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ABSTRACT- The Multiple-Input Multiple-Output (MIMO) 
with a Spatial-Multiplexing scheme is a topic of high 
interest for the next generation of wireless communications 
systems. In this paper, we propose to approach the 
Maximum Likelihood (ML) performance through the 
combination of a neighbourhood study and a Lattice 
Reduction (LR)-aided solution. Moreover, by introducing a 
neighbourhood study in the reduced domain, we propose in 
this paper a novel equivalent metric that is based on the 
combination of the LR-aided Minimum-Mean Square Error 
solution. We show that the proposed metric presents a 
relevant complexity reduction while maintaining near-ML 
performance. In particular, the corresponding 
computational complexity is polynomial in the number of 
antennas while it is shown to be independent of the 
constellation size. For a 4×4 MIMO system with 16-QAM 
modulation on each layer, the proposed solution is 
simultaneously near-ML and ten times less complex than 
the classical neighbourhood-based K-Best solution. 
Keywords: MIMO, Sphere Decoder, Lattice-Reduction 

1. Introduction 
Multiple-input multiple-output (MIMO) technology has 
gained a lot of attention in the last decade since it can 
improve link reliability without sacrificing bandwidth 
efficiency, or contrariwise it can improve bandwidth 
efficiency without losing link reliability. However, the main 
drawback of MIMO technology is the increased complexity 
of the detector when a Non-Orthogonal MIMO scheme is 
implemented. Indeed, although the performance of the 
Maximum Likelihood (ML) detector is symbol-wise 
optimal, its computational complexity increases 
exponentially with the number of transmit antennas and 
with the constellation size. 
In the literature, some non-linear detectors have been 
introduced. The Sphere Decoder (SD) - based on a tree 
search-based neighbourhood study - is very popular due to 
its optimal performance [1]. However, this performance is 
reached at the detriment of an NP-hard complexity [1]. The 
authors of [2] have proposed a sub-optimal solution 
denoted as the K-Best solution, where K is the number of 
stored neighbours at each layer during the detection 
process. Aiming at reducing the neighbourhood size K, 
different solutions are proposed. For instance, the Sorted 
QR Decomposition (SQRD)-based dynamic K-Best (with a 
variable K), which leads to the famous SQRD-based Fixed 
Throughput SD (FTSD), is proposed in [3]. An alternative 
trend has been presented in the pioneering work of Wübben 
et al. in [4]. It consists in adding a pre-processing step, 

namely the Lattice Reduction (LR), aiming at applying a 
classical detection through a better-conditioned [4] channel 
matrix. This solution has been shown to offer the full 
reception diversity at the expense of a SNR offset in the 
detector’s performance. However, this offset increases with 
large dimensional systems and high order modulations. 
In this paper, we propose to combine the K-Best SD with 
the neighborhood size reduction through an efficient pre-
processing step. This allows the SD process to apply a 
neighborhood study in a modified constellation domain. 
Then, we propose a novel modified ML equation based on 
the LR-Aided (LRA) Minimum-Mean Square Error 
(MMSE) detection. The proposed metric presents a large 
complexity reduction while maintaining near-ML 
performance. Moreover, its computational complexity is 
independent of the constellation size while it is polynomial 
with respect to the number of antennas. In particular, for a 
4x4 MIMO system with 16-QAM modulation on each 
layer, the proposed solution is simultaneously near-ML and 
ten times less complex than the classical K-Best solution. 
We note that the complexity is fixed with such a detector, 
thus the exposed optimizations will induce a performance 
gain for a given neighborhood size or a reduction of the 
neighborhood size for a given Bit Error Rate (BER) target. 
This paper is organized as follows. Section 2 presents the 
problem statement of the detection process. In section 3, we 
propose our generalized solution based on LR with the use 
of an efficient search centre and a reduced domain 
neighbourhood. In section 4, the performance of the 
presented detectors are provided, compared and discussed. 
Conclusions are drawn in section 5. 

2.Problem Statement: Detection Process in the 
Original Domain 

2.1. Sphere Decoder 
It has been stated in the introduction that the K-Best 
solution approaches the optimal performance at the 
detriment of a large complexity, while the linear detectors 
present lower complexity with a strong penalty in 
performance. Hence, an optimal trade-off should be found.  
Let us introduce an 𝑛𝑇-transmit and 𝑛𝑅-receive 𝑛𝑇×𝑛𝑅 
MIMO system model. The received symbols vector could 
be then written as: 

 𝒚 = 𝑯𝒙 + 𝒏, (1) 

where 𝑯 represents the 𝑛𝑅×𝑛𝑇 complex channel matrix that 
is assumed to be perfectly known at the receiver, 𝒙 is the 
transmit symbols vector of dimension 𝑛𝑇 where each entry 



 
 

 

is independently withdrawn from a constellation set 𝜉 and 𝒏 
is an additive white Gaussian noise of dimension 𝑛𝑅 and of 
variance 𝜎2. The basic idea of the SD to reach the optimal 
ML estimate 𝒙�𝑀𝐿 while avoiding an exhaustive search is to 
examine only the lattice points that lie inside of a sphere 
having a radius d. The SD solution starts from the ML 
equation 𝒙�𝑀𝐿 = argmin

𝒙∈𝜉𝑛𝑇
‖𝒚 − 𝑯𝒙‖2 and reads: 

𝒙�𝑆𝐷 = argmin
𝒙∈𝜉𝑛𝑇

‖𝑸𝐻𝒚 − 𝑹𝒙‖2 ≤ 𝑑2 (2) 

where 𝑯 = 𝑸𝑹, with the classical QRD  definitions [5].  
The classical SD formula in (2) is centred on the received 
signal 𝒚. The corresponding detector will be denoted in the 
following as the naïve SD. That is, in the case of a depth-
first search algorithm [1], the first solution given by the 
algorithm is usually defined as the Babai point [6]. In our 
work, the definition is extended and the Babai point is 
denoted as the solution that is reached with no 
neighbourhood study. The QRD step in (2) actually aims at 
splitting the receiver computational complexity into a pre-
processing stage (that depends on the channel only) and a 
processing step (that depends also on the receive data). 

2.2. Lattice Reduction 
Through the aforementioned considerations and by using 
the lattice definition in [6], the system model given in (1) 
rewrites, using the lattice reduction, as:  

𝒚 = 𝑯�𝒛 + 𝒏, (3) 

where 𝑯� = 𝑯𝑻 and 𝒛 = 𝑻−1𝒙. The 𝑛𝑇×𝑛𝑇 complex matrix 
𝑻 is unimodular, namely its entries belong to the set 
ℤℂ = ℤ + 𝑗ℤ of complex integers, with 𝑗2 = −1, and 𝑻 is 
such that |det{𝑻}| = 1. The key idea of any LRA detection 
scheme is to understand that the finite set of transmitted 
symbols 𝜉𝑛𝑇 used in (1) can be interpreted as a de-
normalized, shifted then scaled version of the infinite set of 
complex integers subset ⊂ ℤℂ

𝑛𝑇 used in (3), according to the 
relations offered in [6]. Using 𝑻 in (3), we are now able to 
detect the transmitted symbols on different antennas in the 
modified domain. Indeed, the transmitted vector x could be 
deduced from z by using the relation 𝒙 = 𝑻𝒛 [10]. 
The LRA detectors are very efficient in the sense of the 
high quality of their hard output, namely the ML diversity 
is reached within a constant SNR offset, while offering a 
low overall computational complexity. However, some 
drawbacks occur. In particular, the aforementioned SNR 
offset is important in the case of high order modulations, 
namely 16-QAM and 64-QAM, and with a large number of 
antennas. This issue is expected to be bypassed through an 
additional neighborhood study.  

3.Proposed Detection Process in the Reduced Domain 
Neighbourhood 

Joining the LRA and SD, called hereafter LRA-SD, by 
following the LR preprocessing step by any SD detector is 
not straightforward. The main issue lies in the consideration 
of the possibly transmit symbols vector in the reduced 
constellation since, unfortunately, the set of all possibly 
transmit symbols vectors cannot be predetermined. The 
reason for that is because the solution does not depend on 
the employed constellation only, but also on the 𝑻−1 matrix 
of (3) that mixes entries in x. Consequently, the number of 

children in the tree search and their values are not known in 
advance. A brute-force solution is then to determine the set 
of all possibly transmit vectors in the reduced constellation, 
starting from the set of all possibly transmit vectors in the 
original constellation and then, switching to the reduced 
domain thanks to the 𝑻−1 matrix. Clearly, this operation 
must be done for each channel realization which is 
unfeasible in practice. 
In the following, we will describe the preprocessing step 
and the reduction of the neighborhood size required for 
achieving quasi-ML estimation with a large complexity 
reduction.  

3.1. Preprocessing  
In [4], it has been shown the advantages of QRD in terms of 
performance when combined with ordering of the different 
SNR values (respectively SINR) on different antennas in 
the Zero-Forcing (ZF) (MMSE)-SQRD-based detectors. In 
this work, we propose to use the SQRD in the LRA-MMSE 
Extended (MMSEE) Ordered Successive Interference 
Cancellation (LRA-MMSEE-OSIC) detector. 
In order to describe the MMSEE consideration, we 
introduce like in [4] an extended system model, namely the 
(𝑛𝑅 + 𝑛𝑇) × 𝑛𝑇 matrix 𝑯𝑒𝑥𝑡  and the (𝑛𝑅 + 𝑛𝑇) 
dimensional vector 𝒚𝑒𝑥𝑡  given by: 

𝐇𝑒𝑥𝑡 = �𝐇𝜎𝐈�   and 𝐲𝑒𝑥𝑡 = �𝐲𝟎� (4) 

The pre-processing step is similar to the ZF-SQRD given in 
[4] and the detection equals that of  LRA-ZF SIC. 
The LRA-MMSEE OSIC corresponds, to the best of the 
authors’ knowledge, to the best pseudo-linear detector in 
the literature, in particular in the case of 4×4 MIMO 
systems with 4-QAM modulations on each layer [4]. The 
SQRD interest lies in the ordering of the detection symbols 
as a function of their S(I)NR and consequently it limits the 
error propagation in SIC procedures. Indeed from one side, 
it has been shown by Wübben et al. [4] that the optimum 
order offers a performance improvement, even if the ML 
diversity is not reached. On the other hand, it was shown 
that once the ML diversity is achieved through a LRA 
technique, the performance may be significantly improved 
with the solution in [4].  In order to deal with these 
statements, we introduce the Reduced Domain 
Neighbourhood (RDN) by using the following notations:  
• 𝑄𝜉𝑛𝑇{. } is the quantization operator in the original 

domain constellation, 
• 𝑄ℤℂ

𝑛𝑇{. } is the quantization operator in the reduced 
domain constellation, 

• 𝑎 is the power normalization and scaling coefficient 
(i.e. 2/√2, 2/√10, 2/√42 for 4-QAM, 16-QAM and 
64-QAM constellations, respectively)  

• 𝒅 = 1
2
𝑻−1[1 + 𝑗 … 1 + 𝑗]𝑇  is a complex 

displacement vector.  
In the literature, the classical LRA with a neighbourhood 
study is implicitly unconstrained LRA-ZF centred, which 
leads to a LRA-ZF SIC procedure with an RDN study at 
each layer. The exact formula has not been clearly provided 
but is implicitly given in [7] as:  



 
 

 

𝒛�𝐿𝑅𝐴−𝑍𝐹 𝑆𝐷 = argmin
𝒛∈ℤℂ

𝑛𝑇
�𝑹�(𝒛𝐿𝑅𝐴−𝑍𝐹 − 𝒛)�2 (5) 

where 𝑹� is the well-known Lenstra-Lenstra-Lovász (LLL) 
algorithm based [8] LR algorithm output and ℤℂ

𝑛𝑇 is the 𝑛𝑇-
dimensional infinite set of complex integers. 

3.2. Equivalent LRA-MMSE(E) centre 
In the literature, and to the best of the author’s knowledge, 
no convincing formula dealing with the LRA-MMSE(E) 
SD detection has been proposed. This is due to the non-
factorable nature of the unconstrained LRA-MMSE(E) 
solution. In this work, we propose to do the factorization 
through the introduction of the following definition [9][12]: 
 
Definition: Two cost functions are equivalent iff : 

argmin
𝒙∈𝜉𝑛𝑇

{‖𝒚 − 𝑯𝒙‖2} = argmin
𝒙∈𝜉𝑛𝑇

{‖𝒚 − 𝑯𝒙‖2 + 𝑐}, (6) 

where c is a constant. Obviously, the argument outputs are 
the same with both relations above. 
 
Using (6), an unconstrained LRA-MMSE-centred solution 
can be derived from [12]. Under the assumption of using 
constant modulus constellations, solving the ML equation is 
equivalent to solve the following equation 

𝒛�𝐿𝑅𝐴−𝐿𝐷 𝑆𝐷 = argmin
𝒛∈ℤℂ

𝑛𝑇
�𝑹�(𝒛� − 𝒛)�2, (7) 

where 𝑹�𝐻𝑹� = �𝑯
�𝐻𝑯�                    in the ZF case,        
𝑯�𝐻𝑯� + 𝜎2𝑻𝐻𝑻 in the MMSE case,

 

𝐳� is any LRA (ZF or MMSE) unconstrained linear estimate 
and T is the transform matrix given in (3). 
 
Proof:  Let us introduce any term 𝑐 s.t. �𝒚 − 𝑯�𝒛�2 + 𝑐 =
�𝑹�(𝒛�  − 𝒛)�2, where  𝒛� is a LRA-ZF (or LRA-MMSE) 
unconstrained linear estimate. This constant c is given by: 
𝑐 = �𝑹�(𝒛�  − 𝒛)�2 − �𝒚 − 𝑯�𝒛�2 
 = (𝒛�  − 𝒛)𝐻𝑹�𝐻𝑹�(𝒛�  − 𝒛) − �𝒚 − 𝑯�𝒛�𝐻�𝒚 − 𝑯�𝒛� 
 =(𝑎) 𝒛�  𝐻𝑮�𝒛�  − 𝒛�  𝐻𝑮�𝒛 − 𝒛𝐻𝑮�𝒛�  + 𝒛𝐻𝑮�𝒛 − 𝒚𝐻𝒚 +

𝒚𝐻𝑯�𝒛 + 𝒛𝐻𝑯�𝐻𝒚 − 𝒛𝐻𝑯�𝐻𝑯�𝒛  
 =(𝑏) 𝒚𝐻𝑯�𝑮�−1𝑮�𝑮�−1𝑯�𝐻𝒚 − 𝒚𝐻𝑯�𝑮�−1𝑮�𝒛 −

𝒛𝑮�𝑮�−1𝑯�𝐻𝒚 + 𝒛𝐻𝑮�𝒛 − 𝒚𝐻𝒚 + 𝒚𝐻𝑯�𝒛 +
𝒛𝐻𝑯�𝐻𝒚 − 𝒛𝐻𝑯�𝐻𝑯�𝒛  

 =(𝑐) 𝒚𝐻𝑯�𝑮�−1𝑯�𝐻𝒚 + 𝒛𝐻�𝑮� − 𝑯�𝐻𝑯��𝒛 − 𝒚𝐻𝒚 

where in (a), we substitute 𝑹�𝐻𝑹� and 𝑮�; in (b), we introduce 
𝒛�  = 𝑮�−1𝑯�𝐻𝒚 and 𝒛�  𝐻 = 𝒚𝐻𝑯�𝑮�−1 and, in (c): 

𝑮� = 𝑹�𝐻𝑹� = �𝑯
�𝐻𝑯�                    in the ZF case,        
𝑯�𝐻𝑯� + 𝜎2𝑻𝐻𝑻 in the MMSE case.

 (8) 

In the ZF case, 𝑯�𝑮�−1𝑯�𝐻 = 𝑯�𝑯�−1(𝑯�𝐻)−1𝑯�𝐻 = 𝑰 and 
𝑮� − 𝑯�𝐻𝑯� = 𝟎. Consequently 𝑐 = 0. 
In the MMSE case, 𝑐 = 𝒚𝐻�𝑯�(𝑯�𝐻𝑯� + 𝜎2𝑻𝐻𝑻)−1𝑯�𝐻 −
𝑰�𝒚 + 𝜎2𝒛𝐻𝑻𝐻𝑻𝒛 which is a constant term in 𝒙 iff the 
signal 𝒙 entries are of constant modulus since 𝜎2𝒛𝐻𝑻𝐻𝑻𝒛 =
𝜎2𝒙𝐻𝒙.∎  
In the proof above, the use of constant modulus 
constellations for x entries is not limiting because, first, we 

can consider that this assumption is respected in mean for a 
large number of transmitting antennas 𝑛𝑇; second, any M-
QAM constellation can be considered as a linear sum of 4-
QAM points [12]. 
The formula introduced in (7) offers an equivalent metric, 
in the reduced domain, to the metric introduced in 
[1],[2],[3]. The main difference however relies on the 
neighbourhood study nature. In the case of an RDN study, 
the equivalent channel matrix 𝑯�  given in (7) is considered 
and is noticed to be almost - while not exactly - orthogonal. 
Consequently, the independent detection layer by layer of 
the symbols vector 𝒙 does not exactly correspond to its 
joint detection since the mutual influence of the 
transformed signal 𝒛 is still present, thus it highlights the 
advantage of a neighbourhood study. It should be noticed 
that an RDN study will require a smaller size compared to 
an Original Domain Neighbourhood (ODN) study. 

3.3. Reduced-Domain Neighbourhood study 
The main issue of the RDN study lies in the generation of 
the set of possibly transmit symbols, at the considered 
layer. Contrary to classical SD, it cannot be pre-determined 
since the solution does not depend on the employed 
constellation only, but also on the 𝑻−1 matrix in (3) which 
mixes the layers. Thus, their exact pre-determination may 
be only done jointly. 
During the exploration of possible solutions, two major 
drawbacks arise. First, the geometry of constellations in the 
reduced domain may be rather complex and even induce 
non-adjacent symbols. In particular, some candidates may 
not map to any existing constellation points in the original 
domain [7]. Second, the reduced domain does not consider 
any boundary region as in the case of QAM constellations. 
Thus, it induces no limitation in the neighbourhood size. No 
satisfying brute-force solution exists, as stated in Section 2. 
In order to efficiently solve the neighborhood generation 
issue recalled above, we propose in this work to use 
Schnorr-Euchner (SE) [11] enumeration. Starting from the 
LRA principle by passing from x to z through (3), a 
neighbourhood centred on the LRA-MMSE(E) OSIC 
(before quantization) solution, i.e. 𝒛�𝑘, is considered at each 
layer 𝑘. The RDN generation is processed for a bounded 
number of N possibilities in a SE fashion, namely according 
to an increasing Partial Euclidian Distances (PED) [2] 
from 𝒛�𝑘 at each layer, such that: 
𝒛𝑘 = 𝑄ℤℂ

𝑛𝑇{𝒛�𝑘}, 

     𝑄ℤℂ
𝑛𝑇{𝒛�𝑘} + 1,𝑄ℤℂ

𝑛𝑇{𝒛�𝑘} + 𝑗,   𝑄ℤℂ
𝑛𝑇{𝒛�𝑘}− 1,𝑄ℤℂ

𝑛𝑇{𝒛�𝑘}− 𝑗, 

     𝑄ℤℂ
𝑛𝑇{𝒛�𝑘} + 2,𝑄ℤℂ

𝑛𝑇{𝒛�𝑘} + 2𝑗,𝑄ℤℂ
𝑛𝑇{𝒛�𝑘}− 2,𝑄ℤℂ

𝑛𝑇{𝒛�𝑘}− 2𝑗, … 

(9) 

The SE strategy aims at finding the correct decision as early 
as possible, leading to a safe early termination criterion. In 
the proposed technique, the K best solutions are stored at 
each layer. Thus it is denoted as RDN LRA-MMSE(E) K-
Best detector. 

3.4. Block Diagram of the proposed technique 
The general principle of any LRA detector is depicted in a 
block-diagram manner in Figure 1. The mapping of any 
estimate 𝒛� (or list of estimates) from the reduced domain to 
the estimate 𝒙�  in the original domain is processed through 
the 𝑻 matrix multiplication (see Equation (3)). The 
additional quantization step aims at removing duplicate 



 
 

 

symbols vectors outputs in the case of a list of solutions. 
Thus it should be noted that it is useful in the case of a 
neighbourhood study only.  

 
Figure 1- Block-diagram of any LRA procedure 

The search is achieved independently of the search centre 
calculation. In particular, the detector’s computational 
complexity is split between the search centre calculation 
step and the neighbourhood search step as depicted in 
Figure 2.  

 
Figure 2- Block-diagram of any RDN LRA K-Best 

procedure 
By considering the 𝑘-th layer and the knowledge of the 
𝐶𝒛�𝑘+1:𝑛𝑇

 symbols estimated at the layers k+1 up to 𝑛𝑇, the 
𝒛�𝑘 unconstrained point can be provided and then has to be 
de-normalized and shifted, thus making 𝒛�𝑘′  to belong to 
ℤℂ
𝑛𝑇. At this step, the RDN study addressed in Section 3.3 

arises. After quantization, de-shifting and normalization, 
the 𝐶𝒛�𝑘 estimates at the 𝑘-th layer are obtained. That is, all 
the PEDs calculation and ordering (detailed in [2]) are 
applied explicitly. The K best solutions, namely with the 
lowest Cumulative Euclidean Distances (CED) (𝐷𝑡𝑜𝑡) in the 
reduced domain, are stored (𝐶𝒛�). 
The search centre is updated at each layer, resulting in an 
improved performance. In particular, the next (k-1)-th layer 
is considered, until the whole list of symbols vector is 
detected.  
By now adding, prior to the RDN study, the pre-processing 
steps, namely the SQRD-based LR technique, and the 
computation of a close-to-ML linear unconstrained estimate 
using the LRA-MMSEE a complete description of the 
detection structure can be obtained. A final step of the 
detector should be added to the detection process. Indeed, 
the list of possible symbols output has to be re-ordered 
according to the ML metrics in the original domain and 
duplicate solutions should be removed. This is due to the 
presence of noise that makes some candidates to be mapped 
on non-legitimate constellation points in the reduced 
constellation, leading to inappropriate points in the original 
constellation. The symbols vector associated to the minimal 
metric becomes the hard decision output of the detector and 
offers a near-ML solution. 

4.System Performance 
In this section, we present the system performance of the 
aforementioned reference solutions and we compare them 
to our proposed RDN LRA-MMSEE K-Best solution.  
Figure 3, Figure 4 and Figure 5 depict the uncoded BER for 
4×4 MIMO scheme using 16-QAM modulations with K=2, 
K=4  and K=16, respectively. The RDN size is set to N=5, 
which is shown in the simulations to be sufficient for our 
detector (not for the reference LRA-ZF K-Best). Some 
notable points have to be highlighted from these figures. As 

previously claimed and contrary to the RDN LRA K-Best, 
the ODN K-Best solutions (ZF and MMSE) do not reach 
the ML diversity for a reasonable neighbourhood size, even 
if there is a decrease of the SNR offset in the ODN MMSE 
K-Best case. However, the classical RDN LRA-ZF K-Best 
technique presents a BER offset in the low SNR range, due 
to errors propagation. Consequently, there exists a 
switching point from low to high SNR between LRA 
detectors and others. This aspect is removed through the 
use of the SQRD in the RDN LRA-MMSEE K-Best 
solution. The full diversity is still reached and the BER 
offset in low SNR regime is highly reduced compared to 
the RDN LRA-ZF K-Best solution. Even for a small RDN 
size (K=2) and for 16-QAM constellations, its performance 
is now close-to-ML as shown in Figure 3. 

 
Figure 3- Uncoded BER, 4×4 complex Rayleigh channel, 
16-QAM modulation on each layer, K=2 

 
Figure 4- Uncoded BER, 4×4 complex Rayleigh channel, 

16-QAM modulation on each layer, K=4 

 
Figure 5- Uncoded BER, 4×4 complex Rayleigh channel, 
16-QAM modulation on each layer, K=16 
The SNR losses compared to ML solution of all the plotted 
techniques are given in Table 1. They have been measured 
for an uncoded BER of 10−4. Also, the corresponding 
computational complexities are given in Table 2 in terms of 
real multiplications (MUL) operations and for an RDN size 
𝑁 = 5. Now, comparing the LRA-MMSE(E) solution with 
the K-Best solution, it is straightforward to observe that the 
proposed technique requires less neighbours (K=2) while 
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the K-Best requires K=16.  Even if the proposed LRA-
MMSE(E) solution is two times more complex with 4-
QAM constellations, it offers near-ML performance and in 
particular an SNR gain of 0.3 dB at a BER of 10−4. The 
most interesting point concerns higher order modulations: 
for the 16-QAM modulation, the estimated complexity of 
the proposed solution is ten times less complex than the 
classical one, for the same performance result (see 
underlined results in Table 2 for comparison purposes). 
Due to space limitation, the 16-QAM case only has been 
presented in this section while near-ML performance is 
achieved anyway for 64-QAM. Nevertheless, we should 
mention an important point. Benefits of LRA SD technique 
are limited in the case of the widely used 4-QAM 
constellation, due to the existence of an implicit constraint 
from the 4-QAM constellation construction. In particular, 
the quantization operation 𝑄𝜉𝑛𝑇{. } induces a constraint that 
eliminates nearby lattice points that do not belong to 𝜉𝑛𝑇. 
This aspect destroys a part of the LRA benefit and cannot 
be corrected despite the increase of the neighbourhood 
study size. Indeed, many lattice points considered in the 
RDN would be associated with the same constellation point 
after quantization in the original constellation. In the case 
of larger constellation orders, the LRA benefit is more 
effective, as depicted in Table 1. 
Finally, we should note that the proposed RDN LRA-
MMSEE K-Best solution is particularly efficient in the case 
of ill-conditioned MIMO systems, i.e. spatially correlated 
antennas systems, due to the LR step and in the case of high 
order constellations size due to the neighbourhood study 
(two LTE-A norm requirements [13]). 

Table 1- SNR loss compared to the ML solution 

 SNR loss (4-QAM) SNR loss (16-QAM) 
Technique K=1 K=2 K=3 K=4 K=1 K=2 K=4 K=16 
ZF K-Best >7.6 >7.6 >7.6 0.36 >5.0 >5.0 >5.0 0.00 
MMSE K-Best >7.6 >7.6 6.21 0.30 >5.0 >5.0 >5.0 0.09 
LRA-ZF K-Best 4.43 2.90 1.92 1.71 3.21 2.04 1.27 0.62 
LRA-MMSE 

K-Best 
2.90 0.73 0.52 0.27 2.12 0.76 0.53 0.40 

LRA-MMSEE 
 K-Best 

0.80 0.01 0.00 0.00 1.62 0.02 0 0.00 

Table 2- Computational complexities in MUL 

 MUL (4-QAM) MUL (16-QAM) 
Technique K=1 K=2 K=3 K=4 K=1 K=2 K=4 K=16 
ZF K-Best 156 300 444 588 624 1200 2352 9264 
MMSE K-Best 156 300 444 588 624 1200 2352 9264 
LRA-ZF K-Best 510 946 1382 1818 510 946 1818 2254 
LRA-MMSE 

K-Best 
510 946 1382 1818 510 946 1818 2254 

LRA-MMSEE 
K-Best 

510 946 1382 1818 510 946 1818 2254 

ML 16384 4194304 

5.Conclusion 
In this paper, the RDN LRA-MMSE(E) SD has been 
proposed, with a K-Best neighbourhood generation. 
Detailed computational complexity estimation has been 
provided and compared to the state of the art.  In particular, 
we have shown that the proposed detector outperforms 
existing solutions while requiring much lower complexity. 

Interestingly, the corresponding computational complexity 
is independent of the constellation size and polynomial in 
the number of antennas, again while reaching the ML 
performance. It implies 10 times lower computational 
complexity compared to the classical K-Best for a 4×4 
MIMO system, with 16-QAM modulation on each layer 
and still better for higher-order constellations. 
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