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F-06560 Sophia-Antipolis cedex, France
e-mail: David.Gesbert@eurecom.fr

Abstract—We consider interference alignment (IA) in the L-
interfering multiple access channels (MACs) network, a partic-
ular case of the partially connected interfering MACs network
whereby the number of interference links per MAC is bounded
regardless of the total number of MACs in the network. Con-
versely to the fully-connected case, we show that interference
alignment can be achievable in a network of arbitrary size,
while the per-user signaling dimension remains bounded. We
provide necessary conditions for the feasibility of IA, discuss
their sufficiency, and introduce an algorithm capable of providing
practical solutions. These results also apply to the dual case of
partially connected interfering broadcast channels (IBCs), and
have practical applications to both the uplink and downlink of
large cellular networks.

I. INTRODUCTION

Interference alignment (IA) has been introduced in [1] for
the case of the K-user MIMO interference channel (IC) with
constant coefficients. In that context, when the number of
antennas at each node is bounded, IA is only achievable among
a finite number of users [2]. Several attempts at applying
IA to more general models departing from the classical K-
user IC model, can be found in the literature. In [3], IA
is applied to multiple interfering Multiple-Access Channels
(MAC). However the method relies on a non-trivial channel
model (called decomposable), and is not generalizable to gen-
eral MIMO Gaussian channels. Interfering MACs (IMACs) are
also investigated in [4], but the results are limited to the two-
MACs case. The model of interfering broadcast channels (BC)
is considered in [5]. Considering only two cells, they provide
an achievable scheme whereby interference is aligned between
out-of-cell and intra-cell interference. Interfering multiple-
input single-output (MISO) BCs with time-varying channel
coefficients have been considered in [6], where their degrees
of freedom are analyzed and bounded.

All these results have in common the fact that they only
apply to a finite number of cells or links because of the finite
number of degrees of freedom offered by the spatial dimension
at the transmitter and at the receiver. Indeed, there exists a
few approaches to allow for a scaling of IA across a growing
number of links or users: (i) let the number of antennas per
user grow arbitrarily large with the size of the network, (ii)
apply a power control scheme, which effectively reduces the
number of active nodes to preserve the feasibility of IA over

the network, (iii) align some of the interference, and treat
the rest as (colored) noise, or (iv) assume a network-wise
channel model exhibiting a limited connectivity between the
various nodes. Although interesting from an analytical point
of view, approach (i) is not realistic in practice. Approach (ii)
is more practical and was considered e.g. in [7], nevertheless,
power control results in deactivating certain links and goes
at the expense of the total multiplexing gain of the network.
Approach (iii) was considered in [8], although its performance
in large networks is unclear. This paper considers the situation
(iv) in which natural attenuation effects (path loss, fading)
cause the (at least partial) loss of connectivity between certain
receivers and interfering transmitters. This scenario arises for
instance in the cellular network context where the distance
between non-neighboring cells causes a strong attenuation
on far-away interference signals. On-off models are typically
considered in order approximate this situation, in which each
receiver is assumed to be receiving non-zero interference from
a bounded set of transmitters only. This model is referred to
as partially connected in the following.

Partially connected interference networks have been consid-
ered in [9], where the IC with time-varying channels is con-
sidered. [10] introduced the many-to-one interference chan-
nel, whereby only one user faces interference. The partially
connected MIMO IC has been considered in [11], where an
achievable scheme is proposed for certain problem dimensions.

This paper is a generalization of our previous result on the
partially connected IC [12] to the case of the interfering BCs
and MACs. The key contribution of this work is to show that,
under mild conditions on the connectivity of the interference
links in the model, IA is feasible among an arbitrary number
of users while keeping the signaling dimension bounded.
Specifically,
• We introduce a particular case of the partially connected

MIMO interfering MACs network, the L-interfering
MACs network, whereby the number of interfering links
per transmitter and receiver is bounded. This represents
a realistic assumption in the context of cellular networks
with more than one user per cell.

• We provide a set of necessary conditions for the feasi-
bility of IA in the particular case of the L-interfering
MACs (and the dual L-interfering BCs). We discuss the



sufficiency of these conditions.
• We show that interference can be ideally cancelled from

IA in an L-interfering network of arbitrary size, while the
number of antennas per user remains bounded.

• We adapt the algorithm from [14] for computing pre-
coding matrices and receiver beamforming vectors that
realize IA in our considered scenario.

As an example of potential application of our result in
the context of cellular networks, we show that, if all base
stations are equipped with 7 antennas, all users with 2 antennas
each, and each cell receives interference from up to 3 other
cells, then 2 users per cell can simultaneously achieve 1 DoF
to the base station while having the out-of-cell interference
completely suppressed through IA. This holds regardless of the
total number of cells in the network, and over constant MIMO
channels. Note that this schemes achieves half of the DoF
per user available without inter-cell interference over the same
channel. Note also that this result does not rely on forming
clusters of base stations, but rather aims at a joint solution of
IA across a complete network of arbitrary number of cells.

II. PARTIALLY CONNECTED INTERFERING MIMO MACS

Let us introduce the channel model underlying our work, i.e.
the partially connected interfering MIMO MACs (PCI-MIMO-
MAC). We consider symmetric systems, whereby all involved
MACs have the same dimension, namely M antennas at the
receiver and N antennas at each of the P transmitters, and
consider a network comprised of K such MACs (see Fig. 1).

For k ∈ {1, . . . ,K}, we write the M -dimensional signal
received at the k-th MAC as

y(k) =

P∑
p=1

H(k,k)
p x(k)

p +
∑
l∈I(k)

P∑
p=1

H(k,l)
p x(l)

p , (1)

where x
(l)
p denotes the N -dimensional vector signal from the

p-th transmitter in the l-th MAC, and H
(k,l)
p is the M × N

matrix channel from this transmitter to the receiver of the
k-th MAC. The first term in (1) represents the superposition
of signals from users in the considered MAC, while the
second term accounts from interference from the other
MACs. I(k) ⊂ {1, . . . , k − 1, k + 1, . . . ,K} denotes the
set of MACs which interfere with the k-th MAC (for the
sake of simplicity, we assume that either all or none of the
transmitters in a given MAC can be heard by the receiver
of the k-th MAC). We also let I−1(l) = {k|l ∈ I(k)} for
l ∈ {1, . . . ,K}, i.e. I−1(l) is the set of MACs which are
affected by interference from the transmitters of MAC l. In the
example pictured in Fig. 1, I(1) = {2, 3} while I−1(1) = {2}.

Note that this model can be particularized in several ways:

• By letting I(k) = {1, . . . , k − 1, k + 1, . . . ,K}, one
obtains the case of K fully connected interfering MACs.

• By letting I(k) = {k− 1, k+ 1} ∀k ∈ {2, . . . ,K − 1},
we obtain the classical Wyner model.
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Fig. 1. Example connectivity graph in a partially connected interfering MACs
model. Lines represent channels with non-zero coefficients.

• By letting P = 1, we obtain the partially connected
MIMO IC.

We now introduce another particularization of this model,
which we will use in the sequel.

Definition 1 (L-interfering MACs network): The network
formed by the K partially connected MIMO MACs as defined
in eq. (1) is L-interfering for some L < K, iff

∀k ∈ {1, . . . ,K}, |I(k)| ≤ L and
∣∣I−1(k)∣∣ ≤ L, (2)

where | · | denotes the cardinality operator.
Intuitively, Definition 1 corresponds to the case where the

number of MACs interfering with the receiver of any MAC
in the network, and the number of MACs whose receivers get
interference from a given transmitter, are bounded by some
value L. We deem this model more realistic than e.g. the
Wyner model, since it can correctly represent the interference
situation encountered in a cellular model with regular cell
arrangement and inter-cell interference limited to a fixed
radius, while the (single-dimensional) Wyner model can not
faithfully replicate the connectivity situation encountered in
such a 2-dimensional network.

III. IA OVER THE PCI-MIMO-MAC NETWORK

We are now concerned with achieving IA in the PCI-MIMO-
MAC network introduced in the previous section.

A. Definition

Assume that the signal transmitted by user p in the l-th
MAC is linearly precoded by the N × D full column rank
matrix V

(l)
p , i.e. x(l)

p = V
(l)
p s

(l)
p where s

(l)
p is a vector with

D ≤ N coefficients.
We wish all interference at the receiver of a given MAC k

in the network, coming from transmitters in other MACs to be



restricted to a subspace of dimension M−D′, where D′ ≤M
denotes the dimension of the interference-free subspace1. This
is possible iff we can find full column rank M×D′ projection
matrices U(k), k = 1, . . . ,K which suppresses all inter-
ference, i.e. such that U(k)H

∑
l∈I(k)

∑P
p=1 H

(k,l)
p V

(l)
p s

(l)
p =

0 ∀k. Intuitively, in the cellular framework, this corresponds
to aligning all out-of-cell interference into a subspace of
codimension D′ at each receiver (it is clear from (1) that, if
this condition is fulfilled, the interference term in U(k)Hy(k)

vanishes and one obtains an equivalent MAC channel with D′

receive antennas and P users with D antennas each). Since the
above must be true for all possible values of the transmitted
symbols s

(l)
p , this yields the following definition of IA over

the PCI-MIMO-MAC:
Definition 2: IA with parameters (D,D′) is achieved in the

PCI-MIMO-MAC iff there exist full column-rank M × D′

matrices U(k), k = 1, . . . ,K, and N × D matrices V
(k)
p ,

k = 1, . . . ,K, p = 1, . . . , P, s.t.

U(k)HH(k,l)
p V(l)

p = 0, (3)
∀k ∈ {1, . . . ,K}, p ∈ {1, . . . , P}, l ∈ I(k).

Remark 1 (Partially Connected MIMO Interfering BCs):
The case of K partially connected MIMO interfering BCs
(PC-MIMO-IBC) with N ×M channels H

(k,l)
p

H
, with input-

output relationship x
(l)
p = H

(l,l)
p y(l)+

∑
k∈I−1(l) H

(k,l)
p

H
y(k),

is dual of the interfering MAC case, as far as IA is concerned.
Using the M ×D′ linear precoder U(k) at transmitter k, and
the interference suppression matrix V

(l)
p at receiver p in the k-

th BC, it is clear that IA is achieved iff V(l)
p

H
H

(k,l)
p

H
U(k) =

0 ∀l ∈ {1, . . . ,K}, p ∈ {1, . . . , P}, k ∈ I−1(l), which is
equivalent to condition (3) up to the exchange of I for I−1,
which leaves (2) unchanged. Therefore, Definition 1 extends
immediately to networks of interfering BCs. Henceforth, we
will focus on L-interfering MIMO-MAC networks, bearing
in mind that our conclusions apply to the dual L-interfering
MIMO-BC networks as well.

B. Achievable DoF with IA

If IA according to Definition 2 is achieved, zero-forcing of
the interference at receiver k yields

ỹ(k) = U(k)Hy(k) = U(k)H
P∑
p=1

H(k,k)
p V(k)

p s(k)p (4)

= U(k)H
[
H

(k,k)
1 . . .H

(k,k)
P

]
diag

(
V

(k)
1 , . . . ,V

(k)
P

)
︸ ︷︷ ︸

H(k)


s
(k)
1
...

s
(k)
P

 .
Since both U(k) and diag(V

(k)
1 , . . . ,V

(k)
P ) are full column-

rank, under mild assumptions on the distribution of the channel
coefficients (for instance, if they are drawn i.i.d. from a
continuous distribution, see [1]), we have that rank(H(k)) =

1We give further comments on the proper choice for D′ in Section III-B.

min (D′, PD) almost surely (a.s.). Therefore, the resulting
achievable DoF per MAC is equal to min (D′, PD). Clearly,
choosing D′ = DP is the optimal choice if one seeks to
maximize the total DoF achieved by IA in the network. In
cases where DoF maximization is not the sole objective,
choosing D′ > DP might be desirable [13].

C. Iterative Algorithm

The following algorithm is adapted from the one in [14].
Although no proof of its optimality is available, algorithms of
this class have been found by us and other authors to reliably
converge to an IA solution whenever one exists.

Algorithm 1 Iterative solution of IA for the PCI-MIMO-MAC
initialize the V(c)

k by truncating independent Haar-distributed matrices toD columns.
repeat

for k ∈ {1, . . . , K} do

U
(k) ← EVminD′

 ∑
l∈I(k),p∈{1,...,P}

H
(k,l)
p V

(l)
p V

(l)
p

H
H

(k,l)
p

H


end for
for l ∈ {1, . . . , K} do

for p ∈ {1, . . . , P} do

V
(l)
p ← EVminD

 ∑
k∈I−1(l)

H
(l,k)
p

H
U

(k)
U

(k)H
H

(l,k)
p


end for

end for
until max

k∈{1,...,K}

∑
l∈I(k)

∑
p=1...P

∣∣∣∣∣∣U(k)H
H

(k,l)
p V

(l)
p

∣∣∣∣∣∣2 ≤ ε.

The EVminn(·) operator denotes the selection of the eigen-
vectors associated with the n lowest magnitude eigenvalues of
the argument matrix. ε is a small value below which the sum
of the interference powers in each MAC is deemed negligible.

Remark 2: Note that for any k ∈ {1, . . . ,K}, the algorithm
above only requires channel and precoding/interference sup-
pression matrix information for the MACs indexed by I(k)
and I−1(k). Indeed, in the presence of reciprocal channels
(as in [14]), the algorithm is naturally distributed, and the
argument in the second EVmin has a physical meaning. Note
however that, since Algorithm 1 merely solves (3), it can
also be used in a centralized manner to achieve IA over non-
reciprocal channel. Note also that its global complexity per
iteration scales linearly with K, i.e. the complexity per MAC
per iteration remains constant, regardless of the size of the
network.

IV. ACHIEVABILITY NECESSARY CONDITION

Our analysis is based on the technique introduced in [2]
for the case of the (fully connected) MIMO IC, and relies
similarly on the notion of proper system of equations applied
to (3). A system of polynomial equation is identified as proper
iff, for any subset of the equations, the number of variables
involved is at least as large as the number of equations (see
the discussion in [2]). Properness is a necessary condition for
IA to be feasible in a network, although it is in general not a
sufficient condition (see Section IV-A). We now characterize
which of the L-interfering MIMO-MACs networks are proper.
This is the object of the following theorem.



Theorem 1: A sufficient condition for the system of equa-
tion (3) to be proper for the case of an L-interfering MIMO
MACs network (Definition 1) is that

PD(N −D) +D′(M −D′)−DD′PL ≥ 0. (5)

Furthermore, (5) is also a necessary condition if
∀k ∈ {1, . . . ,K}, |I(k)| = L.

Note that (5) is independent from the total number K of MACs
in the network. Intuitively, this is because the constraint in (2)
ensures that the number of scalar equations involved in the
system of equations (3) (or any subset thereof) scales linearly
with K instead of quadratically for the fully connected MIMO
IC where |I(k)| = K − 1 ∀k, and so does the number of
variables. We now give a formal proof of Theorem 1.

Proof:
In a first step, we prove that (5) is necessary in the case

|I(k)| = L ∀k. For this, we consider the total number of
equations and variables involved in (3). The number of distinct
tuples (k, l, p) involved in (3) is trivially KLP , and each of
the matrix equalities represents D′×D scalar equations. This
yields a total of Ne = KLPDD′ equations. The number of
variables in the V

(l)
p and U(k) matrices must be counted while

paying attention to the fact that multiple parameterizations
of the same choice of a subspace are possible, and must
be counted only once. As shown in [2], each V

(l)
p must be

counted as D(N −D) variables, while each U(k) represents
D′(M −D′) variables. Therefore, we have Nv = KPD(N −
D)+KD′(M−D′). Notice now that if (5) is not fulfilled, we
have immediately that Nv < Ne, i.e. the system is not proper.
Therefore, (5) is necessary.

We now prove the sufficient part. We need to check
that the inequality between number of equations and
variables is verified for all possible subsets of the
equations. Let us introduce some formalism. Let S =
{(d′, k, l, p, d) ∈ {1, . . . , D′} × {1, . . . ,K} × {1, . . . ,K}
×{1, . . . , P} × {1, . . . , D} s.t. l ∈ I(k)}. Each tuple in S
corresponds to one scalar IA equation from eq. (3). Let
A ⊂ S an arbitrary subset of S. Let NA

v denote the number
of variables involved in any of the equations designated by
A, and NA

e = |A| the number of those equations. We need to
prove that NA

v ≥ NA
e .

We need the following definitions:

K={k s.t. ∃(d′, l, p, d) s.t.(d′, k, l, p, d) ∈ A} (6)
LP={(l, p) s.t. ∃(d′, k, d) s.t.(d′, k, l, p, d) ∈ A} (7)
KL={(k, l) s.t. ∃(d′, p, d) s.t.(d′, k, l, p, d) ∈ A} (8)

KLP={(k, l, p) s.t. ∃(d′, d) s.t.(d′, k, l, p, d) ∈ A} (9)
D(l, p) = {d s.t. ∃(d′, k) s.t.(d′, k, l, p, d) ∈ A} (10)
D′(k) = {d′ s.t. ∃(l, p, d) s.t.(d′, k, l, p, d) ∈ A} (11)

Intuitively, K is the set of indices c which appear in at least
one tuple in A; D(l, p) is the set of indices d which appear in
at least one tuple in A together with a given (l, p); etc.

Using these definitions, the number of variables in-
volved in the beamformer at transmitter p in MAC l is

∣∣D(l, p)
∣∣ (N − ∣∣D(l)

∣∣), while the number of variables involved
in the projection filter at receiver k is

∣∣D′(k)∣∣ (M − ∣∣D′(k)∣∣).
We have therefore

NA
v =

∑
k∈K

∣∣D′(k)∣∣ (M − ∣∣D′(k)∣∣)
+

∑
(l,p)∈LP

∣∣D(l, p)
∣∣ (N − ∣∣D(l, p)

∣∣) (12)

≥
∑
k∈K

∣∣D′(k)∣∣ (M −D′) + ∑
(l,p)∈LP

∣∣D(l, p)
∣∣ (N −D) (13)

since the cardinalities of D(l) and D′(k) are upper bounded
respectively by D and D′ by definition of the sets.

Let us now fix k, l and p, and consider the tuples
(d′, k, l, p, d) that appear in A. Clearly there are at most∣∣D(l, p)

∣∣ ∣∣D′(k)∣∣ such tuples. Therefore, summing over all
possible (k, l, p),

|A| ≤
∑

(k,l,p)∈KLP

∣∣D(l, p)
∣∣ ∣∣D′(k)∣∣ . (14)

Since
∣∣D′(k)∣∣ ≤ D′ ∀k, we have

|A| ≤
∑

(k,l,p)∈KLP

∣∣D(l, p)
∣∣D′ (15)

≤
∑

(l,p)∈LP

∣∣I−1(l)∣∣ ∣∣D(l, p)
∣∣D′ (16)

≤
∑

(l,p)∈LP

L
∣∣D(l, p)

∣∣D′ (17)

where (16) stems from the fact that (k, l, p) ∈ KLP implies
k ∈ I−1(l), and that I−1(l) has at least as many elements as
its restriction to those appearing in A. (17) stems directly from
Definition 1. Similarly, starting again from eq. (14),

|A| ≤
∑

(k,l,p)∈KLP

D
∣∣D′(k)∣∣ ≤ P ∑

(k,l)∈KL

D
∣∣D′(k)∣∣ (18)

≤ P
∑
k∈K

|I(k)|D
∣∣D′(k)∣∣ ≤ LPD∑

k∈K

∣∣D′(k)∣∣ . (19)

Combining (13), (17) and (19) yields

NA
v ≥ |A|

(
M −D′

LPD
+
N −D
LD′

)
. (20)

Finally, (5) ensures that the second term in the right-hand side
of (20) is greater or equal to 1, yielding NA

v ≥ |A| = NA
e .

A. Discussion about sufficiency

As mentioned above, having a proper system of equations
(3) is not sufficient to guarantee that IA according to Definition
2 is feasible. Indeed, taking the example from [2] of the
(3× 3, 2)2 IC (which in our notations corresponds to K = 2,
L = 1, P = 1, M = N = 3, D = D′ = 2), eq. (5) is
fulfilled, while IA is not feasible since it would otherwise
violate a general bound on the achievable DoF [15], which
we repeat here: the total DoF achievable over a two-user IC
with respectively M1 and M2 antennas at the receivers and



N1, N2 antennas at the transmitters, is upper bounded by
min(M1+M2, N1+N2,max(M1, N2),max(M2, N1)). In our
example, this bound dictates that the total achievable DoF can
not be higher than 3, while KD = 4.

Other bounds on the achievable DoF can be obtained by
letting certain groups of transmitters and receivers collaborate
(which does not reduce the achievable DoF) inside our IMAC
network in order to create an IC. In particular, for any k ∈
{1, . . . ,K}, we can let all transmitters and all receivers in a
number J ≤ |I(k)| (≤ L) of MACs interfering with receiver
k cooperate among themselves. Applying the aforementioned
bound to the resulting two-user IC with respectively M and
JM receive antennas, and PN and JPN transmit antennas,
and fixing D′ = PD which maximizes the DoF achievable
through IA, yields

(J + 1)PD ≤ min {(J + 1)M, (J + 1)PN, (21)
max(M,JPN),max(JM,PN)} .

Condition (21) for J ≤ L rules out certain cases
where IA is not achievable while the system is proper,
although it still does not form a sufficient condition.
For instance, exhaustive search (using Algorithm 1 to
provide existence certificates) through (P,M,N,L,D) ∈
{1, . . . , 5}×{1, . . . , 20}×{1, . . . , 5}×{1, . . . , 8}×{1, . . . , 5},
with K = 15, and D′ = PD singled out the case
(P,L,M,N,D) = (2, 1, 5, 5, 2) (for arbitrary K) which
is not ruled out by either (5) or (21), while it was found
experimentally to be unfeasible.

Recent results concerning the sufficiency of the proper
condition to achieve IA in the K-user (fully connected) MIMO
IC have appeared shortly before the publication of this paper
in [16] and [17]. Both results are based on algebraic geometry
considerations. The case of a symmetric system with square
channels (M = N ) and where each user wants to achieve D
DoF is considered in [17], where IA is shown to be feasible
a.s. in proper systems with K > 3 users. [16] shows that IA
is feasible a.s. for proper systems with arbitrary number of
antennas, provided that the number of antennas at each node
is divisible by D.

We conjecture that this analysis can be generalized to the
case of interfering MIMO MACs treated here, whenever the
number of antennas at each node is divisible by D, although
the extension of the proofs is not immediate. Interestingly,
the example cited above of the interfering MIMO MACs with
parameters (P,L,M,N,D) = (2, 1, 5, 5, 2) is one of the cases
where an analysis of the type of [16] does not permit to
conclude, since the number of antennas at the transmitters
(N = 5) is not divisible by D = 2.

V. CONCLUSION

We studied the feasibility of IA in the L-interfering MACs
network, a model based on realistic assumptions regarding the
locality of interference in large networks. The main contribu-
tion of the article is to highlight the existence of IA solutions
in partially connected networks of potentially unbounded size,

while the number of antennas per node can be kept finite. This
is in sharp contrast with previous feasibility results obtained
for IA in the fully-connected case, where at least one of the
signaling dimensions had to grow unbounded with K. A set
of necessary conditions was introduced, and their sufficiency
was discussed.
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