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Abstract—In this work1, we consider the joint precoding across
K distant transmitters (TXs) towards K single-antenna receivers
(RXs) and we let the TXs have access to perfect Channel
State Information (CSI). Instead of considering the conventional
method of clustering to allocate the user’s data symbols, we
focus on determining the most efficient symbol sharing patterns.
Consequently, we optimize directly the user’s data symbol al-
location subject to a constraint on the total number of user’s
data bits transmitted through the core network. We develop a
novel approach whereby sparse precoders approximating the true
precoders are computed. These precoders require only a fraction
of the overall symbol sharing overhead while introducing only
limited losses. Thereby, allocating the symbols only to their non-
zero coefficients leads to very efficient symbol sharing (or routing)
algorithms. Furthermore, these algorithms have a much lower
complexity that conventional approaches. By simulations, we
show that our approach outperforms clustering-based multicell
MIMO methods from the literature and that the routing obtained
is mainly dependent on the pathloss structure and can be applied
using only long term CSI with reduced losses.

I. INTRODUCTION

Network or Multicell MIMO methods (or CoMP in the

3GPP terminology), whereby multiple interfering transmitters

(TXs) share user’s messages and allow for joint precoding, are

currently considered for next generation wireless networks [1].

With perfect message and Channel State Information (CSI)

sharing, the different TXs can be seen as a unique vir-

tual multiple-antenna array serving all receivers (RXs), in a

multiple-antenna broadcast channel (BC) fashion.

Yet, the sharing of the data symbols and the CSI to the

cooperating TXs impose huge requirements on the architec-

ture, particularly as the number of cooperating TXs increases.

The common solution is to use disjoint clusters of small

size to reduce the amount of data to be shared. Conventional

architectures consist in static clusters [2], [3] but finding effi-

cient clustering methods has recently received more attention

following the growing interest on cooperation between the TXs

in interference limited wireless networks. In [4] a framework

is developed to optimize how the users are served by the TXs

inside the clusters. An optimized greedy clustering algorithm

is derived in [5] while a decentralized approach based on

cooperation between neighbors is proposed in [6].

Yet, forming disjoints clusters limits severely the perfor-

mance. In [7], a scheme is presented where each RX chooses

the set of TXs serving him such that overlapping clusters are

1This work has been performed in the framework of the European research
project ARTIST4G, which is partly funded by the European Union under its
FP7 ICT Objective 1.1 - The Network of the Future.

formed. Yet, the design of the clusters is not optimized and the

set of TXs is selected based only on simple heuristics. Finally,

in [8]–[10], the impact of partially sharing the user’s data is

analytically studied for one dimensional Networks.

Instead, we circumvents the drawbacks of clustering by opti-

mizing directly the user’s data allocation subject to a constraint

on the total number of user’s data symbols routed [11]. Note

that the knowledge of the CSI for the whole multiuser channel

is also necessary at the TXs to apply joint precoding. This

represents a strong requirement for large cooperation areas

and a method reducing the CSI sharing necessary for joint

precoding is proposed in a companion paper [12].

In this work, we exploit the natural approximate sparsity

property of the total multiuser channel matrix to obtain a

sparse approximate inverse (SPAI). This SPAI can then be

used to transmit the signal and its sparse structure means

that only a limited amount of sharing of data symbols across

the TXs is required, thus providing a routing solution which

outperforms alternative solution from the literature.

II. SYSTEM MODEL

A. Multicell MIMO Channel

We consider a joint downlink transmission from K TXs to

K RXs using joint linear precoding and single user decoding.

In this work, the TXs and the RXs have only one antenna so

that the transmission can be mathematically described as
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where yi is the signal received at the i-th RX and hH
i ∈ C

1×K

the channel from the K TXs to RX i. The noise is represented

by η , [η1, . . . , ηK ]T and is zero mean i.i.d. complex

circularly symmetric Gaussian of variance σ2 (CN (0, σ2)).
The transmitted signal x ∈ C

K×1 is obtained from the vec-

tor of transmit user’s data symbols s , [s1, . . . , sK ]T ∈ C
K×1

(whose entries are assumed to be independent CN (0, 1)) as

x = Ts =
[

t1 . . . tK
]
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(2)

where T ∈ C
K×K is the precoder and ti ∈ C

K×1 is

the beamforming vector transmitting si. Noting that in a

statistically symmetric isotropic network, fulfilling a sum

power constraint will lead to an equal power used per TX



and therefore the fulfillment of the induced per TX power

constraint, we consider for simplicity a sum power constraint.

We also assume that all data streams are allocated with an

equal amount of power so that ‖ti‖2 = P .

The channel is block fading and models a Rayleigh fading

scenario with a long term pathloss corresponding to a cellular

setting. Thus, the entries of the channel matrix H read as

{H}ij = γijGij where Gij is i.i.d. CN (0, 1) to model the

short term fading, and γij is a positive real number modeling

the long term attenuation. We consider large networks with

many TX/RX pairs distributed over a large area so that many

elements of the multiuser channel are very small due to the

decay of received power with the distance (i.e., many long

term attenuation coefficients γij will be very small).

The presence of many small coefficients can be interpreted

as a form of approximate sparsity in H. In fact, if a threshold-

ing operator is applied to the channel matrix, many coefficients

corresponding to interference links originating from distant

TXs could be approximated as zeros, leading to a truly sparse

representation of the channel. Although the sparsity in H can

give an advantage in itself by suggesting a simple feedback

reduction scheme (zeros are simply not reported), a more

challenging question is whether sparsity in the channel domain

can lead to a sparse behavior for the precoding domain, as

sparsity in the precoding domain has a direct impact in terms

of reducing the symbol sharing overhead over the backhaul.

This is precisely the focus of this paper.

B. System Performance Model

In this work, we aim at achieving the maximum sum

throughput, with the throughput for RX i equal to

Ri , log2

(

1 +
|hH

i
ti|2

σ2 +
∑

ℓ 6=i |hH
i
tℓ|2

)

. (3)

Intercell interference is recognized as one of the main chal-

lenges for the future wireless networks which will be designed

to work at intermediate-high SNR. Thus, the optimal precoders

should emit little interference, and we can consider Zero-

Forcing (ZF) precoding schemes with a reasonably small

suboptimality. ZF becomes also optimal at high SNR.

Thus, we consider the ZF criterion and we replace in our

optimization problem the maximization of the sum rate by the

minimization of the emitted interference, i.e., the Frobenius

norm ‖HT− IK‖F. This leads to a more simple optimization
for which we will be able to derive efficient solutions.

C. Routing Matrix

In this work, we consider that the CSI for the multiuser

channel is perfectly known at all TXs and RXs, and we focus

on the problem of maximizing the system performance while

routing the minimum numbers of user’s data symbols to the

TXs. In previous approaches, the reduction of the data symbol

sharing overhead was based on the concept of clustering where

different groups of TXs are determined in order to serve

groups of users. A fundamental issue in clustering comes from

the edge effects causing inter-cluster interference to edge-of-

cluster users. To circumvent the edge effects, we optimize the

user’s data symbol allocation under a realistic constraint on

the total number of symbols shared, which we denote by r∗,

independently of any pre-determined cluster concept.

To represent the allocation of user’s data to the TXs, we

define the Routing Matrix D ∈ {0, 1}K×K as the matrix

whose (i, j)-th element is 1 if symbol sj is allocated to TX i

and 0 otherwise. We also define D(·,i) to denote the i-th

column of D (i.e., the allocation corresponding to si). The

constraint on the number of user’s data symbol shared can

then be seen to be ‖D‖2F ≤ r∗. The goal of this paper is to

find the routing matrices which lead to the best performance

while still fulfilling a predetermined level of sparsity r∗.

The first step of the optimization is then to derive the

optimal precoder for given routing matrices, as conventional

precoding cannot be used directly.

D. Precoder Optimization for a Given Routing Matrix

We now consider the routing matrix D to be given and we

derive the optimal precoder T in that case. Note that each

beamforming vector can be derived independently due to the

ZF constraints and the per-stream power allocation. If one

TX does not receive one symbol, it can not participate into

the transmission of that symbol and the coefficient used for

that beamformer at that TX is then 0. Therefore, the effective
precoder is constrained to bear the form of the Hadamard

(element wise) product D ⊙ T. The beamforming vector ti
transmitting symbol si to RX i is then obtained from:

minimize
ti(D(·,i))

‖H
(

D(·,i) ⊙ ti(D(·,i))
)

− ei‖22. (4)

We start by introducing some necessary notations. We denote

by J the set of indices such that D(·,i) ⊙ ti(D(·,i)) 6= 0 and

we define the reduced beamforming vector containing only the

nonzero elements as t̃i(J ) ∈ C
n2×1 with n2 = |J |. Then, I

denotes the set of indices i such that H(i,J ) is not identically
zero and the resulting reduced channel without the rows and

the columns identically zero, is H(I,J ) ∈ C
n1×n2 where

n1 = |I|. We also define H(·,J ) ∈ C
K×n2 to denote the

channel with the reduced number of columns but all the rows.

Finally, we give the QR decomposition of H(I,J ):

H(I,J ) = Q(I,J )

[

R(I,J )
0(n1−n2)×n2

]

(5)

where R(I,J ) ∈ C
n2×n2 is an upper triangular matrix and

Q(I,J ) ∈ C
n1×n1 is an orthonormal matrix. With these

definitions, the objective in (4) can be rewritten as

‖Hti(D(·,i))− ei‖22 = ‖H(I,J )ti(J )− ei(I)‖22 (6)

which is a regular Least Square problem. The expression for

the precoder solving (4) follows then easily and we give it

here for the sake of completeness.



Proposition 1. The reduced beamforming vector associated

with the sparse beamformer solving (4) reads as

ti(J ) =
√
P

[

R−1(I,J ) 0n2×(n1−n2)

]

QH(I,J )ei(I)
∥

∥

[

R−1(I,J ) 0n2×(n1−n2)

]

QH(I,J )ei(I)
∥

∥

.

E. Optimization of the User’s Data Allocation

We can now formulate the optimization problem of interest:

minimize
D∈{0,1}K×K

‖H (D⊙T(D))− IK‖2F, s.t. ‖D‖2F ≤ r∗ (7)

with r∗ the maximal number of user’s data symbol shared and

the function T(D) which gives the precoding matrix for given
routing matrix as described in Subsection II-D.

This optimization problem is combinatorial and hence very

hard to solve optimally. However, this optimization consists

in fact in finding a sparse inverse of the approximately sparse

channel matrix and we will be able to exploit this sparsity.

III. THEORY OF SPARSE APPROXIMATE INVERSES

The inverse of a sparse matrix is a priori not sparse and it

is proved in [13] that the inverse is full (without considering

coincidental cancellations) if and only if the channel matrix is

irreducible. This will be the case in all practical cases and it

is hence necessary to share all the symbols to obtain a perfect

inversion of the channel. Yet, it is known that the inverse

of a sparse matrix has many weak elements. This is shown

analytically for band limited matrices in [14] and is expected

to hold for all sparse matrices. This theoretical analysis means

in practice that it should be possible to find sparse precoding

matrices which approximate accurately the ZF precoder. These

SParse Approximate Inverse (SPAI) matrices could then be

used as precoders achieving close to perfect ZF with only a

fraction of the data symbol sharing overhead, thus providing

efficient solutions to the optimization problem (7).

A. Thresholding of the Channel Inverse

The simplest approach to introduce some sparsity in the

channel inverse consists in thresholding the inverse to remove

the weakest coefficients until the required degree of sparsity

is reached. This method has a extremely low complexity as

it requires to invert the channel matrix only once and then

do a bisection search over the value of the threshold until

the required sparsity is reached. Note that the thresholding

of the inverse provides a routing solution, but the precoder

is then obtained by computing a new inverse as described

in Subsection II-D for the sparsity pattern obtained. This

improves the performance of the precoder as the precoding

coefficients are then more adapted to the final sparsity pattern.

This intuitive approach brings some compromise between

the sparsity of the inverse and the quality of the channel

inversion. However, it is natural to ask oneself: Is it possible

to improve on the naive thresholding solution and optimize the

routing matrix and the precoder at the same time?

B. SPAI-Algorithm

We will make use of an existing mathematical literature

deriving Sparse Approximate Inverse. Indeed, the problem of

finding SPAI to large sparse matrices has been studied to

obtain preconditionners for iterative algorithms [15]–[17].

We use in the following the the SParse Approximate Inverse

(SPAI) algorithm [17] which has the advantage of having a

version available online with an interface to MATLAB and to

be efficient on matrices of relatively small size.

Note that the algorithm deals with real matrices, so that

we need to consider the canonical isomorphism between the

complex field and the real field. The transmission is then :
[

ℜ(y)
ℑ(y)

]

=

[

ℜ(H) −ℑ(H)
ℑ(H) ℜ(H)

] [

ℜ(T) −ℑ(T)
ℑ(T) ℜ(T)

] [

ℜ(s)
ℑ(s)

]

+

[

ℜ(η)
ℑ(η)

]

.

We describe now the algorithm for the problem of finding

the vector ti minimizing ‖Hti − ei‖ where the matrix H is

real valued. We do the abuse of notation of keeping the same

notation for both the complex and the real versions.

The SPAI-algorithm is an iterative greedy algorithm in

which new non-zero elements are added to the approximate

inverse at each step, so as to minimize the objective norm. We

give a brief description and we refer to [17] for more details.

To initialize the algorithm, we take the diagonal elements

as the only nonzero elements. This is meaningful as it means

that, for each RX, at least the TX in the cell of the RX receives

the symbol and that all the users have to be served.

For a given routing matrix D, the precoder can be derived

as described in Subsection II-D. We can then compute the

residual error which represents the interference created at the

other RXs for the given beamforming vector. The residual

error is denoted by ri and is given by

ri , H(·,J )ti(J )− ei. (8)

The routing matrix is then increased so as to minimize the

residual error ri. We denote by L the set of nonzero elements

of ri. To this set L corresponds a column set with nonzero

elements in these rows which we denote by NL. The set

NL contains all the indices which can potentially lead to a

reduction of the residual error. For each element j in that set,

we consider then the one dimensional problem

minimize
µj

‖ri + µjHej‖2 (9)

from which the solution is

µj = − rTi Hej

‖Hej‖22
(10)

and which leads to the new residual error

ρ2j = ‖ri‖22 −
(rTi Hej)

2

‖Hej‖22
. (11)

The indices bringing the largest reduction in the residual error

are kept and added to the sparsity pattern of the inverse. The

residual error can then be again obtained after having com-

puted the precoder for the increased sparsity pattern according



to Subsection II-D. The algorithm continues until the sparsity

constraint is reached.

This algorithm makes use of the sparsity pattern to reduce

the complexity of computing the inverse. Indeed, the method

described needs to be done for each column and requires

computing at most s Least Square problems where s is the

number of nonzero elements per column in the channel matrix,

such that the complexity is of the order of O(Ks3) when

the iterative update of the QR decomposition is used to

reduce the complexity [17]. In the practical cellular settings

considered, the matrices are of relatively small sizes so that

thresholding the channel is not necessary, however this could

be considered for larger matrices to reduce the complexity as

well as potentially even improve the performance [16].

IV. ADAPTATION TO PRECODING IN WIRELESS

NETWORKS

We have provided two approaches to derive a sparse pre-

coder inverting the channel. Yet, we need to adapt these

methods to the constraints of practical transmission settings.

A. SPAI Based on Long Term Information

Routing the user’s data symbol based on instantaneous

channel realizations is extremely demanding for the backhaul

architecture. Indeed, the routing of the user’s data symbols is

made in the core network which introduces significant delay

(sharing of the CSI, determination of the routing, sharing of

the symbols,...). Thus, determining the routing based on the

long term statistics of the channel appears more realistic.

Consequently, we consider a routing using SPAI based on

long term CSI where the routing matrix using the SPAI-

algorithm is computed only once for each random generation

of a user, i.e., it depends only on the user’s positions but not

on the fast fading realization. The routing matrix obtained is

then kept for all the following fast fading realizations while the

precoder is obtained based on the instantaneous CSI available

at the TX, as described in Subsection II-D.

We will show by simulations that the SPAI routing using

only long term information still performs close to the SPAI

routing using instantaneous CSI. This is due to the fact that

the structure of the inverse is mainly dependent on the sparsity

structure of the channel and the amplitude of its coefficients.

B. Regularized Zero-Forcing

In Section III, we have considered ZF precoders inverting

the channel because this allowed us to use the well developed

mathematical literature on the subject. Yet, conventional ZF

is optimal only at high SNR and performs well at finite SNR

only when the matrix is well conditioned. Indeed, the effective

channel gains are equal to the inverse of the Frobenius norm

of the channel inverse:

HT =
KP

‖H−1‖F
IK = KP





√

√

√

√

K
∑

k=1

1

σ2
k





−1

(12)

where the σk’s are the singular values of the channel matrix.

When the channel matrix grows large, it is well known that

the minimal eigenvalue of a square channel in Rayleigh fading

tends to zero, thus the ZF scheme will achieve a vanishing

rate per user as the size of the network increases. To avoid

this behavior, we consider the conventional regularized ZF

precoder, also called Transmit Wiener filter which minimizes

the mean square error and reads as [18]:

W =

√
KP

‖
(

HHH+ σ2

P
I
)−1

HH‖F

(

HHH+
σ2

P
I

)−1

HH.

(13)

Adapting the SPAI-algorithm to regularized ZF requires modi-

fying significantly the algorithm but seems tractable and could

be done in future works. Yet, this is not in the scope of this

work and we consider a much easier solution which consists

in simply modifying the precoder which is applied once the

routing matrix is given.

Keeping the notations of Subsection II-D, we define the

extended channel H̄(I,J ) and its QR decomposition as

H̄(I,J ) =

[

H(I,J )
√

σ2

P

]

= Q̄(I,J )

[

R̄(I,J )
0

]

(14)

such that

HH(I,J )H(I,J ) +
σ2

P
I = R̄H(I,J )R̄(I,J ). (15)

Using the definition of the extended channel, the regularized

ZF precoder can be obtained following the same method as

for the conventional ZF precoder in Proposition 1.

Proposition 2. The generalized ZF beamformer ti(D(·,i)) for
a routing matrix D has its non-zeros elements indexed by the

set J given by

ti(J ) =
√
P

[

R̄−1(I,J ) 0n2×(n1−n2)

]

Q̄H(I,J )ei(I)
∥

∥

[

R̄−1(I,J ) 0n2×(n1−n2)

]

Q̄H(I,J )ei(I)
∥

∥

.

V. SIMULATIONS

We simulate a multicell networks with K single antenna

TXs and RXs. We consider the propagation parameters of the

LTE cellular network for the Hata urban scenario path loss

model and we average over 20 uniform random generations of

the users in the cells and 20 fast fading channels realizations.

Our parameters give an attenuation between a TX and a RX

located at a distance d equal to −114.5 − 37.19 log10(d) dB
with d in km and the antennas gains already taken into account.

The transmit power per TX is P = 43 dBm, the noise power

is σ2 = −101 dBm, and the radius of the cell R = 1.5 kms,

which translates to a SNR without short term fading for an

edge user equal to 25 dB.

We compute the performance obtained with the naive

thresholding [Cf. Subsection III-A], with the SPAI based on

instantaneous CSI [cf. Subsection III-B] and with only long

term CSI [Cf. Subsection IV-A]. We compare these schemes to

the greedy clustering algorithm from [5]. For all the schemes,

the Regularized ZF described in Subsection IV-B is used once

the routing matrix is obtained.
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Fig. 2. Average sum rate achieved with full cooperation in terms of the
percentage of data symbol shared for a transmit power per TX equal to 43

dBm in a network with 37 TX/RX pairs.

In Fig. 1, we show the average rate per user achieved in

terms of the reference SNR for an edge user. The percentage

of user’s data symbols allocated is equal to 25% of the

full sharing consisting of K2 symbols shared. For dynamic

clustering, this is obtained with 4 clusters of 4 and one cluster
of 5. The SPAI routing outperforms the other solutions, and

particularly the dynamic clustering one. The routings based

on long term SPAI and using the thresholded inverse perform

similarly to the dynamic clustering. This comes from the

relatively small number of cells and the SPAI routings perform

better as the size of the network increases.

In Fig. 2, we consider the same setting only with K = 37
cells and we plot the average rate per user for each of the

schemes in terms of the percentage of user’s data allocated.

The SPAI-algorithm achieves the best performance over the

whole range of sharing, while the version based on long

term CSI remains efficient, particularly at low percentage of

sharing.

VI. CONCLUSION

In this work, we have provided an alternative to clustering

where the user’s data symbol allocation is directly optimized

instead of allocating the symbols to form disjoint clusters.

Particularly, we show that the multiuser channel in large

networks could be seen as approximately sparse, and that

this could be exploited to derive efficient sparse precoders

which require therefore only a reduced user’s data symbol

allocation. We have discussed sparse approximate inverse and

the extension to arbitrary sparse precoding schemes will be

the focus of future works. Furthermore, we believe that sparse

precoding could be developed for many other settings as for

example with multiple-antenna receivers where Interference

Alignment has to be considered.
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