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Abstract—Opportunistic or Delay Tolerant Networks (DTNs) are
envisioned to complement existing wireless technologies (cellular,
WiFi). Wireless peers communicate when in contact, forming a
network “on the fly”, whose connectivity graph is highly dynamic
and only partly connected. Because of this stringent environment,
solutions to common networking problems (routing, congestion
control, etc.) in this context are greedy, choosing the best solution
among the locally available ones. This shared trait motivates
the common treatment of such greedy algorithms for DTNs
and raises some interesting questions: Do they converge? How
fast are they? Yet, existing models study individual solutions.
Moreover, they often assume homogeneous node mobility. The
study of real world traces reveals considerable heterogeneity
and non-trivial structure in human mobility. While algorithms
have been proposed, accounting for this heterogeneity, their
analytical tractability is still a challenge. In this paper, we
propose a new model for greedy DTN algorithms, supporting
the full heterogeneity of node mobility. We provide closed form
solutions for crucial performance metrics (delivery probability
and delay) and prove necessary and sufficient conditions for
algorithm convergence. For illustration, we apply our model to
the content placement problem, a variant of distributed caching.
We use real and synthetic mobility traces to validate our findings
and examine the impact of mobility properties in depth.

I. INTRODUCTION
Opportunistic or Delay Tolerant Networks (DTNs) are

envisioned to augment existing wireless infrastructure-based
services (e.g., offload cellular data traffic), and enable novel
applications. Nodes harness unused bandwidth by exchanging
data whenever they are in proximity (in contact), with the
goal to forward data probabilistically closer to destinations.
By introducing redundancy (e.g., coding or replication) and
intelligent mobility prediction algorithms, data of interest can
be delivered or retrieved over a sequence of such contacts,
despite the lack of end-to-end paths.
Many challenging problems arise in this context: unicast and

multicast routing [1], [2], resource allocation [3], [4], content
placement [5], etc. Considering the disconnected and highly
dynamic nature of the connectivity graph of Opportunistic
Networks, these problems are substantially more difficult here,
than in traditional connected networks. As a result, most
solutions proposed for each problem are intuitive greedy
algorithms that deterministically choose the best available
action locally. This underlines the need for a deeper, joint
analysis of greedy schemes for DTNs. Yet, almost all existing
studies deal with individual problems and solutions.
What is worse, these studies rely on simple mobility models

(e.g., Random Walk, Random Waypoint, Random Direction),
for tractability reasons [4], [6]–[8]. In these models, node

mobility is stochastic and independent identically distributed
(IID). Then, Markov chain theory or fluid approximations
are used to model node movements and derive performance
metrics like packet delivery probability and delay.
However, studies of real mobility scenarios [9], [10] reveal

more complex structure, comprising heterogeneity and cor-
relation in nodes’ mobility. Protocol design has incorporated
these findings, devising more sophisticated, albeit still locally
greedy, solutions [5], [11]. In contrast, the analysis of DTN
protocols still relies on overly simple mobility assumptions.
A recent study [12] departs from the IID assumption by
introducing mobility classes, but is still not fully flexible.
To this end, this paper proposes a unified analytical frame-

work for greedy, distributed optimization algorithms in DTNs.
We propose that algorithms for optimization problems in this
context be modeled as a stochastic traversal of the solution
space. This traversal can be described by a Markov chain
whose transition matrix depends on two key elements: (i) the
contact probability of a given node pair (mobility component),
and (ii) an acceptance/rejection variable for a “proposed”
transition (algorithmic component). The decoupling of mo-
bility and algorithmic influence allows us to examine the
mobility conditions under which local greedy algorithms are
correct (i.e. converge). Moreover, it enables the use of transient
Markov analysis to calculate convergence probability and
convergence delay of an algorithm in generic mobility settings.
While we believe that the proposed framework can be easily

adapted to a large variety of optimization problems for DTNs1,
throughout the paper, we use the content placement or relay
selection problem [5], as a case study: New content is injected
into the network, in which a large subset of nodes (e.g., a
multicast group) may be interested over time. To make the
content easily reachable by interested nodes, L replicas are
pushed from its source to L “carriers”, who will make it most
available to everyone (e.g., minimizing the expected meeting
time of an interested node and a carrier). We chose this
“group” communication problem, as we believe that group
communication (e.g., multicast, anycast, publish/subscribe)
will be more relevant than unicast routing to content dissem-
ination applications envisioned for these networks.
Our main contributions are summarized below:
● We propose a Markov chain model that combines the

1Some additional examples can be found in [13]. Note also that our frame-
work naturally applies to stochastic optimization algorithms (e.g. Metropolis-
Hastings Monte Carlo algorithms [5]), in addition to locally greedy algorithms.
Due to space limitations, we choose to focus on greedy algorithms here.



heterogeneous mobility properties of a scenario and the
actions of an algorithm into an appropriate transition
matrix over a problem’s solution space (Section II).

● We prove necessary and sufficient conditions for an
algorithm’s correctness and examine whether and when
these conditions are met, using an ample set of mobility
traces (Section III).

● Based on the absorption properties of the above Markov
chain, we derive closed form results for the convergence
probability and convergence delay of an algorithm in
generic mobility scenarios (Section IV).

II. MODEL AND PROBLEM DEFINITION
Mobility and Contact Model: Let N be the set of all nodes
in our Opportunistic Network, ∣N ∣ = N . Each of the N nodes
has a unique ID. A contact occurs between two nodes who are
in range to setup a bi-directional wireless link to each other.
We assume that contacts last for a negligible time compared
to that between two successive contacts. We also assume that
contacts happen in sequence, according to some contact arrival
process, whose intensity is related to network density2. A given
mobility scenario with heterogeneous node mobility can then
be described through its pairwise contact probabilities pci j , that
the next contact in the sequence is between nodes i and j, and
the respective contact probability matrix:

Pc = {pci j}. (1)

This implies that, at any moment, the remaining inter-
contact time between nodes i and j has a geometric distribution
with parameter pci j . This probability is akin to the (relative)
frequency or intensity of contacts between a given pair of
nodes. It can be either measured directly from a given real
or synthetic mobility trace (e.g. fitting the inter-contact time
distribution for every pair); or it can be calculated using the
pair’s contact statistics (e.g. frequency and/or duration [14]).
Finally, though the geometric distribution assumption might
not always hold in practice, it is a useful approximation that
we have validated against a number of real traces.
Solution Space for Content Placement Problem: Having
described how nodes move and meet each other, we now
describe the content placement or relay selection problem. This
problem can be formally defined as follows: A source node is
given a finite budget L of replicas3 for some content it creates
or obtains. Find an optimal subset of nodes L⋆ ⊂N who will
store the content, so as to maximize some accessibility utility
U . The content may be a popular video, for example, that is
expected to be heavily requested in the future.
Let us assume an initial network configuration is achieved,

with the L content copies at L different nodes (the source can
do this through e.g., spraying [2]). This network state can be
formally expressed using an N-element vector:

x = (x1 , x2 , . . . , xN), xi = {1 i is a relay,
0 otherwise.

(2)

2For our analysis, we require that the probability of simultaneous contacts
be small. This is the case, e.g., if the arrival process of contact events is
Poisson. In general, the assumption just implies a relatively sparse network.
3The parameter L achieves a trade-off between performance and cost.

Thus, our problem is defined by the following state spaces:

xi ∈ S S = {0, 1} node state space4 , (3)

x ∈ Ω ∣Ω∣ = (N
L
) network state space5 . (4)

Solution Space Traversal: Every contact between a relay
i (xi = 1) and another node j (x j = 0) offers the chance
of moving to a new state or solution y ∈ Ω. In other
words, the sequence of solutions presented to a distributed
optimization algorithm in this context are dictated by the
contact probability matrix Pc . This is in contrast with tra-
ditional optimization algorithms, where a local neighborhood
of solutions to be compared with the current one in the next
step is defined/chosen by the designer.
If a content replica is transferred from relay i to j, then

yi = 0 and y j = 1. Figure 1 provides an example of potential
state transitions. Network configurations x and y only differ
in the states of nodes 2 and 4; for any other node k, yk = xk .
Defining the configuration difference as

δ(x, y) = ∑
1⩽i⩽N

{xi ≠ yi}, (5)

we say two states are adjacent if and only if δ(x, y) = 2. Then,
a transition xy is possible.










Fig. 1. Example state transitions for Content Placement. Note that δ(x, y) =
δ(y, z) = 2, while δ(x, z) = 4. Thus, transition xz is not possible.

Local Optimization Algorithm: Node contacts only propose
new candidate solutions. Whether the relay i in fact hands
over its content replica to j (or, in the more general case,
whether a new allocation of objects between i and j is chosen),
is decided by the algorithm. In greedy schemes, a possible
state transition occurs only if it improves a utility function U ,
defined over Ω. Here, let Ux express the accessibility offered
by configuration x (e.g., expected meeting delay between a
node and any relay). Then, a possible transition xy occurs
with acceptance probability:

Axy = {Ux < Uy}.
While, Axy ∈ {0, 1} for greedy (utility-ascent) algorithms, gen-
erally, the acceptance probability may be any function of the
two utilities: Axy ∈ [0, 1]. This allows us to model stochastic
utility-ascent algorithms (e.g. simmulated annealing).

4A binary node state space works for denoting single items at each node,
as in unicast and multicast routing. For different optimization problems in
DTNs, a larger node state space may be needed (see [13] for an example).
Nevertheless, the basic framework remains the same.
5The network state space may become large, depending on the problem

(e.g., 2N in epidemic routing [1]). This can be handled using state lumping,
Petrinet-based models, etc. Due to space limitations, we defer the treatment
of these issues to future work.



In general, the utility U to maximize is: (i) node mobility-
related, e.g. node degree or contact probabilities [11], (ii) node
features-related, e.g. buffer space or battery, or (iii) content-
related, e.g. demand for content. Without loss of generality,
for our content placement problem we will assume that a
node’s utility is directly proportional to the number of unique
nodes it encounters per time unit, and that the utility of a
given solution (i.e. assignment of available replicas to relays)
is the sum of individual relay utilities. This is a reasonable,
greedy metric towards maximizing each node’s accessibility
to the content. We refer the interested reader to [5] for a more
detailed discussion of utility functions for this problem. (We
note that the upcoming analysis has been validated against
different utility functions in [13].)
A Markov Chain Model for Distributed Optimization:
Summarizing, the transition probability between adjacent net-
work states x and y can be expressed in function of the contact
probability and the acceptance probability as:

pxy = pci j ⋅ Axy , (6)

where nodes i and j are the two nodes whose encounter
provokes the state transition.
Finally, note that the transition from any state x to any other

state y only depends on these two states and not on past states.
This means that our system has the Markov property, therefore
we model it with a time-homogeneous discrete-time Markov
chain (Xn)n∈ 0

over the solution space Ω. From above, the
transition probabilities of the Markov chain are:

pxy = [Xn+1 = y ∣Xn = x]

=
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, δ(x, y) > 2
pci j ⋅ Axy , δ(x, y) = 2
1 − ∑

1⩽z⩽∣Ω∣
z≠x

pxz , x = y. (7)

where, i and j are the two nodes whose encounter provokes the
state transition. pci j is the mobility component of the transition
probability and Axy is the algorithm component.
To apply this model to other DTN problems solved by

utility-ascent algorithms, one needs at most to redefine the
state space Ω and the utility function U appropriately. Some
problems can even be directly mapped to the above content
placement model: e.g., for single-copy routing simply set
L = 1 and assign the highest utility to the destination. Due to
space limitations, we defer the demonstration of our model’s
flexibility to future work.

III. CORRECTNESS ANALYSIS AND USAGE

A crucial point that arises with the use of greedy distributed
optimization in DTNs is the (in)ability of such algorithms
to efficiently navigate the solution space. Specifically, what
properties of the mobility model or the utility function make
simple utility ascent algorithms applicable? In this section,
we illustrate the value of the presented Markov model in
answering this questions, for the case of Greedy Content
Placement. To our best knowledge, this is the first correctness
analysis for DTN algorithms for generic mobility scenarios.

A. Correctness Analysis for Greedy Content Placement
Our goal is to prove necessary and sufficient conditions for

the correctness of gradient-ascent algorithms for the content
placement problem, that is guaranteed discovery of the optimal
solution x⋆. This solution amounts to “pushing” a replica to
each of the L highest utility nodes. We denote this set of nodes
as L⋆. By definition, the network state x⋆ is absorbing in
the Markov chain of our problem. Depending on the mobility
scenario and the chosen utility function, there may be more
absorbing states (i.e., local maxima of U). In that case, the
algorithm is not guaranteed to converge to the optimal solution
from every initial copy assignment, and thus is not correct.
Thm. 1 derives necessary and sufficient conditions on the

contact probability matrix Pc and utility function U , for the
correctness of the greedy algorithm. This is shown to require
the existence of an increasing utility path from any node in
N∖L⋆ (nodes outside the L highest utility ones) and any node
in L⋆. Due to space limitations, the proof is found in [13].
Theorem 1: For all source nodes and all initial copy alloca-

tions, Greedy Content Placement is correct if and only if for
all i ∈N ∖L⋆ there exist at least L nodes j1 , . . . , jL ∈N with
Ui < Uj(.) , such that pci j(.) > 0.
Put differently, given a DTN distributed optimization prob-

lem (mapped into a utility function), and a mobility scenario
(captured in a contact probability matrix), Thm. 1 converts the
(often hard) task of deciding whether a simple greedy algo-
rithm would suffice, into the (often easier) task of checking a
matrix (the contact matrix) for enough non-zero entries.

B. Correctness Conditions in Realistic Mobility Scenarios
Having derived conditions for the correctness of Greedy

Content Placement, we investigate here whether and when
these conditions actually hold in realistic mobility scenarios.
To cover a broad range, we use five real contact traces and one
synthetic mobility trace for validation. Their characteristics
are summarized in Table I: (i) the Reality Mining trace
(MIT) [9], (ii) the Infocom 2005 trace (INFO) [15], (iii) the
ETH trace [10], (iv) a Swiss military trace from an outdoor
training scenario (ARMA), (v) the San Francisco taxis trace
(SFTAXI) and (vi) a synthetic scenario created with a recent
mobility model (TVCM) [16].
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Fig. 2. Multihop greedy paths in traces

Figure 2 shows the percentage of node pairs that are
mutually reachable by a utility ascent path as a function of
TTL. While for the whole trace duration, over 90% of the node



MIT INFO ETH ARMA SFTAXI TVCM
Scale and context 92 campus students

& staff
41 conference atten-
dees

20 lab students & staff 152 people 536 taxis 24/104 nodes, 2/4
disjoint communities

Period 9 months 3 days 5 days 9 hours 1 month 11 days
Scanning Interval 300s (Bluetooth) 120s (Bluetooth) 0.5s (Ad Hoc WiFi) 30s (GPS) 30s (GPS) N/A
# Contacts total 81 961 22 459 22 968 12 875 1 339 274 1 000 000

TABLE I
MOBILITY TRACES CHARACTERISTICS.
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(a) Utility Ascent paths (ETH)
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(b) Utility Ascent paths (Infocom)
Fig. 3. Comparison of several utilities

pairs are greedily reachable (note that the whole trace duration
exceeds one week worth of contacts for some of the traces),
for smaller, more realistic TTL values, many node pairs do not
have paths for the greedy algorithm to use. This is due either
the nodes being unreachable or to existence of absorbing local
maxima. This can be determined by comparison to the number
of mutually reachable pairs when allowing non-greedy paths.
In ETH, the number of paths does not increase significantly,
making this scenario suitable for greedy solutions. In contrast,
in the other scenarios, the improvement ranges from double
to fivefold, making greedy solutions waste potential.
In addition to the contact pattern of a mobility scenario, the

conditions of Thm. 1 (and thus algorithm correctness) may be
affected by the following factors: (a) the value of L, (b) the
choice of utility function. In Figure 3, we inspect more closely
the effect of L and the relation between a mobility-related
utility and a random utility. It provides a comparison of two
relevant utilities: (i) the mobility-related node degree, and (ii) a
random utility, which has no correlation to mobility.
Two observations ensue from Figure 3. First and foremost,

there do not always exist utility ascent paths leading to optimal
solutions. This means local maxima are present even for
simple utility functions. Larger L may exacerbate this problem
(Figure 3(a)). Second, the correlation or lack thereof between
a node’s utility rank and its mobility rank considerably affects
the navigability properties of the contact graph. This stresses
the need to choose utility functions carefully.
Summarizing, we have used the correctness conditions de-

rived in Section III-A, to analyze the worst case behavior of the
Greedy Content Placement algorithm in a variety of real and
synthetic mobility scenarios. We conclude that this algorithm
is relatively fragile in the face of parameters like TTL and
the choice of utility function. As mentioned earlier, our model
can adapt to study other algorithms and optimization problems
in a similar way. When an algorithm’s worst case behavior is
important, this is an essential tool for its analysis.

IV. CONVERGENCE ANALYSIS AND USAGE
In the previous section, we proved necessary and sufficient

conditions for the greedy content placement algorithm to
reach the globally optimal configuration (Markov chain state)

from any initial network state. In addition to worst case
performance, in practice we are also interested in the following
performance metrics for an algorithm:
i) The convergence probability of the algorithm to the global
optimum (less than 1 in the presence of local maxima).

ii) The convergence time of algorithms. This translates to
quantities of practical importance, e.g. the delivery delay.

Existing analytical models for DTNs also treat these quanti-
ties, but they assume unrealistic mobility and are not easily
applicable to complex algorithms where decisions are utility-
based [5], [11]. Here, we use heterogeneous mobility (pairwise
contact probabilities) in our Markov chain model and show
that convergence probability and mean convergence time of
each algorithm can be mapped to statistics of absorption
quantities on the Markov chain. These statistics can often be
derived in closed form after some matrix algebra.
A. Convergence Analysis
We study the performance of our Greedy Content Placement

algorithm. The Markov Chain (Xn)n∈ 0
described by P =

{pxy} (Eq. (7)), corresponding to the solution space traversal
for the Greedy Content Placement algorithm is absorbing. We
use the theory of absorbing Markov chains to characterize the
algorithm’s performance [17].
The maximum utility network state x⋆ is, by definition, an

absorbing state in the Markov chain. Additional local maxima
correspond to other absorbing states in P. We denote the set
of such states

LM ⊂ Ω (local maxima).

LM contains all solutions x ∈ Ω∖{x⋆}, such that for all states
y ∈ Ω with δ(x, y) = 2, either pci j = 0 or Uy < Ux (as in Thm. 1).
Every other solution in Ω is a transient state. Denote by TR ⊂
Ω, the set of transient states. Then, Ω = {x⋆} ∪LM ∪ TR.
In order to derive absorption related quantities, we write the

matrix P in canonical form, where states are re-arranged such
that transient states (TR) come first, followed by absorbing
states corresponding to local maxima (LM ), followed by the
maximum utility state x⋆:

TR LM x⋆

P = ⎛
⎜
⎝

Q R1 R2

0 I 0
0 0 1

⎞
⎟
⎠

TR
LM
x⋆

Let ∣LM ∣ = r1 and ∣TR∣ = t. That is, there are r1 local
maxima and t transient states. Then, I is the r1 × r1 identity
matrix, Q is a t × t matrix, R1 is a non-zero t × r1 matrix, R2

is a non-zero t-element column vector.
We can now define the fundamental matrix N for the

absorbing Markov chain as follows:

N = (I −Q)−1 = I +Q +Q2
+⋯ (8)



The last equality is easy to derive (see [17], page 45). N is a
t × t matrix whose entry nxy is the expected number of times
the chain is in state x, starting from state y, before getting
absorbed. Thus, the sum of a line of the fundamental matrix
of an absorbing Markov chain is the expected number of steps
until absorption, when starting from the respective state.
Theorem 2 (Success Probability): The probability that

Greedy Content Placement succeed in finding the optimal
solution, starting from any initial state with equal probability,
is

pg = 1

t
⋅ ∑
x∈TR

bxx⋆ , (9)

B⋆ = {bxx⋆} is a t-element column vector with B⋆ = NR2.
Proof: Starting from transient state x, the process may be

captured in the optimal state, x⋆, in one or more steps. The
probability of capture on a single step is pxx⋆ . If this does not
happen, the process may move either to an absorbing state
in LM (in which case it is impossible to reach x⋆), or to a
transient state y. In the latter case, there is probability byx⋆ of
being captured in the optimal state. Hence we have:

bxx⋆ = pxx⋆ + ∑
y∈TR

pxy ⋅ byx⋆ , (10)

which can be written in matrix form as B⋆ = R2 + QB⋆.
Thus B⋆ = (I − Q)−1R2 = NR2. B⋆ is the vector of success
probabilities starting from each of the t transient states. We
obtain the probability of success starting from any state
uniformly, as follows:

1

t
⋅ bx1x⋆ +⋯ +

1

t
⋅ bxtx⋆ = 1

t
⋅ ∑
x∈TR

bxx⋆ . (11)

Theorem 3 (Convergence Delay): The expected time for
Greedy Content Placement to find the optimal solution, start-
ing from any initial state with equal probability, given that it
does not get absorbed in any local maximum is:

[Tg] = 1

t
⋅ ∑
x∈TR

τx , (12)

where τ = {τx} is a t-element column vector with τ =
D−1NDc. c is a t-element column vector with ones, and D
is a diagonal matrix with entries bxx⋆ for x ∈ TR.

Proof: Assume we start in a non-absorbing state x of our
Markov chain (Xn)n∈ 0

and compute all probabilities relative
to the hypothesis that the process ends up in the optimal state,
x⋆. Then we obtain a new absorbing chain (Yn)n∈ 0

with a
single absorbing state x⋆. The non-absorbing states will be
as before, except we have new transition probabilities. We
compute these as follows. Let a be the statement “(Xn)n∈ 0

is
absorbed in state x⋆”. Then if x is a non-absorbing state, the
transition probabilities for (Yn)n∈ 0

are:
[Yn+1 = y ∣Yn = x] = [Xn+1 = y ∣a ∧Xn = x]

= [Xn+1 = y ∧ a ∣Xn = x]
[a ∣Xn = x]

= [a ∣Xn+1 = y] ⋅ [Xn+1 = y ∣Xn = x]
[a ∣Xn = x]

p̂xy = byx⋆ pxy
bxx⋆

.

The standard form for P̂, the transition matrix of (Yn)n∈ 0
,

may be obtained as follows. The matrix R̂ is a column vector
with R̂ = { pxx⋆bxx⋆

}. Let D be a diagonal matrix with diagonal
entries bxx⋆ , for x non-absorbing. Then Q̂ = D−1QD and
consequently, N̂ = D−1ND. B̂⋆ is now a t-element column
vector of ones.
For the derivation of τ as a function of N̂ see [17], page

51. The initial state is chosen uniformly in TR. Hence, using
τ and the law of total expectation, we obtain equation 12.
The variance of the convergence delay is derived in the same
manner. The interested reader is referred to [13].
Corollary 4: The expected time for the Greedy Content

Placement algorithm to converge to any solution, locally or
globally optimal, is given by 1

t ⋅ ∑
x∈TR

Tx, where T = {Tx} is
T = Nc. c is a t-element column vector with ones.
B. Validation of Convergence Results
We compare the analytical results from the above theorems

to simulation results, using the same traces as previously. We
show results for L = 1 and L > 1. In L > 1 results, for every
mobility scenario, L has the largest value we could handle in
our Matlab code, without any state space reduction techniques
(usually L < 5). For L > 5 the (multi-dimensional) Markov
chain makes it hard to calculate the inverses needed in Thm. 2
and 3. However, since this state space is approximately the
product of L identical Markov chains, we expect that this
complexity could be efficiently tackled, using approximations,
state lumping, etc. We defer this to future work.

L Optimum Local max.
pred. meas. pred. meas.

ETH 1 1.0000 1.0000 N/A N/A
Infocom 1 0.5267 0.5486 0.4132 0.3893
MIT 1 0.7586 0.7625 0.2044 0.2005
TVCM24 1 0.6087 0.5972 0.3913 0.4028
TVCM104 1 0.7862 0.6971 0.2138 0.3029
ETH 4 1.0000 1.0000 N/A N/A
Infocom 3 0.3299 0.3001 0.1601 0.1775
MIT 2 0.5612 0.5658 0.2964 0.2889
TVCM24 4 0.0987 0.0967 0.3770 0.3623
TVCM104 2 0.6040 0.4686 0.3609 0.4582

TABLE II
ABSORPTION PROBABILITIES

Table II shows absorption probabilities predicted using
Thm. 2 and measured in the traces. The first two columns give
the probability of absorption by the global optimum (theory
and simulation), the second two – the probability of absorption
by a local maximum. In the majority of cases, the prediction
is sufficiently accurate, both with a single absorbing state,
the global maximum (in ETH) and when local maxima are
present, resulting in multiple absorbing states (in Infocom,
MIT, TVCM24, TVCM104).
Fig. 4 and Table 5 compare the predicted and measured

values of the absorption delay averaged over all initial states
for the greedy algorithm, with L = 1 and respectively L > 1.
These results correspond to Thm. 3. (In Fig. 4(b) some traces,
e.g. ETH, do not have any local maxima with our utility.) The
theoretical results coincide once again well with the measured
delays, both for absorption by the optimum state and for
absorption by a local maximum.
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Fig. 4. Average absorption delays, L = 1
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Fig. 5. Average absorption delays, L > 1

C. Discussion and Implications
Summarizing, despite simplifying assumptions required for

tractability (e.g. geometrically distributed time to next contact,
contact independence), the proposed framework is able to pre-
dict relevant performance metrics for Content Placement fairly
accurately under a large variety of real and realistic mobility
scenarios. To our best knowledge, this is the first analytical
work that can accurately predict performance metrics for gen-
eral, heterogeneous mobility. Moreover, while our preliminary
results have focused on the Content Placement problem, the
main components of our framework are generic and should
enable accurate performance predictions for any problem that
fits this framework. As an immediate example, utility-based
single-copy routing schemes can be directly mapped to Con-
tent Placement with L = 1 and an appropriate utility ranking
(with the destination as the optimum). In future work, we
intend to conduct a similar performance analysis for this and
other problems (buffer management, anycast/multicast, etc.) to
further validate the merit of this framework.
Beyond the theoretical aspects of our analysis, we believe

the presented model can be useful to protocol or system
designers. New protocols must be evaluated prior to implemen-
tation, and an idea of their sensitivity to various parameters and
mobility scenarios is necessary. While trace-driven or synthetic
simulations can often provide good estimates, they usually
require large amounts of computing resources and time, in
order to obtain good confidence intervals for all possible
parameter values and scenarios. In contrast, given a trace of the
target environment, our model allows for a quick evaluation
of the algorithm with reasonable accuracy. It can also be used
to achieve trade-offs (e.g., delay vs. number of copies) and to
tune parameters (e.g., of the utility function [11]). Finally, our
model also offers important insight into the structure of the
problem and the interplay among its various parts (mobility,
algorithm). Thus, a system designer could easily assess, for
example: whether a simple greedy algorithm is sufficient for

the targeted environment or a more sophisticated solution is
needed; whether a certain utility function is appropriate for
the mobility scenario at hand (both shown in Section III).

V. CONCLUSION
In this paper, we presented a generic model and analytical

framework for DTN algorithms. Unlike earlier analytical re-
search work, our model captures the full heterogeneity of node
mobility, which has been observed in real scenarios [9], [10].
Moreover, our framework allows the examination of a larger
class of algorithms, instances of which are very frequently
proposed as solutions to DTN problems: utility-ascent/descent
algorithms, be they probabilistic of deterministic.
We illustrated the use of our model and framework, by

applying it to a deterministic utility-ascent algorithm for the
Content Placement problem in DTNs. Specifically, we proved
necessary and sufficient conditions for its correctness, and
derived closed form solutions for its performance (convergence
probability and delay), in various mobility scenarios. We used
real and synthetic mobility traces to verify our findings, and
found a close match between predictions and measurements.
In the future, we plan to demonstrate and evaluate the

applicability of our model to the other DTN problems, such
as routing, resource allocation etc. Moreover, we will address
the state space explosion problem, which will extend the
usability of the model.
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