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Abstract—In order to achieve data delivery in Delay Tolerant Networks (DTN), researchers have proposed the use of store-carry-
and-forward protocols: a node there may store a message in its buffer and carry it along for long periods of time, until an appropriate
forwarding opportunity arises. This way, messages can traverse disconnected parts of the network. Multiple message replicas are
often propagated to further increase delivery probability. This combination of long-term storage and message replication imposes a
high storage and bandwidth overhead. Thus, efficient scheduling and drop policies are necessary to: (i) decide on the order by which
messages should be replicated when contact durations are limited, and (ii) which messages should be discarded when nodes’ buffers
operate close to their capacity.
In this paper, we propose a practical and efficient joint scheduling and drop policy that can optimize different performance metrics, such
as average delay and delivery probability. We first use the theory of encounter-based message dissemination to derive the optimal
policy based on global knowledge about the network. Then, we introduce a method that estimates all necessary parameters using
locally collected statistics. Based on this, we derive a distributed scheduling and drop policy that can approximate the performance of
the optimal policy in practice. Using simulations based on synthetic and real mobility traces, we show that our optimal policy and its
distributed variant outperform existing resource allocation schemes for DTNs. Finally, we study how sampled statistics can reduce the
signaling overhead of our algorithm and examine its behavior under different congestion regimes. Our results suggest that close to
optimal performance can be achieved even when nodes sample a small percentage of the available statistics.

Index Terms—Delay Tolerant Network, Congestion, Drop Policy, Scheduling Policy
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1 INTRODUCTION

MOBILE ad hoc networks (MANETs) had been
treated, until recently, as a connected graph over

which end-to-end paths need to be established. This
legacy view might no longer be appropriate for mod-
elling existing and emerging wireless networks [1], [2],
[3]. Wireless propagation phenomena, node mobility,
power management, etc. often result in intermittent con-
nectivity with end-to-end paths either lacking or rapidly
changing. To allow some services to operate even under
these challenging conditions, researchers have proposed
a new networking paradigm, often referred to as Delay
Tolerant Networking (DTN [4]), based on the store-carry-
and-forward routing principle [1]. Nodes there, rather
than dropping a session when no forwarding oppor-
tunity is available, store and carry messages until new
communication opportunities arise.

Despite a large amount of effort invested in the design
of efficient routing algorithms for DTNs, there has not
been a similar focus on queue management and message
scheduling. Yet, the combination of long-term storage
and the, often expensive, message replication performed
by many DTN routing protocols [5], [6] impose a high
bandwidth and storage overhead on wireless nodes [7].
Moreover, the data units disseminated in this context,
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Sophia-Antipolis, France.
E-mail(s): Amir.Krifa@inria.fr, Chadi.Barakat@inria.fr

• Thrasyvoulos Spyropoulos is with the Swiss Federal Institute of Technology
(ETH), Zurich, Switzerland.
E-mail: spyropoulos@tik.ee.ethz.ch

called bundles, are self-contained, application-level data
units, which can often be large [4]. As a result, it is
expected that nodes’ buffers, in this context, will often
operate at full capacity. Similarly, the available band-
width during a contact could be insufficient to communi-
cate all intended messages. Consequently, regardless of the
specific routing algorithm used, it is important to have: (i)
efficient drop policies to decide which message(s) should
be discarded when a node’s buffer is full, and (ii) efficient
scheduling policies to decide which message(s) should
be chosen to exchange with another encountered node
when bandwidth is limited and in which order.

In this paper, we try to solve this problem in its
foundation. We develop a theoretical framework based
on Epidemic message dissemination [8], [9], [10], and
propose an optimal joint scheduling and drop policy,
GBSD (Global knowledge Based Scheduling and Drop)
that can maximize the average delivery rate or minimize
the average delivery delay. GBSD derives a per-message
utility by taking into account all information that are
relevant for message delivery, and manages messages
accordingly. Yet, to derive these utilities, it requires
global network information, making its implementation
difficult in practice, especially given the intermittently
connected nature of the targeted networks. In order to
amend this, we propose a second policy, HBSD (History
Based Scheduling and Drop), a distributed (local) algo-
rithm based on statistical learning. HBSD uses network
history to estimate the current state of required (global)
network parameters and uses these estimates, rather
than actual values (as in GBSD), to calculate message
utilities for each performance target metric.
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To our best knowledge, the recently proposed RAPID
protocol [11] is the only effort aiming at scheduling
(and to a lesser extend message drop) using a similar
theoretical framework. Yet, the utilities derived there
are sub-optimal, as we will explain later, and require
global knowledge (as in GBSD), raising the same im-
plementation concerns. Simulations using both synthetic
mobility models and real traces show that our HSBD
policy not only outperforms existing buffer management
and scheduling policies (including RAPID), but can also
approximate the performance of the reference GBSD
policy, in all considered scenarios.

Furthermore, we look deeper into our distributed
statistics collection solution and attempt to identify the
available tradeoffs between the collection overhead and
the resulting performance. Aggressively collecting statis-
tics and exchanging them with every encountered node
allows estimates to converge faster, but it can poten-
tially result in high energy and bandwidth consumption,
and also interfere with data transmissions. Our results
suggest that close to optimal performance can still be
achieved even when the signaling overhead is forced
(through sampling) to take only a small percentage of
the contact bandwidth.

Finally, we examine how our algorithm behaves under
different congestion regimes. Interestingly, we find that
(i) at low to moderately congested regimes, the optimal
policy is simply equivalent to dropping the message
with the oldest age (similarly to the findings of [12]),
while (ii) at highly congested regimes, the optimal policy
is not linear on message age; some young messages have
to be dropped, as a means of indirect admission control,
to allow older messages to create enough replicas and
have a chance to be delivered. Hence, our framework can
also explain what popular heuristic policies are doing, in
this context, relative to the optimal one.

The rest of this paper is organized as follows. Section 2
describes the current state-of-the art in terms of buffer
management and scheduling in DTNs. In Section 3,
we describe the ”reference”, optimal joint scheduling
and drop policy that uses global knowledge about the
network. Then, we present in Section 4 a learning process
that enables us to approximate the global network state
required by the reference policy. Section 5 discusses our
evaluation setup and presents performance results for
both policies (GBSD and HBSD) using synthetic and
real mobility traces. In Section 6, we examine in detail
our mechanism to collect and maintain network history
statistics, and evaluate the signaling-performance trade-
off. Section 7 studies the behavior of our HBSD policy
in different congestion regimes. Finally, we conclude this
paper and discuss future work in Section 8.

2 STATE OF THE ART

A number of sophisticated solutions have been proposed
to handle routing in DTNs. Yet, the impact of buffer man-
agement and scheduling policies on the performance of

the system has been largely disregarded, in comparison,
by the DTN community.

In [13], Zhang et al. present an analysis of buffer
constrained Epidemic routing, and evaluate some simple
drop policies like drop-front and drop-tail. The authors
conclude that drop-front, and a variant of it giving
priority to source messages, outperform drop-tail in
the DTN context. A somewhat more extensive set of
combinations of heuristic buffer management policies
and routing protocols for DTNs is evaluated in [12],
confirming the performance of drop-front. In [14], Do-
hyung et al. present a drop policy which discards a
message with the largest expected number of copies first
to minimize the impact of message drop. However, all
these policies are heuristic, i.e. not explicitly designed
for optimality in the DTN context. Also, these works
do not address scheduling. In a different work [15], we
address the problem of optimal drop policy only (i.e.
no bandwidth or scheduling concerns) using a similar
analytical framework, and have compared it extensively
against the policies described in [13] and [12]. Due to
space limitations, we do not repeat these results here. We
rather focus on the more general joint scheduling and drop
problem, for which we believe the RAPID protocol [11]
represents the state-of-the-art.

RAPID is the first protocol to explicitly assume both
bandwidth and (to a lesser extent) buffer constraints
exist, and to handle the DTN routing problem as an opti-
mal resource allocation problem, given some assumption
regarding node mobility. As such, it is the most related
to our proposal, and we will compare directly against it.
Despite the elegance of the approach, and performance
benefits demonstrated compared to well-known routing
protocols, RAPID suffers from the following drawbacks:
(i) its policy is based on suboptimal message utilities
(more on this in Section 3); (ii) in order to derive these
utilities, RAPID requires the flooding of information
about all replicas of a given message in the queues of
all nodes in the network; yet, the information propa-
gated across the network might arrive stale to nodes (a
problem that the authors also note) due to change in the
number of replicas, change in the number of messages
and nodes, or if the message is delivered but acknowl-
edgements have not yet propagated in the network; and
(iii) RAPID does not address the issue of signalling over-
head. Indeed, in [11], the authors showed that whenever
the congested level of the network starts increasing, their
meta-data channel consumes more bandwidth. This is
rather undesirable, as meta-data exchange can start in-
terfering with data transmissions amplifying the effects
of congestion. In another work [16], Yong et al. present a
buffer management schema similar to RAPID. However
they do not address the scheduling issue nor the trade-
off between the control channel overhead and system
performance. In this paper, we successfully address all
these three issues.
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3 OPTIMAL JOINT SCHEDULING AND DROP
POLICY

In this section, we first describe our problem setting and
the assumptions for our theoretical framework. We then
use this framework to identify the optimal policy, GBSD
(Global Knowledge based Scheduling and Drop). This
policy uses global knowledge about the state of each
message in the network (number of replicas). Hence, it
is difficult to implement it in a real world scenario, and
will only serve as reference. In the next section, we will
propose a distributed algorithm that can successfully
approximate the performance of the optimal policy.

3.1 Assumptions and Problem Description
We assume there are L total nodes in the network. Each
of these nodes has a buffer, in which it can store up to B
messages in transit, either messages belonging to other
nodes or messages generated by itself. Each message has
a Time-To-Live (TTL) value, after which the message
is no more useful to the application and should be
dropped by its source and all intermediate nodes. The
message can also be dropped when a notification of
delivery is received, or if an ”anti-packet” mechanism
is implemented [13].

Routing: Each message has a single destination (uni-
cast) and is assumed to be routed using a replication-
based scheme [7]. During a contact, the routing scheme
used will create a list of messages to be replicated among
the ones currently in the buffer. Thus, different routing
schemes might choose different messages. For example,
epidemic routing will replicate all messages not already
present in the encountered node’s buffer [5]. For the
purposes of this paper, we will use epidemic routing as a
case study, for the following reasons. First, its simplicity
allows us to concentrate on the problem of resource
allocation, which is the focus of this paper. Second, it
consumes the most resources per message compared to
any other scheme. As a result, it can be easily driven to
medium or high congestion regimes, where the efficient
resource allocation problem is most critical. Third, given
the nature of random forwarding schemes, unless a
buffer is found full or contact capacity is not enough
to transfer all messages, epidemic forwarding is optimal
in terms of delay and delivery probability. Consequently,
epidemic routing along with appropriate scheduling and
message drop policies, can be viewed as a new routing
scheme that optimally adapts to available resources [11].
Finally, we note that our framework could be used
to treat other types of traffic (e.g. multicast), as well.
However, we focus on unicast traffic to elucidate the
basic ideas behind our approach, and defer the treatment
of multi-point traffic to future work.

Mobility Model: Another important element in our
analytical framework is the impact of mobility. In the
DTN context, message transmissions occur only when
nodes encounter each other. Thus, the time elapsed between
node meetings is the basic delay component. The meeting

time distribution is a basic property of the mobility
model assumed [10], [9]1. To formulate the optimal
policy problem, we will first assume a class of mobility
models that has the following properties:
A.1 Meeting times are exponentially distributed or

have at least an exponential tail;
A.2 Nodes move independently of each other;
A.3 Mobility is homogeneous, that is, all node pairs

have the same meeting rate λ.
Regarding, the first assumption, it has been shown that

many simple synthetic mobility models like Random
Walk, Random Waypoint and Random Direction [10], [9]
have such a property. Furthermore, it is a known result
in the theory of random walks on graphs that hitting
times on subsets of vertices usually have an exponential
tail [19]. Finally, it has recently been argued that meeting
and inter-meeting times observed in many traces also
exhibit an exponential tail [20]. In our framework, we
sample the remaining meeting time only when a drop or
scheduling decision needs to be taken, in order to calculate
the drop probability of Eq.(2). In a sparse network (as
in our case), it can be shown that, at this time, the two
nodes in question have already mixed with high proba-
bility. Thus, the quantity sampled can be approximated
by the meeting time from stationarity, or the tail of the
inter-meeting time distribution, which, as explained, is
often exponential [?]. In other words, it is not required
to make the stronger assumption of Poisson distributed
inter-meeting times, as often done in related literature.

Regarding the second assumption, although it might
not always hold in some scenarios, it turns out to be
a useful approximation. In fact, one could use a mean-
field analysis argument to show that independence is not
required, in the limit of large number of nodes, for the
analytical formulas derived to hold (see e.g. [21]).

Finally, in Section 3.4, we discuss how to remove
assumption [A.3] and generalize our framework to het-
erogenous mobility models.

Buffer Management and Scheduling: Let us consider
a time instant when a new contact occurs between nodes
i and j. The following resource allocation problem arises
when nodes are confronted with limited resources (i.e.
contact bandwidth and buffer space)2.

(Scheduling Problem) If i has X messages in its local
buffer that it should forward to j (chosen by the rout-
ing algorithm), but does not know if the contact will
last long enough to forward all messages, which ones
should it send first, so as to maximize the global delivery
probability for all messages currently in the network?

1. By meeting time we refer to the time until two nodes starting from
the stationary distribution come within range (”first meeting-time”).
If some of the nodes in the network are static, then one needs to use
hitting times between mobile and static nodes. Our theory can be easily
modified to account for static nodes by considering, for example, two
classes of nodes with different meeting rates (see e.g. [18]).

2. We note that, by ”limited resources”, we do not imply that our
focus is only small, resource-limited nodes (e.g. wireless sensors), but
rather that the offered forwarding or storage load exceeds the available
capacity. In other words, we are interested in congestion regimes.
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Fig. 1. GBSD Global optimization policy

(Buffer Management Problem) If one (or more) of these
messages arrive at j’s buffer and find it full, what is the
best message j should drop among the ones already in
its buffer (locally) and the newly arrived one, in order to
maximize, let’s say, the average delivery rate among all
messages in the network (globally)?

To address these two questions, we propose the fol-
lowing policy. Given a routing metric to optimize, our
policy, GBSD, derives a per-message utility that captures the
marginal value of a given message copy, with respect to the
chosen optimization metric. Based on this utility, two main
functions are performed:

1) Scheduling: at each contact, a node should replicate
messages in decreasing order of their utilities.

2) Drop: when a new message arrives at a node with a
full buffer, this node should drop the message with
the smallest utility among the one just received and
the buffered messages.

We will derive next such a per-message utility for two
popular metrics: maximizing the average delivery prob-
ability (rate), and minimizing the average delivery delay.
Table 1 contains some useful notation that we will use
throughout the paper. Finally, the GBSD optimization
policy is summarized in Figure 1.

3.2 Maximizing the average delivery rate
We first look into a scenario where each message has a
finite TTL value. The source of the message keeps a copy
of it during the whole TTL duration, while intermediate
nodes are not obliged to do so. To maximize the average
delivery probability among all messages in the network,
the optimal policy must use the per message utility
derived in the following theorem, in order to perform
scheduling and buffer management.

Theorem 3.1. Let us assume that there are K messages in
the network, with elapsed time Ti for the message i. For each

TABLE 1
Notation

Variable Description
L Number of nodes in the network
K(t) Number of distinct messages in the network

at time t
TTLi Initial Time To Live for message i
Ri Remaining Time To Live for message i
Ti = TTLi -
Ri

Elapsed Time for message i. It measures the
time since this message was generated by its
source

ni(Ti) Number of copies of message i in the network
after elapsed time Ti

mi(Ti) Number of nodes (excluding source) that
have seen message i since its creation until
elapsed time Ti

λ Meeting rate between two nodes; λ = 1
E[H]

where E[H] is the average meeting time

message i ∈ [1,K], let ni(Ti) be the number of nodes who have
a copy of the message at this time instant, and mi(Ti) those
that have “seen” the message (excluding the source) since its
creation3 (ni(Ti) ⩽ mi(Ti) + 1). To maximize the average
delivery rate of all messages, a DTN node should apply the
GBSD policy using the following utility per message i:

Ui(DR) = (1− mi(Ti)

L− 1
)λRi exp(−λni(Ti)Ri). (1)

Proof: The probability that a copy of a message i
will not be delivered by a node is given by the prob-
ability that the next meeting time with the destination
is greater than Ri, the remaining lifetime of a message
(Ri = TTL − Ti). This is equal to exp(−λRi) under our
assumptions.

Knowing that message i has ni(Ti) copies in the
network, and assuming that the message has not yet
been delivered, we can derive the probability that the
message itself will not be delivered (i.e. none of the ni

copies gets delivered):

P{message i not delivered | not delivered yet} =
ni(Ti)∏
k=1

exp(−λRi) = exp(−λni(Ti)Ri). (2)

Here, we have not taken into account that more
copies of a given message i may be created in the
future through new node encounters. We have also not
taken into account that a copy of message i could be
dropped within Ri (and thus this policy is to some
extent ”greedy” or ”locally optimal”, with respect to the
time dimension). Predicting future encounters and the
effect of further replicas created complicates the problem
significantly. Nevertheless, the same assumptions are
applied for all messages equally and thus can justify the
relative comparison between the delivery probabilities.

We need to also take into consideration what has
happened in the network since the message generation,
in the absence of an explicit delivery notification (this

3. We say that a node A has ”seen” a message i, when A had received
a copy of message i in the past, regardless of whether it still has the
copy or has already removed it from its buffer.
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part is not considered in RAPID [11], making the utility
function derived there suboptimal). Given that all nodes
including the destination have the same chance to see
the message, the probability that a message i has been
already delivered is equal to:

P{message i already delivered} = mi(Ti)/(L− 1).
(3)

Combining Eq.(2) and Eq.(3), the probability that a mes-
sage i will get delivered before its TTL expires is:
Pi = P{message i not delivered yet} ∗ (1− exp(−λni(Ti)Ri))

+ P{message i already delivered}

= (1− mi(Ti)

L− 1
) ∗ (1− exp(−λni(Ti)Ri)) +

mi(Ti)

L− 1
.

So, if we take at instant t a snapshot of the network,
the global delivery rate for the whole network will be:

DR =

K(t)∑
i=1

[
(1− mi(Ti)

L− 1
) ∗ (1− exp(−λni(Ti)Ri)) +

mi(Ti)

L− 1

]
.

In case of a full buffer or limited transfer opportunity, a
DTN node should take respectively a drop or replication
decision that leads to the best gain in the global delivery
rate DR. To define this optimal decision, we differentiate
DR with respect to ni(Ti),

∆(DR) =

K(t)∑
i=1

∂Pi

∂ni(Ti)
∗ △ni(Ti)

=

K(t)∑
i=1

[
(1− mi(Ti)

L− 1
)λRi exp(−λni(Ti)Ri) ∗ △ni(Ti)

]
Our aim is to maximize ∆(DR). In the case of message

drop, for example, we know that: ∆ni(Ti) = −1 if
we drop an already existing message i from the buffer,
∆ni(Ti) = 0 if we don’t drop an already existing message
i from the buffer, and ∆ni(Ti) = +1 if we keep and store
the newly-received message i. Based on this, GBSD ranks
messages using the per message utility in Eq.(1), then
schedules and drops them accordingly. This utility can
be viewed as the marginal utility value for a copy of a
message i with respect to the total delivery rate. The
value of this utility is a function of the global state of
the message i (ni and mi) in the network.

3.3 Minimizing the average delivery delay
We next turn our attention to minimizing the average de-
livery delay. We now assume that all messages generated
have infinite TTL or at least a TTL value large enough
to ensure a delivery probability close to 1. The following
Theorem derives the optimal per-message utility, for the
same setting and assumptions as Theorem 3.1.

Theorem 3.2. To minimize the average delivery delay of all
messages, a DTN node should apply the GBSD policy using
the following utility for each message i:

Ui(DD) =
1

ni(Ti)2λ
(1− mi(Ti)

L− 1
). (4)

Proof: Let us denote the delivery delay for message
i with random variable Xi. This delay is set to 0 (or any
other constant value) if the message has been already de-
livered. Then, the total expected delivery delay (DD) for
all messages for which copies still exist in the network
is given by,

DD =

K(t)∑
i=1

[
mi(Ti)

L− 1
∗ 0 + (1− mi(Ti)

L− 1
) ∗ E[Xi|Xi > Ti]

]
. (5)

We know that the time until the first copy of the
message i reaches the destination follows an exponential
distribution with mean 1/(ni(Ti)λ). It follows that,

E[Xi|Xi > Ti] = Ti +
1

ni(Ti)λ
. (6)

Substituting Eq.(6) in Eq.(5), we get,

DD =

K(t)∑
i=1

(1− mi(Ti)

L− 1
)(Ti +

1

ni(Ti)λ
).

Now, we differentiate D with respect to ni(Ti) to find
the policy that maximizes the improvement in D,

∆(DD) =

K(t)∑
i=1

1

ni(Ti)2λ
(
mi(Ti)

L− 1
− 1) ∗∆ni(Ti).

The best drop or forwarding decision will be the one
that maximizes |∆(DD)| (or −∆(DD)). This leads to the
per message utility in Eq.(4).

Note that, the per-message utility with respect to
delivery delay is different than the one for the delivery
rate. This implies (naturally) that both metrics cannot be
optimized concurrently.

3.4 The Case of Non-Homogeneous Mobility

Throughout our analysis, we have so far assumed ho-
mogeneous node mobility. Recent measurement studies
have revealed that, often, different node pairs might
have different meeting rates. We extend here our analyt-
ical framework, in order to derive per-message utilities
that maximize the global performance metric, in face
of such heterogeneous mobility scenarios. We illustrate
the extension with the delivery rate 4. Specifically, we
assume that meetings between a given node pair are
exponentially distributed with meeting rate λ̃, where λ̃
is a random variable such that:

λ̃ ∈ [0,∞),distributed as f(λ̃).

f(λ̃) is a probability distribution that models the hetero-
geneous meeting rates between nodes, and can be any

4. The treatment of delivery delay utilities does not involve Laplace
transforms, but poses no extra difficulties. We thus omit it here, due
to space limitations
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function integrable in [0,∞), capturing thus a very large
range of conceivable mobility models.

The analysis of Theorem 3.2 is thus modified as fol-
lows. Let’s assume that message i has ni copies in the
network, and that the ni carriers have (unknown) meet-
ing rates λ̃1, λ̃2, . . . , λ̃ni , respectively. Eq.(2) becomes:

P{message i not delivered | not delivered yet} =

Eλ̃1,λ̃2,..., ˜λni
[

ni∏
j=1

exp(−λ̃jRi)] = (7)

ni∏
j=1

∫ ∞

0

exp(−λ̃jRi)f(λ̃j)dλj = (FL(Ri))
ni , (8)

where FL(Ri) is the Laplace transform of distribution
f(x) evaluated at Ri. Continuing as in the proof of
Theorem 3.2, we get the unconditional probability of
delivery Pi:

Pi = (1− mi

L− 1
) ∗ (FL(Ri))

ni +
mi

L− 1
.

Differentiating Pi with respect to ni, we derive the
following generic marginal utility per message:

(1− mi

L− 1
) ∗ ln(FL(Ri)) ∗ (FL(Ri))

ni . (9)

We now consider some example distributions for node
meeting rates, and derive the respective marginal utility.

Dirac delta funtion: Let f(λ̃) = δ(λ̃ − λ), where δ(x) is
an impulse function (Dirac’s delta function). This corre-
sponds to the case of homogeneous mobility, considered
earlier, with average meeting rates for all nodes equal
to λ. The laplace distribution of f(λ̃) is then equal
to FL(Ri) = exp(−λRi). Replacing this in Eq.(9), the
generic marginal utility, gives us Eq.(1), the utility for
homogeneous mobility, as expected.

Exponential distribution: Let f(λ̃) = λ exp(−λ̃λ0), for
λ̃ ≥ 0. This corresponds to a mobility model, where
individual rates between pairs differ, but the variance
of these rates is not high and their average is equal to
λ0. The laplace transform of f(λ̃) is

FL(Ri) =
1

(Ri + λ0)2
.

Replacing this in Eq.(9) gives us the marginal utility per
message that should be used:

(1− mi

L− 1
) ∗ ln( 1

(Ri + λ0)2
) ∗ 1

(Ri + λ0)2ni
. (10)

Unknown distribution in large networks: If the actual
probability distribution of meeting rates is not known,
the following approximation could be made in order
to derive marginal utilities per message and use them
for buffer management. Let us assume that the meeting
rates come from an unknown distribution with first and
second moments λ̄ and σ2, respectively. Let us further
assume that there is a large number of nodes, such that

ni, the number of copies of message i at steady state, is
large. Using the central limit theorem, we have:

Prob(

ni∑
j=1

λ̃j ≤ λ) ∼
ni→∞

N (niλ̄, σ
√
ni), (11)

that is, the sum of meeting rates with the destination of
the ni relays for message i is approximately (normally)
distributed. Replacing this in Eq.(8), we get the (uncon-
ditional) delivery probability Pi

Pi = (1− mi

L− 1
) ∗ FL(Ri) +

mi

L− 1
,

where FL(Ri) is the Laplace transform of the above nor-
mal distribution5. After some algebraic manipulations
we get that

FL(Ri) =
exp(ni(λ̄)

2

σ2 +
R2

i

4 )
√
8niσ2

erfc(
Ri

2
),

erfc(x) is the complementary error function.
Differentiating with respect to ni gives us the new

marginal utility for message i:

(1−
mi

L− 1
)∗

(λ̄2
√
8(ni)

− 1
2 +

√
2σ2(ni)

− 5
2 ) exp(ni

λ̄2

σ2 +
R2

i
4
)

8σ4
∗erfc(

Ri

2
).

(12)
In a large enough network, even if the actual dis-

tribution of meeting rates is not known, a node could
still derive good utility approximations, by measuring
and maintaining an estimate for the first and second
moments of observed or reported meeting rates. Due
to space limitations, we do not look further into the
issue of this estimation, but we note that techniques
similar to the ones discussed in the next Section could be
used. Furthermore, additional complexity in the mobility
model (e.g. correlated meeting rates) could still be han-
dled in our framework. However, we believe that such
complexity comes at the expense of ease of interpreta-
tion (and thus usefulness) of the respective utilities. We
will therefore consider the simple case of homogeneous
mobility for the remainder of our discussion, in order
to better elucidate some additional key issues related to
buffer management in DTNs, and resort to a simulation-
based validation under realistic mobility patterns.

3.5 Optimality of Gradient Ascent Policy
We finally turn our attention back to the distributed
(local) buffer management policies of Sections 3.2 and 3.3,
in order to further investigate their optimality. Let us ob-
serve our network at a random time instant, and assume
there are K total undelivered messages, with remaining
Times To Live R1, R2, . . . , RK , respectively. The central-
ized version of our buffer management problem then
consists of assigning the available buffer space across the
network (L nodes each able to store B message copies)
among the copies of these messages, n1, n2, . . . , nK , so
as to maximize the expected delivery probability for

5. Note that the Laplace transform is not raised anymore to the nth
i

power, as the distribution already corresponds to the sum of all rates.
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all these messages (where the expectation is taken over
mobility decisions of all nodes). This corresponds to the
following optimization problem:

max
n1,n2,...,nK

K∑
i=1

(1− exp(−λniRi) (13)

K∑
i=1

ni − LB ≤ 0 (14)

ni − L ≤ 0,∀i (15)
ni ≥ 1,∀i (16)

This is a constrained optimization problem, with K
variables and 2K + 1 inequality constraints. The opti-
mization function in Eq.(13) is a concave function in
ni. Constraint in Eq.(14) says that the total number of
copies (for all messages) should not exceed the available
buffer space in all L nodes, and is linear. Finally, the
2K constraints of Eq.(15) are also linear, and simply say
that there is no point for any node to store two copies
of the same message. Consequently, if we assume that
ni are real random variables (rather than integers), this
is a convex optimization problem, which can be solved
efficiently [22] (but not easily analytically).

Having found an optimal vector n, a centralized op-
timal algorithm can easily assign the copies to different
nodes (e.g. picking nodes sequentially and filling their
buffers up with any non-duplicate copy, starting from
the messages with highest assigned ni — due to uniform
mobility the choice of specific nodes does not matter).
It is important to note that, given this assignment, no
further message replication or drop is needed. This is the
optimal resource allocation averaged over all possible future
node movements. The optimal algorithm must perform the
same process at every subsequent time step in order to
account for new messages, messages delivered, and the
smaller remaining times of undelivered messages.

Our local policies offer a distributed implementation of a
gradient ascent algorithm for this problem. Gradient ascent
algorithms look at the current state, i.e. vector n(k)
at step k, and choose a neighboring vector n(k + 1)
that improves the optimization function in Eq.(13), and
provably converge to the optimal solution [22]. In our
case, a step corresponds to a contact between two nodes,
and the neighboring states and permitted transitions
depend on the messages in the buffers of the two nodes
in contact. In other words, our gradient ascent algorithm
is supposed to make enough steps to converge to the
optimal copy vector n∗, before the state of the network
(i.e. number and ID of messages) changes enough for the
optimal assignment to change significantly. This depends
on the rate of update steps (≈ λL2) and the message TTL.
If TTL∗λ∗L2 ≫ 1, then we expect the distributed, local
policy to be able to closely follow the optimal solution
at any time t. In Section 5.4, we use simulation to prove
that this is indeed the case for the scenarios considered.

4 USING NETWORK HISTORY TO APPROXI-
MATE GLOBAL KNOWLEDGE IN PRACTICE

It is clear from the above description that the optimal
policy (GBSD) requires global information about the
network and the ”spread” of messages, in order to
optimize a specific routing metric. In particular, for each
message present in a node’s buffer, we need to know
the values of mi(Ti) and ni(Ti). In related work [11],
it has been suggested that this global view could be
obtained through a secondary, ”instantaneous” channel,
if available, or by flooding (”in-band”) all necessary
meta-data. Regarding the former option, cellular net-
work connections are known to be low bandwidth and
high cost in terms of power and actual monetary cost per
bit. In networks of more than a few nodes, the amount
of signalling data might make this option prohibitive.
Concerning flooding, our experiments show that the
impact of the flooding delay on the performance of
the algorithm is not negligible. In practice, intermittent
network connectivity and the long time it takes to flood
buffer status information across DTN nodes, make this
approach inefficient.

A different, more robust approach is to find estimators
for the unknown quantities involved in the calculation
of message utilities, namely m and n. We do this by
designing and implementing a learning process that per-
mits a DTN node to gather knowledge about the global
network state at different times in the past, by making in-
band exchanges with other nodes. Each node maintains
a list of encountered nodes and the state of each message
carried by them as a function of time. Specifically, it logs
whether a given message was present at a given time
T in a node’s buffer (counting towards n) or whether
it was encountered earlier but is not anymore stored,
e.g. it was dropped (counting towards m). In Section 6,
we describe our statistics maintenance and collection
method, in more detail, along with various optimizations
to considerably reduce the signalling overhead.

Since global information gathered thus about a specific
message might take a long time to propagate and hence
might be obsolete when we calculate the utility of the
message, we follow a different route. Rather than looking
for the current value of mi(T ) and ni(T ) for a specific
message i at an elapsed time T , we look at what happens,
on average, for all messages after an elapsed time T . In other
words, the mi(T ) and ni(T ) values for message i at
elapsed time T are estimated using measurements of m
and n for the same elapsed time T but measured for (and
averaged over) all other older messages. These estimations
are then used in the evaluation of the per-message utility.

Let’s denote by
∧
n (T ) and

∧
m (T ) the estimators for

ni(T ) and mi(T ) of message i. For the purpose of the
analysis, we suppose that the variables mi(T ) and ni(T )
at elapsed time T are instances of the random variables
N(T ) and M(T ). We develop our estimators

∧
n (T ) and

∧
m

(T ) so that when plugged into the GBSD’s delivery rate
and delay per-message utilities calculated in Section 3,
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we get two new per-message utilities that can be used
by a DTN node without any need for global information
about messages. This results in a new scheduling and
drop policy, called HBSD (History Based Scheduling and
Drop), a deployable variant of GBSD that uses the same
algorithm, yet with per-message utility values calculated
using estimates of m and n.

4.1 Estimators for the Delivery Rate Utility
When global information is unavailable, one can cal-
culate the average delivery rate of a message over all
possible values of M(T ) and N(T ), and then try to
maximize it. In the framework of the GBSD policy, this is
equivalent to choosing the estimators

∧
n (T ) and

∧
m (T )

so that the calculation of the average delivery rate is
unbiased:

E[(1− M(T )

L− 1
) ∗ (1− exp(−λN(T )Ri)) +

M(T )

L− 1
] =

(1−
∧
m (T )

L− 1
) ∗ (1− exp(−λ

∧
n (T )Ri)) +

∧
m (T )

L− 1

Plugging any values for
∧
n (T ) and

∧
m (T ) that verify

this equality into the expression for the per-message
utility of Eq.( 1), one can make sure that the obtained
policy maximizes the average delivery rate. This is ex-
actly our purpose. Suppose now that the best estimator
for

∧
m (T ) is its average, i.e.,

∧
m (T ) =

−
m (T ) = E[M(T )].

This approximation is driven by the observation we
made that the histogram of the random variable M(T )
can be approximated by a Gaussian distribution with
good accuracy. To confirm this, we have applied the
Lillie test [23], a robust version of the well known
Kolmogorov-Smirnov goodness-of-fit test, to M(T ) for
different elapsed times (T = 25%,50% and 75% of the
TTL). This test led to acceptance for a 5% significance
level. Consequently, the average of M(T ) is at the same
time the unbiased estimator and the most frequent value
among the vector M(T ). Then, solving for

∧
n (T ) gives:

∧
n (T ) = − 1

λRi
ln(

E[(1− M(T )
L−1 ) exp(−λN(T )Ri)]

(1−
−
m(T )
L−1 )

) (17)

Substituting this expression into Eq.(1) we obtain the
following new per message utility for our approximating
HBSD policy:

λRiE[(1− M(T )

L− 1
) exp(−λRiN(T ))] (18)

The expectation in this expression is calculated by
summing over all known values of N(T ) and M(T )
for past messages at elapsed time T . Unlike Eq.(1), this
new per-message utility is a function of past history of
messages and can be calculated locally. It maximizes the
average message delivery rate calculated over a large

number of messages. When the number of messages is
large enough for the law of large numbers to work, our
history based policy should give the same result as that
of using the real global network information. Finally, we
note that L, the number of nodes in the network, could
also be calculated from the statistics maintained by each
node in the network. In this work, we assume it to be
fixed and known, but one could estimate it similar to n
and m, or using different estimation algorithms like the
ones proposed in [24].

4.2 Estimators for the Delivery Delay Utility

Similar to the case of delivery rate, we calculate the
estimators

∧
n (T ) and

∧
m (T ) in such a way that the

average delay is not affected by the estimation. This
gives the following per-message utility specific to HBSD,

E[L−1−M(T )
N(T ) ]2

λ(L− 1)(L− 1− −
m (T ))

(19)

This new per-message utility is only a function of the
locally available history of old messages and is thus
independent of the actual global network state. For large
number of messages, it should lead to the same average
delay as when the exact values for m and n are used.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

To evaluate our policies, we have implemented a DTN
framework into the Network Simulator NS-2 [25]. This
implementation includes (i) the Epidemic routing proto-
col with FIFO for scheduling messages queued during
a contact and drop-tail for message drop, (ii) the RAPID
routing protocol based on flooding (i.e. no side-channel)
as described, to our best understanding, in [11], (iii) a
new version of Epidemic routing enhanced with our
optimal joint scheduling and drop policy (GBSD), (iv)
another version using our statistical learning based dis-
tributed algorithm (HBSD), and (v) the VACCINE anti-
packet mechanism described in [13]6.

In our simulations, each node uses the 802.11b proto-
col to communicate, with rate 11Mbits/sec. The trans-
mission range is 100 meters, to obtain network scenar-
ios that are neither fully connected (e.g. MANET) nor
extremely sparse. Our simulations are based on five
mobility scenarios: two synthetic mobility models and
three real-world mobility traces.

Synthetic Mobility Models: We’ve considered both the
Random Waypoint mobility model and the HCMM
model [26]. The later is inspired from Watts’ Caveman
model that was shown to reproduce statistics of human
mobility, such as inter-contact times and contact dura-
tion.

6. We have also performed simulations without any anti-packet
mechanism, from which similar conclusions can be drawn.
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Real Mobility Traces: The first (i) real trace is the one
collected as part of the ZebraNet wildlife tracking ex-
periment in Kenya and described in [27]. The second
(ii) mobility trace tracks San Francisco’s Yellow Cab
taxis [28] and the third (iii) trace consists on the KAIST
real mobility trace collected from a university campus
(KAIST) in South Korea [29]. We consider a sample of
the KAIST campus trace taken from 50 students, where
the GPS receivers log their position at every 30 seconds.

To each source node, we have associated a CBR
(Constant Bit Rate) application, which chooses randomly
from [0, TTL] the time to start generating messages
of 5KB for a randomly chosen destination. We have
also considered other message sizes (see e.g. [15]), but
found no significant differences in the qualitative and
quantitative conclusions drawn regarding the relative
performance of different schemes7. Unless otherwise
stated, each node maintains a buffer with a capacity of
20 messages to be able to push the network towards a
congested state without exceeding the processing and
memory capabilities of our simulation cluster. We com-
pare the performance of the various routing protocols
using the following two metrics: the average delivery
rate and average delivery delay of messages in the
case of infinite TTL8. Finally, the results presented here
are averages from 20 simulation runs, which we found
enough to ensure convergence.

5.2 Performance evaluation for delivery rate
First, we compare the delivery rate of all policies for the
three scenarios shown in Table 2.

TABLE 2
Simulation parameters

Mobility pattern: RWP ZebraNet Taxis KAIST HCMM
Sim. Duration(h): 7 14 42 24 24
Sim. Area (km2): 3*3 3*3 - - 5*5
Nbr. of Nodes: 70 70 70 50 70
Avg. Speed (m/s): 2 - - - -
TTL(h): 1 2 6 4 4
CBR Interval(s): 360 720 2160 1440 1440

TABLE 3
Taxi Trace (70 CBR sources)

Policy: GBSD HBSD RAPID FIFO\DT
D. Probability: 0.72 0.66 0.44 0.34
D. Delay(s): 14244 15683 20915 36412

Figure 2 shows the delivery rate based on the random
waypoint model. From this plot, it can be seen that:
the GBSD policy plugged into Epidemic routing gives
the best performance for all numbers of sources. When

7. In future work, we intend to evaluate the effect of variable
message size and its implications for our optimization framework. In
general, utility-based scheduling problems with variable sized mes-
sages can often be mapped to Knapsack problems (see e.g. [30]).

8. By infinite TTL, we mean any value large enough to ensure almost
all messages get delivered to their destination before the TTL expires.
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(KAIST mobility trace).

TABLE 4
ZebraNet Trace (70 CBR sources)

Policy: GBSD HBSD RAPID FIFO\DT
D. Probability: 0.68 0.59 0.41 0.29
D. Delay(s): 4306 4612 6705 8819

TABLE 5
HCMM Trace (70 CBR sources)

Policy: GBSD HBSD RAPID FIFO\DT
D. Probability: 0.62 0.55 0.38 0.23
D. Delay(s): 3920 4500 6650 8350

congestion-level decreases, so does the difference be-
tween GBSD and other protocols, as expected. Moreover,
the HBSD policy also outperforms existing protocols
(RAPID and Epidemic based on FIFO/drop-tail) and
performs very close to the optimal GBSD. Specifically, for
70 sources, HBSD offers an almost 60% improvement in
delivery rate compared to RAPID and is only 14% worse
than GBSD. Similar conclusions can be also drawn for
the case of the real Taxi trace, ZebraNet trace, KAIST
trace or the HCMM model and 70 sources. Results
for these cases are respectively summarized in Table 3,
Table 4, Figure 3 and Table 5.

5.3 Performance evaluation for delivery delay
To study delays, we increase messages’ TTL (and sim-
ulation duration), to ensure almost every message gets
delivered. For the random waypoint mobility scenario,
Figure 4 depicts the average delivery delay for the case
of both limited buffer and bandwidth. As in the case
of delivery rate, GBSD gives the best performance for
all considered scenarios. Moreover, the HBSD policy
outperforms the two routing protocols (Epidemic based
on FIFO/drop-tail, and RAPID) and performs close to
GBSD. Specifically, for 70 sources and both limited buffer
and bandwidth, HBSD average delivery delay is 48%
better than RAPID and only 9% worse than GBSD.

Table 3, Table 4, Figure 5 and Table 5 show that
similar conclusions can be drawn for the delay under
respectively the real Taxi(s), ZebraNet trace, KAIST trace
and the HCMM model.

5.4 Optimality
Here, we show throught simulations results (based on
the RW scenario 5.2) that our proposed policy (GBSD)
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can keep up with the optimal algorithm described in
Section 3.5. Indeed, Figure 6 plots the normalized Man-
hattan distance d(X,Y ) =

∑K
i=1 |xi−yj |

K betwenn two
consecutive N vectors resulting from solving the opti-
mal centralized version offline and shows that the later
distance is very small which means that, when nodes
meet frequently enough during the lifetime of messages,
our distributed version (HBSD) has enough time to track
the optimal behavior of the network. We belive the later
result sufficiently justifies the claim to optimality with
respect to a distributed implementation in this context.
In addition to that, we compare throught Figure 7 the
absolute difference between the number of copies of a
given message while first applying GBSD during a sim-
ulation and second solving solving offline the optimal
algorithm 3.5. We can see from the later result that for
a randomly choosed set of messages, the difference in
terms of number of copies is small and equal to 0 at
some points. The later result comes to consolidate the
optimality properties of our proposed policy.
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6 MAINTAINING NETWORK HISTORY

The results of the previous section clearly show that
our distributed policy (HBSD) that uses estimators of
global message state successfully approximates the per-
formance of the optimal policy (GBSD). This is as an
important step towards a practical implementation of
efficient buffer management and scheduling algorithms
on wireless devices. Nevertheless, in order to derive

good estimators in a distributed manner, nodes need to
exchange (a possibly large amount of) metadata during
every node meeting. Potentially, each node needs to
know the history of all messages having passed through
a node’s buffer, for every node in the network. In a
small network, the amount of such ”control” data might
not be much, considering that large amounts of data
transfers can be achieved between 802.11 transceivers
during short contacts. Nevertheless, in larger networks,
this method can quickly become unsalable and interfere
with data transmissions, if statistics maintenance and
collection is naively done.

In this section, we describe the type of statistics each
node maintains towards calculating the HBSD utility for
each message, and propose a number of mechanisms
and optimizations to significantly reduce the amount of
metadata exchanged during contacts. Finally, we explore
the impact of reducing the amount of collected statistics
on the performance of our buffer management and
scheduling policy.

6.1 Maintaining Buffer State History

In order to keep track of the statistics about past mes-
sages necessary to take the appropriate transmission or
dropping decision, we propose that each node maintains
the data structure depicted in Figure 8. Each node main-
tains a list of messages whose history in the network it
keeps track of. For each message, it maintains its ID,
its TTL and the list of nodes that have seen it before.
Then, for each of the nodes in the list, it maintains a data
structure with the following data: (i) the node’s ID, (ii)
a boolean array Copies Bin Array, and (iii) the version
Stat V ersion associated to this array.

The Copies Bin Array array (Fig. 9) enables nodes to
maintain what each message experienced during its life
time. For a given entry pair (message a and node b) in
this list, the Copies Bin Array[k] indicates if the node
a had already stored or not a copy of message b in its
buffer during Bin k. In other words, time is quantized
into ”bins” of size Bin Size, and bin k correspond to
the period of time between k ∗ Bin Size and (k + 1) ∗
Bin Size. As a result, the size of the Copies Bin Array
is equal to TTL/Bin Size.

How should one choose Bin Size? Clearly, the larger
it is, the fewer the amount of data a node needs to main-
tain and to exchange during each meeting; however,
the smaller is also the granularity of values the utility
function can take and thus the higher the probability of
an incorrect decision. As already described in Section 3,
message transmissions can occur only when nodes en-
counter each other. This is also the time granularity
at which buffer state changes occur. Hence, we believe
that a good trade-off is to monitor the evolution of
each message’s state at a bin granularity in the order
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of meeting times9. This results in a big reduction of the
size of statistics to maintain locally (as opposed to tracking
messages at seconds or milliseconds granularity), while
still enabling us to infer the correct messages statistics.

Finally, the Stat V ersion indicates the Bin at which
the last update occurred. When the TTL for message
a elapses, b sets the Stat V ersion to TTL/Bin Size,
which also indicates that all information about the his-
tory of this message in this buffer is now available.
The combination of how the Copies Bin Array is main-
tained and the Stat V ersion updated, ensures that only
the minimum amount of necessary metadata for this pair
of (message, node) is exchanged during a contact.

We note also that, in principle, a
Message Seen Bin Array could be maintained,
indicating if a node a had seen (rather than stored a
message b at time t, in order to estimate m(T ). However,
it is easy to see that the Message Seen Bin Array can
be deduced directly from the Copies Bin Array, and
thus no extra storage is required. Summarizing, based
on this lists maintained by all nodes, any node can
retrieve the vectors N(T ) and M(T ) and can calculate
the HBSD per-message utilities described in Section 4
without a need for an oracle.

6.2 Collecting Network Statistics
We have seen so far what types of statistics each node
maintains about each past (message ID, node ID) tuple
it knows about. Each node is supposed to keep up-
to-date the statistics related to the messages it stores
locally. However, it can only update its knowledge about
the state of a message a at a node b when it either
meets b directly, or it meets a node that has more
recent information about the (a, b) tuple. The goal of the
statistics collection method is that, through such message
exchanges, nodes converge to a unified view about the
state of a given message at any buffer in the network,
during its lifetime.

Sampling Messages to Keep Track of: We now look in
more detail into what kind of metadata nodes should
exchange. The first interesting question is: should a node
maintain global statistics for every message it has heard of or
only a subset? We argue that monitoring a dynamic subset
of these messages is sufficient to quickly converge to the
correct expectations we need for our utility estimators.
This dynamic subset is illustrated in Figure 10 as being
the Messages Under Monitoring, which are stored in the
MUM buffer; it is dynamic because its size is kept fixed
while messages inside it change. When a node decides
to store a message for the first time, if there is space
in its MUM buffer, it also inserts it there and will track
its global state. The actual sampling rate depends on the
size of the MUM buffer and the offered traffic load, and

9. According to the Nyquist-Shannon [31] sampling theorem, a good
approximation of the size of a Bin would be equal to inter-meeting-
time/2. A running average of the observed times between consecutive
meetings could be maintained easily, in order to dynamically adjust
the bin size [7].

Fig. 8. Network History Data Structure

Fig. 9. Example of Bin arrays

results in significant further reduction in the amount of
metadata exchanged. At the same time, a smaller MUM
buffer might result to slower convergence (or even lack
of). In Section 6.3 we study the impact of MUM buffer
size on the performance of our algorithm.

Handling Converged Messages: Once the node collects
an entire history of a given message, it removes it from
the MUM buffer and pushes it to the buffer of Messages
with a Complete History (MCH). A node considers that
it has the complete history of a given message only when
it gets the last version of the statistics entries related to
all the nodes the message goes through during its TTL10

Finally, note that, once a node decides to move a message
to the MCH buffer, it only needs to maintain a short
summary rather than the per node state as in Fig. 8.

Statistics Exchanged: Once a contact opportunity is
present, both peers have to ask only for newer versions
of the statistics entries (message ID, node ID) related
to the set of messages buffered in their MUM buffer.
This ensures that, even for the sampled set of messages,
only new information is exchanged and no bandwidth
is wasted while not introducing any extra latency in the
convergence of our approximation scheme.

6.3 Performance Tradeoffs of Statistics Collection
We have presented a number of optimizations to reduce
the amount of stored metadata and the amount of sig-

10. Note that there is a chance that a node might ”miss” some
information about a message it pushes in its MCH. This probability
depends on the statistics of the meeting time (first and second moment)
and the TTL value. Nevertheless, for many scenarios of interest, this
probability is small and it may only lead to slightly underestimating
the m and n values.

Fig. 10. Statistics Exchange and Maintenance.
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nalling overhead. Here, we explore the trade-off between
the signalling overhead, its impact on performance, and
the dynamicity of a given scenario. Our goal is to
identify operation points where the amount of signalling
overhead is such that it interferes minimally with data
transmission, while at the same time it suffices to en-
sure timely convergence of the required utility metrics
per message. We will consider throughout the random
waypoint scenario described in Section 5.2. We have
observed similar behaviour for the trace-based scenarios.

Amount of Signalling Overhead per Contact: We
start by studying the effect of varying the size of the
MUM buffer on the average size of exchanged statis-
tics per-meeting. Figure 11 compares the average size
of statistics exchanged during a meeting between two
nodes for three different sizes of the MUM buffer, as
well as for the basic epidemic statistics exchange method
(i.e. unlimited MUM). We vary the number of sources in
order to cover different congestions regimes.

Our first observation is that increasing the traffic load
results in decreasing the average amount of statistics
exchanged per-meeting (except for the MUM size of 20
messages). This might be slightly counterintuitive, since
a higher traffic load implies more messages to keep track
of. However, note that a higher congestion level also
implies that much fewer copies per message will co-
exist at any time (and new versions are less frequently
created). As a result, much less metadata per message
is maintained and exchanged, resulting in a downward
trend. In the case of a MUM size of 20, it seems that these
two effects balance each other out. In any case, the key
property here is that, in contrast with the flooding-based
method of [11], our distributed collection method scales well,
not increasing the amount of signalling overhead during high
congestion.

A second observation is that, using our statistics
collection method, a node can reduce the amount of
signalling overhead per meeting up to an order of mag-
nitude, compared to the unlimited MUM case, even in
this relatively small scenario of 70 nodes.
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Finally, we plot in Figure 12 the average size of
exchanged (non-signalling) data per-meeting. We can
observe that increasing the size of the MUM buffer
results in a slight decrease of the data exchanged. This is

due to the priority we give to statistics exchange during
a contact. We note also that this effect becomes less pro-
nounced when congestion increases (in line with Fig. 11).
Finally, in the scenario considered, we can observe that,
for MUM sizes less than 50, signalling does not interfere
with data transmissions (remember that packet size is
5KB). This suggests that, in this scenario, a MUM size of
50 messages represents a good choice with respect to the
resulting signalling overhead. In practice, a node could
find this value online, by dynamically adjusting its MUM
size and comparing the resulting signalling overhead
with average data transfer. It is beyond the scope of
this paper to propose such an algorithm. Instead, we are
interested in exposing the various tradeoffs and choices
involved in efficient distributed estimation of statistics.
Towards this goal, we explore next the effect of the
MUM sizes considered on the performance of our HBSD
algorithm.

Convergence of Utilities and Performance of the
HBSD Policy : In this last part, we fix the number of
sources to 50 and we look at the impact of the size of the
MUM buffer on (i) the time it takes the HBSD delivery
rate utility to converge, and (ii) its accuracy. We use the
mean relative square error to measure the accuracy of the
HBSD delivery rate utility, defined as follows:

1

#Bins
∗
∑
Bins

(A−B)2

B2
,

where, for each bin, A is the estimated utility value of
Eq. (18) (calculated using the approximate values of m
and n, collected with the method described previously)
and B is the utility value calculated using the real values
of m and n.
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Fig. 13. Mean relative square errors for HBSD delivery
rate utility.

Figure 13 plots the mean relative square errors for the
HBSD delivery rate utility, as a function of time. We
can observe that, increasing the size of the MUM buffer
results in faster reduction of the mean relative square
error function. With a MUM buffer of 80 messages,
the delivery rate utility estimate converges 800 seconds
faster than using an MUM buffer of 20 messages. Indeed,
the more messages a node tracks in parallel, the faster
it can collect a working history of past messages that it
can use to calculate utilities for new messages considered
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for drop or transmission. We observe also that all plots
converge to the same very small error value 11. Note also
that it is not the absolute value of the utility function
that we care about, but rather the shape of this function,
whether it is increasing or decreasing, and the relative
utility values.

In fact, we are more interested in the end performance
of our HBSD, as a function of how ”aggressively” nodes
collect message history. In Figures 14 and 15, we plot
the delivery rate and delay of HBSD, respectively, for
different MUM sizes. These results correspond to the
scenario described in Section 5.2, where we have a fixed
number of CBR sources. As is evident from these figures,
regardless of the size of the MUM buffer sizes, nodes
eventually gather enough past message history to ensure
an accurate estimation of per message utilities, and a
close-to-optimal performance. In such scenarios, where
traffic intensity is relatively stable, even a rather small
MUM size suffices to achieve good performance. This
is not necessarily the case when traffic load experiences
significant fluctuations.
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When the offered traffic load changes frequently,
convergence speed becomes important. The bigger the
MUM buffer the faster our HBSD policy react to chang-
ing congestion levels. We illustrate this with the fol-
lowing experiment. We maintain the same simulation
scenario, but we vary the number of CBR sources among
each two consecutive TTL(s), from 10 to 70 sources (i.e.
the first and second TTL window we have 10 sources, the
third and fourth window 70 sources, etc. — this is close
to a worst case scenario, as there is a sevenfold increase
in traffic intensity within a time window barely higher
than a TTL, which is the minimum required interval
to collect any statistics). Furthermore, to ensure nodes
use non-obsolete statistics towards calculating utilities,
we force nodes to apply a sliding window of one TTL to
the messages with complete history stored in the MCH
buffer, and to delete messages out of this sliding window.

Figures 16 and 17 again plot the HBSD policy delivery
rate and delay, respectively, as a function of MUM buffer
size. Unlike the constant load case, it is easy to see there

11. We speculate that this remaining error might be due to slightly
underestimating m and n, as explained earlier.

that, increasing the size of the MUM buffer, results in
considerable performance improvement. Nevertheless,
even in this rather dynamic scenario, nodes manage to
keep up and produce good utility estimates, with only
a modest increase on the amount of signalling overhead
required.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50  60  70  80

D
el

iv
er

y 
P

ro
ba

bi
lit

y

Size of the MUM buffer

GBSD
HBSD Unlimited MUM

HBSD Fixed MUM

Fig. 16. Deliver Probability
for HBSD with statistics col-
lection (dynamic traffic load).

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70  80

A
ve

ra
ge

 D
el

iv
er

y 
D

el
ay

(s
)

Size of the MUM buffer

HBSD Fixed MUM
HBSD Unlimited MUM

GBSD

Fig. 17. Deliver Delay for
HBSD with statistics collec-
tion (dynamic traffic load).

7 DISTRIBUTION OF HBSD UTILITIES

We have described how to efficiently collect the nec-
essary statistics in practice, and derive good estimates
for the HBSD utility distribution during the lifetime of
a message. In this last section, we turn our attention
to the utility distributions themselves. First, we are
interested whether the resulting distributions for HBSD
delivery rate and delivery delay utilities react differently
to different congestion levels, that is, if the priority
given to messages of different ages shifts based on the
offered load. Furthermore, we are interested whether the
resulting utility shape (and respective optimal policy)
could be approximated by simple(r) policies, in some
congestion regimes.

We consider again the simulation scenario used in
Section 5.2 and Section 6.3. First, we fix the number of
sources to 50, corresponding to a high congestion regime.
In Figure 18 and Figure 19, we plot the distribution
of the HBSD delivery rate and delivery delay utilities
described in Sections 4.1 and 4.2. It is evident there that
the optimal utility distribution has a non-trivial shape
for both optimization metrics, resulting in a complex
optimal scheduling and drop policy.

Next, we consider a scenario with low congestion. We
reduce the number of sources to 15, keep the buffer
size of 20 messages, but we also decrease the CBR rate
of sources from 10 to 2 messages/TTL. In Figures 20
and 21, we plot the distribution of the HBSD delivery
rate and delivery delay utilities, respectively, for this
low congestion scenario. Surprisingly, our HBSD policy
behaves very differently now, with both utility functions
decaying monotonically as a function of time (albeit
not at constant rate). This suggests that the optimal
policy in low congestion regimes could be approximated
by the simpler ”Drop Oldest Message” (or schedule
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younger messages first) policy, which does not require
any signalling and statistics collection between nodes.

To test this, in Tables 6 and 7, we compare the per-
formance of the HBSD policy against a simple com-
bination of ”Drop Oldest Message” (for Buffer Man-
agement) and ”Transmit Youngest Message First” (for
Scheduling during a contact). We observe, that in the
low congestion regime, the two policies indeed have
similar performance (4% and 5% difference in delivery
rate and delivery delay, respectively). However, in the
case of a congested network, HBSD clearly outperforms
the simple policy combination.

We can look more carefully at Figures 18 and 19,
to understand what is happening in high congestion
regimes. The number of copies per message created at
steady state depends on the total number of messages
co-existing at any time instant, and the aggregate buffer
capacity. When too many messages exist in the network,
uniformly assigning the available messages to the exist-
ing buffers, would imply that every message can have
only a few copies created. Specifically, for congestion
higher than some level, the average number of copies per
message allowed is so low that most messages cannot
reach their destination during their TTL. Uniformly as-
signing resources between nodes is no more optimal. Instead,
to ensure that at least some messages can be delivered
on time, the optimal policy gives higher priority to older
messages that have managed to survive long enough
(and have probably created enough copies), and ”kills”
some of the new ones being generated. This is evident
by the values assigned at different bins (especially in the
delivery delay case). In other words, when congestion is
excessive our policy performs an indirect admission control
function.

Contrary to this, when the offered load is low enough
to ensure that all messages can on average create enough
copies to ensure delivery, the optimal policy simply
performs a fair (i.e. equal) distribution of resources.

The above findings suggest that it would be quite
useful to find a generic way to signal the congestion level
and identify the threshold based on which nodes can
decide to either activate our HBSD scheme or just use a
simple Drop/Scheduling policy. Suspending a complex
Drop/Scheduling mechanism and its underlying statis-

TABLE 6
HBSD vs. ”Schedule Younger First\Drop-Oldest” in a

congested network.
Policies: HBSD ”Schedule Younger

First\Drop-Oldest”
D. Rate(%): 54 29
D. Delay(s): 1967 3443
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TABLE 7
HBSD vs “Schedule Younger First\Drop-Oldest” in a low

congested network.
Policies: HBSD ”Schedule Younger

First\Drop-Oldest”
D. Rate(%): 87 83
D. Delay(s): 1530 1618

tics collection and maintenance methods, whenever not
needed, can help nodes save an important amount of
resources (e.g. energy), while maintaining the same end
performance. Finally, we believe that the indirect sig-
nalling provided by the behaviour of the utility function
during congestion, could provide the basis for an end-
to-end flow control mechanism, a problem remaining
largely not addressed in the DTN context.

8 CONCLUSION

In this work, we investigated both the problems of
scheduling and buffer management in DTNs. First, we
proposed an optimal joint scheduling and buffer man-
agement policy based on global knowledge about the
network state. Then, we introduced an approximation
scheme for the required global knowledge of the opti-
mal algorithm. Using simulations based on a synthetic
mobility model (Random Waypoint), and real mobility
traces, we showed that our policy based on statistical
learning successfully approximates the performance of
the optimal algorithm. Both policies (GBSD and HBSD)
plugged into the Epidemic routing protocol outperform
current state-of-the-art protocols like RAPID [11] with
respect to both delivery rate and delivery delay, in all
considered scenarios. Moreover, we discussed how to
implement our HBSD policy in practice, by using a dis-
tributed statistics collection method, illustrating that our
approach is realistic and effective. We showed also that
unlike many works [11], [16] that also relied on the use
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of an in-band control channel to propagate metadata, our
statistics collection method scales well, not increasing the
amount of signalling overhead during high congestion.

Finally, we carried a study of the distributions of
HBSD’ utilities under different congestion levels and
we showed that: when congestion is excessive, HBSD
performs an indirect admission control function and
has a non-trivial shape for both optimization metrics,
resulting in a complex optimal scheduling and drop
policy. However, when the offered load is low enough,
HBSD can be approximated by a simple policy that
does not require any signalling and statistics collection
between nodes. The above findings suggest that it would
be quite useful to find a generic way to signal the
congestion level and identify the threshold based on
which nodes can decide to either activate our HBSD
scheme or just use a simple Drop/Scheduling policy.
Suspending a complex Drop/Scheduling, whenever not
needed, can help nodes save an important amount of
resources, while maintaining the same end performance.
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