)

where we have applied
`Xu+1

(Wu+1) < `Xu+1
(Wu).

11

To use Theorem A1, define the filter of the past information as Fu. Considering the causal nature of Fu and
applying the fact that fu − f̂u ≤ 0, we have

E[vu+1 − vu|Fu] ≤ u(f̂u(Wu+1)− f̂u(Wu))

u+ 1

+
E[`Xu+1

(Wu)]− fu(u)

u+ 1

=
u(f̂u(Wu+1)− f̂u(Wu))

u+ 1

+
f(Wu)− fu(Wu)

u+ 1

≤ u(f̂u(Wu)− f̂u(Wu))

u+ 1

+
||f − fu||∞
u+ 1

where
||f − fu||∞ = sup

W
|f(W)− fu(W)|.

According to Lemma 34,

f̂u(Wu+1)− f̂u(Wu) = O(
1

u2
)

and according to Lemma A2 from [53] (see in Appendix),

E[||f − fu||∞] = O(
1√
u

).

We therefore have:
E[E[vu+1 − vu|Fu]+] = O(

1

u
3

2

).

Thus the expected positive variance of the process v is bounded, so Theorem A1 can be applied to prove v = f̂u(Wu)
converges with probability one, and that

∞∑
u=1

|E[vu+1 − vu|Fu]| < +∞ a.s.

This further implies that:
∞∑
u=1

E[vu+1 − vu|Fu] > −∞ a.s.

Returning to (10) and by summing over all variations on the two sides, we can prove that:
∞∑
u=1

f̂u(Wu)− fu(Wu)

u+ 1
< +∞. a.s.

Let au = f̂u(Wu)− fu(Wu) and bu = 1
u+1 , we have:

|au+1 − au| ≤ (f̂u+1(Wu+1)− f̂u(Wu)) +

|fu+1(Wu+1)− fu(Wu)|.

According to Proposition 35 and Lemma 31, the two items on the right side are O(1
u), and so |au+1−au| = O(1

u).
Applying Lemma A3, we obtain

lim
u→∞

au = lim
u→∞

f̂u(Wu)− lim
u→∞

fu(Wu) = 0 a.s.

This proves that, with unlimited data, the empirical cost with active online learning converges to the objective cost
almost surely.

12

Proposition 37: Given assumptions (A)-(D), if the multiplicative update converges for each signal piece, the
empirical cost converges to the object cost almost surely with inertial online learning, i.e.,

lim
u→∞

f̂u(Wu) = lim
u→∞

fu(Wu) a.s.

Proof:
A similar approach to that applied for active learning can be applied to the proof for inertial learning. As has

been shown in Lemma 35, we have:

vu+1 − vu = f̂u+1(Wu+1)− f̂u(Wu)

≤ f̂u+1(Wu)− f̂u(Wu)

=
`Xu+1

(Wu)− fu(u)

u+ 1

+
fu(Wu)− f̂u(Wu)

u+ 1

We then have the same form of variation sequence as in active learning except an O(1
u2) term has been omitted.

Following the same process, we can show that:

E[E[vu+1 − vu|Fu]+] = O(
1

u
3

2

)

and f̂u(Wu) converges to the objective cost fu(Wu) almost surely.

It can be further proved that the objective cost function fu converges to the expected objective cost function, i.e.,

||fu − f ||∞ →u→∞ 0

and therefore
lim
u→∞

f̂u(Wu)− lim
u→∞

f(Wu) = 0 a.s.

This result shows that with unlimited data, the empirical cost f̂(Wu) converges to the expected cost f(Wu) almost
surely. Since Wu is a stationary point of f̂ , it can be proved that Wu converges to a stationary point of the expected
cost function f . The proof for this stronger result is similar to that in ODL [48].

C. Convergence of imperfect learning

Here we prove the convergence of the imperfect empirical cost function ḟu(Wu). This corresponds to ‘imperfect
learning’ where the multiplicative update does not converge for each signal piece. This is generally the case in
practice due to limited computing resources.

First define δu(W) as the bias of the imperfect empirical cost shifted away from the perfect empirical cost of
the uth piece of signal, i.e.,

δu(W) = `Xu
(W,Hu)− `Xu

(W, Ĥu).

The following proposition states that online learning converges with imperfect coefficients.
Proposition 38: Suppose online learning does not converge for each signal piece due to limited computational

resources, and that the bias δu(W) has the same expectation in spite of u, i.e.,

EX,H [δu(W)] = ε(W) ∀ u (11)

where the expectation is taken on both signals X and coefficients H . Given assumptions (A)-(D), online learning
converges almost surely and that:

lim
u→∞

ḟu(Wu) = lim
u→∞

f̂u(Wu) + ε(Wu) a.s.

13

Proof:
This proof is similar to the convergence proof in Proposition 36 and 37. For simplicity, we prove the condition
with active learning; it is straight forward to verify the application of the same proof to inertial learning with minor
changes.
As in the proof of Proposition 36, let us define vu ≡ ḟu(Wu); we have:

vu+1 − vu = ḟu+1(Wu+1)− ḟu(Wu)

≤ ḟu+1(Wu)− ḟu(Wu)

=
`Xu+1

(Wu) + δu+1(Wu)− fu(Wu)

u+ 1

+
fu(Wu)− (f̂u(Wu) + 1

u

∑u
i=1 δi(Wu))

u+ 1

=
`Xu+1

(Wu)− fu(Wu)

u+ 1

+
fu(Wu)− f̂u(Wu)

u+ 1

+
δu+1(Wu)− 1

u

∑u
i=1 δi(Wu)

u+ 1

This leads to:

EX,H [vu+1 − vu|Fu] ≤
E[`Xu+1

|Fu]− fu(Wu)

u+ 1

+
ε(Wu)− 1

u

∑u
i=1 δi(Wu)

u+ 1

≤ ||f − fu||∞
u+ 1

+
ε(Wu)− 1

u

∑u
i=1 δi(Wu)

u+ 1

Then we have:

EX,H [EX,H [vu+1 − vu|Fu]] =
EX,H [||f − fu||∞]

u+ 1

where we have applied:

ε(Wu)− 1

u

u∑
i=1

EX,H [δi(Wu)] = 0.

This results in the same convergence speed as in Proposition 36, i.e.,

EX,H [EX,H [vu+1 − vu|Fu]+] = O(
1

u
3

2

). (12)

The convergence of ḟu(Wu) can be proved following the same process in the proof of Proposition 36. Furthermore,
noting that:

ḟu(Wu) = f̂u(Wu) +

∑u
i=1 δi(Wu)

u

and f̂u(Wu) converges to fu(Wu), we have:

14

lim
u→∞

ḟu(Wu) = lim
u→∞

fu(Wu) + lim
u→∞

∑u
i=1 δi(Wu)

u
a.s.

= lim
u→∞

fu(Wu) + ε(Wu) a.s.

Theoretically, the perfect empirical cost f̂u(Wu) does not necessarily converge, but if we assume that the update
on Wu in each step improves f̂u(Wu), then it can be verified that f̂u(Wu) converges indeed and

lim
u→∞

ḟu(Wu) = lim
u→∞

f(Wu) + ε(Wu) a.s. (13)

This means that online learning converges to a stationary point of a new function g(W) = f(W) + ε(W), which is
obviously suboptimal for our task which intends to minimize the expected cost f(W). If the multiplicative update
approaches to convergence, ε(W) approaches to 0 and the learning process converges to f(W), which is just the
form of a perfect learning.

Note that the above analysis relies on strong assumptions. First the identical expected bias assumption (11) is
not always respected, although some support can be found from the random coefficient initialization and identical
number of multiplicative iterations. Second, the assumption of improvement on f̂u(Wu) can be simply false if the
coefficients of each piece of signal are highly imperfect. This suggests that the convergence property with imperfect
learning is not guaranteed in practice, and may highly task-dependent.

Some interesting results can be obtained from the empirical convergence proposition. First notice that under the
proposed assumptions, both active learning and inertial learning converge to local minima of cost functions in the
same form g(w) = f(W) + ε(W), which means the two learning may obtain similar empirical cost. Second, since
` is an utterance-based average cost, the convergence behavior is not impacted by the length of signal pieces, and
involving pieces of variable lengths does not impact the convergence property.

D. Batch learning and online learning

The convergence analysis in the previous section shows that both batch and online learning converge to a stationary
point of the expected objective function f(W) with unlimited data and unlimited computing resources. This situation
is only valid in theory. For small scale tasks where data are limited but computing resource is abundant, batch
learning converges to a stationary point of the objective cost function fu(W) while online learning fails to converge,
resulting in suboptimal patterns. For large scale tasks, the more common situation is that the training data is in a
large amount while the computing resource affords only imperfect learning. In this situation, the online learning
tends to obtain lower empirical cost than the batch learning. This is stated as the following proposition:

Proposition 39: If the learning is imperfect, for any batch learning, there is an online learning that attains lower
empirical cost if the data are unlimited.

Proof:
First notice that the statistics A(q,p;u)

u and B(p;u)
u converge with u being large, due to the stationary distribution

assumption according to the central limit theorem. This means that, batch learning with limited iterations converges
to an empirical cost ḟB when the data volume approaches to infinity. This can be written as

|ḟB(u)− ḟB| < σ ∀u > N (14)

where ḟB(u) is the empirical cost with batch learning and u pieces of signals, and σ is a small value.
We then split the training data into blocks where each block consists of N pieces of data. Active online learning

can be started by treating each block as a learning piece. Proposition 38 states that the empirical cost converges to
a level ḟ . This leads to a relation as follows:

ḟB(N) = ḟN (WN) > ḟ

where ḟ is the converged empirical cost with online learning. Combined with (14), we have:

ḟ < ḟB + σ.

This means this online learning always obtains lower cost than the batch learning if σ is small enough, which is
guaranteed by a large N .

15

This result indicates that online learning not only enables pattern learning with large databases; moreover, it
learns patterns of better quality compared to batch learning, even with less computation (in the case of inertial
learning). However, we must emphasize that the assumption behind this statement is that computing resources are
limited and training data are unlimited. If computing resources are unlimited and data are limited, batch learning
is ensured to converge to a local optimum, while online learning usually arrives at suboptimal solutions. If both
computing resources and data are unlimited, then the theoretical convergence analysis presented Section III-B
applies, i.e., online and batch learning converge to the same empirical cost. Finally, in small scale tasks where both
the computing resources and data are limited, there is no guarantee which learning approach is superior; it will
depend on which factor (computing resource or data) is more dominant.

IV. EXPERIMENTS

We present two experiments which demonstrate the characteristics and benefits of the proposed online CNSC
approach. The first experiment is a small-scale speech separation task which aims to compare the behavior of the
two online learning approaches with batch learning; the second experiment involves a noise cancelation task for
large-scale speech recognition and was defined by the CHiME challenge4. It aims to demonstrate the power of
online learning in real applications.

A. Speech separation

In this experiment, we study the behavior of the proposed online pattern learning algorithm using a toy experiment
proposed by P. Smaragdis5 in a study of CNMF [32]. The task is to learn two sets of patterns from individual
speech signals of a male and female speaker respectively, and then to use the corresponding patterns to separate
the two voices from a segment of mixed speech. Smaragdis showed that speaker specific patterns can be learned
using CNMF and then employed to separate the speech signal according to the constituent speakers. It has also
been shown in [42] that sparse coding can deliver improved performance in a similar signal separation task.

The two individual speech segments used for pattern learning are in the order of 30 seconds in length, are sampled
at 16kHz and are mixed together by simple addition with appropriate zero-padding being applied to the shorter
speech recording. Signals are windowed into frames of 32ms with a frame shift of 16ms, thereby resulting in a
frame rate of 62.5 frames per second. The discrete Fourier transform is applied to each frame and the magnitude
spectrum is used as a non-negative representation which is suitable for processing with NMF and CNSC. All
experiments reported here are based on fixed parameters of R = 20, P = 4 and λ = 0.01 which are all chosen
heuristically. Finally, all experiments were conducted on a desktop machine with two dual-core 2.60GHz CPUs
and memory of 4GB.

Before presenting the separation task, we investigate several factors which impact on the convergence behavior
of online learning. The recording of male speech is used to conduct pattern learning and signal reconstruction;
learning quality is measured using the value of the cost function (4). Fig. 1 illustrates example patterns learned for
the male speaker.

1) Convergence and computing resource: The first factor which impacts on convergence is the number of
multiplicative update iterations, which is directly related to computing resources. The male speech signals are
divided into 10 pieces to conduct online learning, and batch learning is implemented as an active online learning
with the number of pieces set to 1.

Fig. 2 presents the cost values obtained with various learning approaches for the first 100 iterations. We observe
that active online learning converges in the first 5 iterations while inertial online learning requires 10 iterations to
converge. An interesting observation is that the cost obtained with the two online learning approaches increases
with a higher number of iterations, indicating some over-fitting to the first few signal pieces. Upon comparison of
the two online learning approaches, we see that active learning leads to lower cost, which is expected considering
the more aggressive early learning.

Batch learning converges much more slowly than online learning: it requires 15 and 30 iterations to reach the
same cost obtained with inertial and active learning respectively, and requires more than 80 iterations to converge

4http://spandh.dcs.shef.ac.uk/projects/chime/challenge.html
5http://www.cs.illinois.edu/∼paris/demos/

16

Basis function index

D
F

T
 b

in
 in

de
x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

250

200

150

100

50

0

Fig. 1: An example of patterns learned with active learning.

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Iteration

C
os

t f
un

ct
io

n
va

lu
e

Batch
Online: Active
Online: Inertial

Fig. 2: Value of the cost function for the first 100 iterations with online and batch learning.

itself. In spite of slow convergence, batch learning delivers lower cost if the number of iterations is sufficiently large,
thereby demonstrating its advantage in small scale tasks. These observations are consistent with the convergence
analysis presented in Section III.

Fig. 3 shows the corresponding average run-time for the first 100 iterations of the three learning approaches. We
can see that the inertial online learning is the most efficient while the active learning is the most expensive. This
observation is consistent with the computational complexity analysis presented in Section III-A.

2) Convergence and piece length: The second factor which impacts on the convergence of online learning is the
manner in which signals are split into pieces. Generally speaking, the splitting of signals into more pieces leads
to more frequent pattern updates and hence more aggressive early learning; we therefore expect lower cost with
smaller pieces for online learning, subject to the assumption of independence among pieces being held.

To test this conjecture, the signals of the male speaker are split into U pieces, and then the patterns are learned
by setting the number of multiplicative iterations to 10. The cost of the two online learning approaches is shown
in Fig. 4 for U = 1 to 10. Note that active learning with U = 1 is equivalent to batch learning. As expected, we
observe that the two online learning approaches obtain substantially lower cost than batch learning (U = 1) and
that smaller pieces lead to lower cost. Note that, with increasing number of pieces, the cost function exhibits some
variation. This can be attributed to the boundary effect stemming from signal segmentation.

The corresponding average run-time is shown in Fig. 5. We first observe that active learning requires more
computational resources as the training data are split into more pieces, due to the increased number of pattern
updates. Inertial learning exhibits different behavior: the computational demand first decreases when the data are
split into a small number of pieces; with increasing number of pieces, the computational requirements increase
steadily by a small factor. This is because the initial pattern update for the first piece (ref. Algorithm 1) is less
costly when the data are split into smaller pieces. As the number of pieces increases, the computational saving with
the initial pattern update becomes marginal while the cost associated with pattern update for each piece increases.

3) Convergence and data volume: In the third experiment, we study the impact of the amount of training data, for
which the male speech signals are duplicated and concatenated to simulate increasing data volume. This simulation

17

0 20 40 60 80 100
0

50

100

150

200

Iteration

T
im

e
(s

ec
.)

Batch
Online: Active
Online: Inertial

Fig. 3: Average run-time for the first 100 iterations with online and batch learning.

0 5 10 15 20 25 30
1.5

2

2.5
x 10

4

Number of pieces

C
os

t f
un

ct
io

n
va

lu
e

Active
Inertial

Fig. 4: Value of the cost function for U = 1 to 10 pieces and after 10 iterations for active and inertial online
learning.

certainly can not fully represent practical scenarios with large amount of data, however it does approximate a
stationary compact distribution.

We first study the case of perfect learning. From Fig. 2, we see that with 100 iterations both online and batch
learning can be regarded as converged. We therefore set up an experiment where the iteration number is fixed
to 100 and the amount of training data is increased by data duplication. Results are shown in Fig. 6 where the
x-axis denotes the number of duplications and the y-axis is the cost. We see that, with limited data, batch learning
obtains significantly lower cost than the two online learning algorithms; with more and more data, however, the cost
obtained with online learning approaches that obtained with batch learning. Although not reported in the figure,
when the duplication number increases to over 500, the three learning approaches obtain very similar cost, thus
demonstrating the convergence theory presented in Section III. Note that for batch learning, the cost profile exhibits
some fluctuation which can be attributed to the boundary effect between duplications.

In another experiment we study the case of imperfect learning. To simulate this situation, the number of
multiplicative updates is set to 10 and the training data are again increasingly duplicated. Results are shown
in Fig. 7. We observe that the online learning obtains significantly lower cost than batch learning and that the two
online learning approaches converge to the same cost. When compared to the results in the case of perfect learning
(Fig. 6), we find that cost obtained with perfect and imperfect learning is comparable when empirical convergence
is reached. This suggests that a few iterations might be sufficient for online learning on large scale tasks, as we
will see in the noise cancelation experiment presented in Section IV-B.

4) Speech separation: In the speech separation task, both the male and female speech utterances are split into
30 pieces which has been shown effective for online learning. The male and female patterns are learned using
corresponding training speech by applying either the online and or the batch learning approach. The spectrum of
the mixed speech signal is then projected independently onto the two sets of patterns and the reconstruction cost
of the resulting magnitude spectrum is computed for the individual male and female speech signals respectively6.

6The original and reconstructed speech waveforms in this experiment are available at http://audio.eurecom.fr/software/ol

18

0 5 10 15 20 25 30
10

20

30

40

50

60

Number of pieces

T
im

e
(s

ec
.)

Active
Inertial

Fig. 5: Average run-time for between U = 1 to 10 pieces and after 10 iterations for active and inertial online
learning.

0 10 20 30 40 50
1.2

1.3

1.4

1.5

1.6

1.7

1.8
x 10

4

Number of duplications

C
os

t f
un

ct
io

n
va

lu
e

Batch
Online: Active
Online: Inertial

Fig. 6: Value of the cost function with the multiplicative update fixed to 100 iterations and the speech data duplicated
up to 50 times.

The separation performance is evaluated in terms of the signal to distortion ratio (SDR), defined as follows:

SDR =
1

2

∑
i∈{male,female}

10log10
||sidist||2

||eiinterf + einoise + eartif ||2

where i denotes channels (female or male), sdist is the original speech signal, einterf ,enoise, eartif denote interference
among channels, noise and artifacts introduced by separation [54]. The BSS Eval tool was used to conduct the
evaluation7. Results are shown in Fig. 8 where the x-axis represents the number of multiplicative iterations and
the y-axis represents SDR. It can be observed that, with a small number of iterations, the two online learning
algorithms result in better separation than batch learning. With an increasing number of iterations, inertial learning
converges to an approximate SDR of 4.5 while batch and active learning give an approximate SDR of 6.0, though
batch learning ultimately outperforms active learning. Note that this does not mean online learning is less valuable:
with a large amount of data, batch learning simply runs out of memory whereas online learning requires far less
resources. In this case, online learning is thus the only viable choice.

B. Denoising for speech recognition

In the second experiment we apply the online learning approach to suppress multi-source noise from speech
signals for improved automatic speech recognition (ASR). The basic idea is to learn the patterns of clean speech
and background noise. Clean speech representations are then obtained by distributing the signal energy among the
speech and noise patterns and by discarding that attributed to noise. The procedure is described in [32].

7http://bass-db.gforge.inria.fr/bss eval.

19

0 10 20 30 40 50

1.5

2

2.5

3

3.5
x 10

4

Number of duplications

C
os

t f
un

ct
io

n
va

lu
e

Batch
Online: Active
Online: Inertial

Fig. 7: Value of the cost function with the multiplicative update fixed to 10 iterations and the speech data duplicated
50 times.

0 20 40 60 80 100
−1

0

1

2

3

4

5

6

7

Iteration

S
D

R

Batch
Online: Active
Online: Inertial

Fig. 8: SDR of speech separation.

1) Experimental setup: Our experiments are set up within the framework of the CHiME challenge [55], where
the task is to recognize the speech utterances in a home environment with various kinds of background noise under
six different signal-to-noise ratio (SNR) conditions. The background noise comprises voices, television sounds,
music, noise from home appliances and a host of other ambient noises typically observed in a home environment.
All audio signal were recorded with a binaural microphone array. The location of the target speaker is specified
to be 2 meters directly in-front of the microphone array, while the type of noise sources and their locations are
unknown and variable.

The database contains recordings from 34 speakers and a set of 84 recordings of ambient noise, each of which
is 5 minutes in duration. . The training set comprises 500 utterances per speaker amounting to approximately 15.3
minutes of audio per speaker. The test set comprises 600 utterances under each of the following SNR conditions:
−6dB, −3dB, 0dB, 3dB, 6dB and 9dB. All utterances follow a simple grammar that involves digits and letters;
only the hypotheses for the letter and digit are scored to evaluate recognition performance.

As the first step, the two channels were mixed with zero delay to obtain a mono-channel audio signal for further
processing. We used the standard ASR setup provided for the CHiME challenge. The setup uses speaker dependent
acoustic models trained on Mel frequency cepstral coefficients (MFCC) with energy plus the first and second order
derivatives. Cepstral mean normalization (CMN) is applied to improve robustness to additive noise. The language
model is a simple lattice that covers all possible sequences in the grammar mentioned above and the utterances are
decoded using HTK [56].

Spectral representations are extracted using a window size of 25ms and an overlap of 10ms. Speaker patterns
were learnt from the training set available for each speaker using a convolutional span of 4 frames. This is equivalent
to capturing prominent spectro-temporal patterns that span about 70ms, i.e. subphone patterns. For each speaker, a
pattern matrix is learnt using batch learning [57]. Its dimension was empirically set to 100.

The learning of noise patterns is more complex. Since the noise is highly diverse and variable, we would ideally

20

50 75 100
30

40

50

60

70

80

90

100

110

Number of patterns

T
im

e
(s

ec
.)

Batch learning
Active online learning
Inertial online learning

Fig. 9: Average run-time for 10 iterations with online and batch learning.

Fig. 10: ASR accuracies with CNSC-based noise cancelation where the background noise patterns are learnt on a
set of randomly sampled background audio segments with batch, active online and inertial online learning.

like to learn as many patterns as possible from the 7 hours of noise recordings provided in the development set.
However, the memory and computational requirements to store and process such large amounts of data are very
demanding and the classical batch learning approach simply fails. This problem can be avoided through incomplete
training [43], [44], or through online learning as proposed in this work.

2) Incomplete noise pattern learning: In this experiment, we choose a subset of the background training data
to learn the noise patterns. On the one hand this avoids the prohibitive computing and memory demands with
batch learning and, on the other hand, provides an opportunity to compare batch learning and online learning in
real applications. In our experiment, 10 seconds of audio segments from each of the 5 minute waveforms were
randomly sampled to obtain 840 seconds of background noise.

With this data, patterns of size 50, 75 and 100 were learnt using the batch, active online and inertial online
learning approaches. Each of the 10 seconds of audio segments acts as a piece in online learning. Similar to the
experiments in Section IV-A, a single dual core 2.6GHz processor with 4GB memory was used.

The time taken for pattern learning with 10 iterations using the three learning methods is shown in Fig. 9. As in the
experiments of Section IV-A, the values presented in the figure are averaged over 100 runs to avoid computational
fluctuations. Results confirm that active online learning takes longer than batch learning while inertial online learning
outperforms batch mode in terms of computational time, as discussed in Section III-A. ASR performance on the
evaluation data is shown in Fig. 10. We observe considerable improvement in accuracies for low SNR conditions

21

and a marginal improvement over the baseline for high SNR conditions with all the three learning approaches. An
interesting trend that can be observed in Fig. 10 is that, at lower SNR conditions, active online learning outperforms
the other two approaches, while at high SNR conditions and in particular, with higher number of noise patterns,
active learning tends to give the worst performance. This might be explained by the quick convergence to local
(partial) patterns with active learning as a result of which the speech energy may be incorrectly attributed to the
noise patterns. This problem is more severe in high SNR conditions where the noise is low while the number of
noise patterns is large. This leads to the incorrect attribution of speech energy.

3) Complete noise pattern learning: Methods employing random sampling techniques are not desirable in practice
since a large proportion of the training data remains unused. In order to learn noise patterns from the entire training
data, we apply the proposed online pattern learning algorithm. The background training data are provided in
segments of 5 minutes each. We use the same partition structure as pieces in the online training algorithm. We
learn background bases with 100, 150 and 200 dimensions respectively, all with a convolutional span of 4 frames.

ASR accuracies on the evaluation data with noise cancelation using background patterns learnt with active and
inertial online learning algorithms are presented in Fig. 11. We observe that pattern-based denoising significantly
improves ASR performance with both active and inertial online learning. Again, active learning is more effective
in low SNR conditions than inertial learning; it however does not show much advantage at high SNRs. Simply
increasing the number of patterns does not result in significant gains.

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB
30

40

50

60

70

80

90

SNR

A
cc

ur
ac

y
(%

)

baseline
CNSC: 100 noise patterns
CNSC: 150 noise patterns
CNSC: 200 noise patterns

(a) Active Online learning

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB
30

40

50

60

70

80

90

SNR

A
cc

ur
ac

y
(%

)

baseline
CNSC: 100 noise patterns
CNSC: 150 noise patterns
CNSC: 200 noise patterns

(b) Inertial Online learning

Fig. 11: Accuracies with CNSC-based noise cancelation where the background noise patterns are learnt using active
and inertial online CNSC.

Fig. 12 presents a comparison between incomplete and complete learning. We see that the patterns learned from
the entire background noise data provide improved accuracies over those learned with random sampling in the case
of active learning; for inertial learning, the advantage of using the entire data is not evident, indicating that the
training data does not fit a stationary distribution and thus slow inertial learning cannot reach empirical convergence
with the use of additional data. Nevertheless, these results clearly demonstrate the capability of online learning in
real, large-scale applications.

22

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB
30

40

50

60

70

80

90

SNR
A

cc
ur

ac
y

(%
)

Incomplete/Active
Incomplete/Inertial
Complete/Active
Complete/Inertial

Fig. 12: Accuracy with online CNSC-based noise cancelation where the 100 background noise patterns are learnt
based on random or entire data respectively. Results using both active and inertial learning are presented.

V. CONCLUSION

This paper presents a new online CNSC algorithm to learn convolutive non-negative patterns with sparse coding.
Compared to conventional batch learning, the proposed approach is able to learn complex patterns from large
volumes of training data and is thus suited to large-scale applications. The theoretical analysis shows that the online
algorithm almost surely converges to a stationary point of the objective cost function with unlimited computational
resources and training data. In real applications where the computational resources are limited and the training data
volume is large, the online approach tends to gain lower empirical cost than the batch learning. This analysis is
confirmed by the results we obtained with a toy experiment on speech separation. A noise cancelation task for a
large-scale speech recognition system we constructed within the CHiME challenge framework demonstrates that
the online learning approach is efficient in learning complex patterns from large corpora in real applications.

Future work includes the study of incremental patterns with online learning; another direction is to extend the
online CNSC approach to other unsupervised learning techniques such as sparse PCA.

APPENDIX

In this section, we cite some theorems that are used for the convergence proof in this paper. These theorem are
mostly reproduced from [48] for convenience of readers.

Theorem A1: [Sufficient condition of convergence for a stochastic process. See [52], [58], [59]]
Let (Q,F, P) be a measurable probability space, ut, for t ≥ 0, be the realization of a stochastic process and Ft

be the filtration determined by the past information at time t. Let

δt =

{
1 if E[ut+1 − ut|Ft] > 0,
0 otherwise.

If for all t, ut ≥ 0 and
∑∞

t=1 E[δt(ut+1 − ut) < ∞, then ut is a quasi-martingale and converges almost surely.
Moreover,

∞∑
t=1

|E[ut+1 − ut|Ft]| < +∞ a.s.

Lemma A2: [A corollary of Donsker theorem for O(1√
n

) of |fn − f |. See [53], chap. 19.]
Let F = {fθ : χ→ R, θ ∈ Θ} be a set of measurable functions indexed by a bounded subset Θ of Rd. Suppose

that there exists a constant K such that

|fθ1 − fθ2 | ≤ K||θ1 − θ2||2

for every θ1 and θ2 in Θ and x in χ. Then F is P-Donsker. For any f in F , define Pnf , Pf and Gnf as

23

Pnf =
1

n

n∑
i=1

f(Xi),Pf = EX [f(X)],Gnf =
√
n(Pnf − Pf).

Further suppose for all f , Pf2 < δ2 and ||f ||∞ < M and that the random elements Xi are Borel-measurable. Then
we have

EP ||Gn||F = O(1),

where ||Gn||F = supf∈F |Gnf |.
Lemma A3: [A lemma on positive converging sums. See [60], prop 1.2.4.]
Let an, bn be two real sequences such that for all n, an ≥ 0 and bn ≥ 0,

∑∞
n=1 an = ∞,

∑∞
n=1 anbn < ∞,

∃K > 0 s.t. |bn+1 − bn| < Kan. Then limn→+∞ bn = 0.

ACKNOWLEDGMENT

This work was conducted when Dong Wang was at EURECOM as a post-doctoral research fellow and was
completed when he was a visiting researcher in Tsinghua University and a senior research engineer in Nuance.
It was partially supported by the French Ministry of Industry (Innovative Web call) under contract 09.2.93.0966,
collaborative Annotation for Video Accessibility (ACAV) and by the Adaptable Ambient Living Assistant (ALIAS)
project funded through the joint national Ambient Assisted Living (AAL) programme.

REFERENCES

[1] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data
values,” Environmetrics, vol. 5, no. 12, pp. 111–126, 1994.

[2] P. Paatero, “Least squares formulation of robust non-negative factor analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 37,
pp. 23–35, 1997.

[3] D. D. Lee and H. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791,
October 1999.

[4] ——, “Algorithms for non-negative matrix factorization,” in Proc. NIPS, 2000, pp. 556–562.
[5] D. L. Donoho and V. Stodden, “When does non-negative matrix factorization give a correct decomposition into parts?” in Proc. NIPS

2003, 2003.
[6] C. Lin, “On the convergence of multiplicative update algorithms for nonnegative matrix factorization,” IEEE Transactions on Neural

Networks, vol. 18, no. 6, pp. 1589–1596, Nov. 2007.
[7] A. Shashua and T. Hazan, “Non-negative tensor factorization with applications to statistics and computer vision,” in Proc. International

Conference on Machine Learning (ICML), 2005, pp. 792–799.
[8] S. Z. Li, X. Hou, H. Zhang, and Q. Cheng, “Learning spatially localized, parts-based representation.” in Proc. CVPR’01, 2001, pp.

207–212.
[9] P. Smaragdis and J. C. Brown, “Non-negative matrix factorization for polyphonic music transcription,” in Proc. IEEE Workshop on

Applications of Signal Processing to Audio and Acoustics, 2003, pp. 177–180.
[10] D. Guillamet, J. Vitrià, and B. Schiele, “Introducing a weighted non-negative matrix factorization for image classification,” Pattern

Recognition Letters, vol. 24, no. 14, pp. 2447–2454, 2003.
[11] M. Rajapakse, J. Tan, and J. C. Rajapakse, “Color channel encoding with NMF for face recognition.” in Proc. ICIP’04, 2004, pp.

2007–2010.
[12] J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov, “Metagenes and molecular pattern discovery using matrix factorization,” PNAS,

vol. 101, no. 12, pp. 4164–4169, 2004.
[13] B. Wang and M. D. Plumbley, “Investigating single-channel audio source separation methods based on non-negative matrix factorization,”

in Proc. ICA Research Network International Workshop, 2006, pp. 17–20.
[14] G. Wang, A. V. Kossenkov, and M. F. Ochs, “LS-NMF: A modified non-negative matrix factorization algorithm utilizing uncertainty

estimates,” BMC Bioinformatics, vol. 7, p. 175, 2006.
[15] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, “Algorithms and applications for approximate non-negative

matrix factorization,” Computational Statistics and Data Analysis, vol. 52, no. 1, pp. 155–173, 2006.
[16] V. P. Paucaa, J. Pipera, and R. J. Plemmonsb, “Nonnegative matrix factorization for spectral data analysis,” Linear Algebra and its

Applications, vol. 416, no. 1, pp. 29–47, 2006.
[17] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative matrix factorization.” in Proc. SIGIR, 2003, pp. 267–273.
[18] K. Devarajan and B. Bryant, “Nonnegative matrix factorization: An analytical and interpretive tool in computational biology,” PLoS

Computational Biology, vol. 4, 2008.
[19] N. Bertin, R. Badeau, and E. Vincent, “Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to

polyphonic music transcription,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, pp. 538–549, March 2010.
[20] M. Welling and M. Weber, “Positive tensor factorization,” Pattern Recognition Letters, vol. 22, no. 12, pp. 1255–1261, 2001.

24

[21] I. S. Dhillon and S. Sra, “Generalized non-negative matrix approximations with Bregman divergences,” in Proc. Neural Information
Proc. Systems, 2005, pp. 283–290.

[22] R. Zdunek and A. Cichocki, “Non-negative matrix factorization with quasi-newton optimization,” in Proc. Eighth International
Conference on Artificial Intelligence and Soft Computing, ICAISC. Springer, 2006, pp. 870–879.

[23] A. Cichocki, R. Zdunek, and S. ichi Amari, “Csiszár’s divergences for non-negative matrix factorization: Family of new algorithms,”
in Lecture Notes in Computer Science (LNCS). Springer, 2006, pp. 32–39.

[24] C. Lin, “Projected gradient methods for non-negative matrix factorization,” Neural Computation, vol. 19, no. 10, pp. 2756–2779, 2004.
[25] R. Zdunek and A. Cichocki, “Nonnegative matrix factorization with constrained second-order optimization,” Signal Processing, vol. 87,

no. 8, pp. 1904–1916, 2007.
[26] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music

analysis,” Neural Computation, pp. 793–830, 2009.
[27] R. Kompass, “A generalized divergence measure for non-negative matrix factorization,” Neural Computation, vol. 19, no. 3, pp. 780–791,

2007.
[28] H. Kim and H. Park, “Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set

method,” SIAM J. Matrix Anal. Appl., vol. 30, pp. 713–730, July 2008.
[29] A. T. Cemgil, “Bayesian inference for non-negative matrix factorisation models,” Intell. Neuroscience, vol. 2009, pp. 4:1–4:17, January

2009.
[30] M. N. Schmidt, O. Winther, and L. K. Hansen, “Bayesian non-negative matrix factorization,” in Independent Component Analysis and

Signal Separation, International Conference on, ser. Lecture Notes in Computer Science (LNCS), vol. 5441. Springer, 2009, pp.
540–547.

[31] Z. Yang and E. Oja, “Linear and non-linear projective non-negative matrix factorization,” IEEE Transactions on Neural Network,
vol. 21, no. 5, pp. 734–749, 2010.

[32] P. Smaragdis, “Convolutive speech bases and their application to supervised speech separation,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 15, no. 1, pp. 1–12, January 2007.

[33] D. FitzGerald and E. Coyle, “Shifted non-negative matrix factorisation for sound source separation,” in Proc. IEEE conference on
Statistics in Signal Processing, 2005.

[34] P. Hoyer, “Non-negative matrix factorization with sparseness constraints,” Journal of Machine Learning Research, vol. 5, pp. 1457–1469,
2004.

[35] M. Heiler and C. Schnorr, “Learning sparse representations by non-negative matrix factorization and sequential cone programming,”
Journal of Machine Learning Research, vol. 7, pp. 1385–1407, 2006.

[36] H. Kim and H. Park, “Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray
data analysis,” Bioinformatics, vol. 23, no. 12, pp. 1495–1502, 2007.

[37] P. D. O’Grady and B. A. Pearlmutter, “Convolutive non-negative matrix factorisation with a sparseness constraint,” in Proc. IEEE
International Workshop on Machine Learning for Signal Processing (MLSP 2006), Maynooth, Ireland, Sep. 2006, pp. 427–432.

[38] T. Virtanen, “Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 3, pp. 1066–1074, 2007.

[39] W. Wang, “Convolutive non-negative sparse coding,” in Proc. IJCNN’08, 2008, pp. 3681–3684.
[40] W. Wang, A. Cichocki, and J. A. Chamber, “A multiplicative algorithm for convolutive non-negative matrix factorization based on

squared Euclidean distance,” IEEE Transactions on Signal Processing, vol. 57, no. 5, pp. 2858–2864, 2009.
[41] C. D. Sigg, T. Dikk, and J. M. Buhmann, “Speech enhancement with sparse coding in learned dictionaries,” in Proc. ICASSP’10, 2010.
[42] T. Virtanen, “Separation of sound sources by convolutive sparse coding,” in Proc. SAPA’2004, 2004.
[43] W. Smit and E. Barnard, “Continuous speech recognition with sparse coding,” Computer Speech and Language, vol. 23, no. 2, 2009.
[44] G. Sivaram, S. Nemala, M. Elhilali, T. Tran, and H. Hermansky, “Sparse coding for speech recognition,” in Proc. ICASSP’10, 2010.
[45] P. O’Grady and B. Pearlmutter, “Convolutive non-negative matrix factorisation with a sparseness constraint,” in Proc. IEEE workshop

on Machine Learning for Signal Processing, September 2006, pp. 427–432.
[46] H. Robbins and S. Monro, “A stochastic approximation method,” Annals of Mathematical Statistics, vol. 22, pp. 400–407, 1951.
[47] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proc. Fifth Berkeley Symposium on

Mathematical Statistics and Probability, vol. 1, 1967, pp. 281–297.
[48] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix factorization and sparse coding,” Journal of Machine Learning

Research, vol. 2010, no. 11, pp. 19–60, January 2010.
[49] S. S. Bucak and B. Gunsel, “Incremental subspace learning via non-negative matrix factorization,” Pattern Recognition, vol. 42, no. 5,

pp. 788–797, 2009.
[50] A. Lefevre, F. Bach, and C. Fevotte, “Online algorithms for nonnegative matrix factorization with the itakura-saito divergence,” in Proc.

IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Mohonk, NY, October 2011.
[51] J. jacques Fuchs, “On sparse representations in arbitrary redundant bases,” IEEE Transactions on Information Theory, vol. 50, no. 6,

pp. 134–1344, 2004.
[52] D. Fisk, “Quasi-martingales,” Transactions of the American Mathematical Society, vol. 120, no. 3, pp. 359–388, 1965.
[53] A. W. Van der Vaart, Asymptotic Statistics. Cambridge University Press, 1998.
[54] E. Vincent, C. Fevotte, and R. Gribonval, “Performance measurement in blind audio source separation,” IEEE Trans. Audio, Speech

and Language Processing, vol. 14, no. 4, pp. 1462–1469, 2006.
[55] H. Christensen, J. Barker, N. Ma, and P. Green, “The CHiME corpus: A resource and a challenge for computational hearing in

multisource environments,” in Interspeech, 2010.
[56] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. Woodland,

The HTK Book (for Hidden Markov Model Toolkit Version 3.4), 2006.
[57] R. Vipperla, S. Bozonnet, D. Wang, and N. Evans, “Robust speech recognition in multi-source noise environments using convolutive

non-negative matrix factorization,” in CHiME: Workshop on Machine Listening in Multisource Environments, 2011, pp. 74–79.

25

[58] L. Bottou, “Online algorithms and stochastic approximations,” in Online Learning and Neural Networks, D. Saad, Ed., 1998.
[59] M. Métivier, Semi-martigales. Walter de Gruyter, 1983.
[60] D. Bertsekas, Nonlinear Programming. Athena Scientific Belmont, 1999.

