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Abstract—We consider the complexity of the sphere decoding a larger work [7] that computes the SD complexity exponent
(SD) algorithm when decoding a class of full rate space-timblock  for the decoding of a large class of full rate linear dispmrsi
codes that are optimal, over the quasi-static MIMO channelwith lattice space-time codes. However, due to space constesinit
respect to the diversity-multiplexing tradeoff (DMT). Towards . der t tuate th S ¢ hall herein géstri
this we introduce the SD complexity exponent which represents In oraer O, accentuate the main poin S we shall herein oestri
the high signal-to-noise ratio (SNR) exponent of the tightst OUr attention to a class of DMT optimal full rate threaded
run-time complexity constraints that can be imposed on the minimum delay codes that includes the codesh [?] and
SD algorithm while maintaining arbitrarily close to maximum the perfect codes in [8], [9]. Extending recent work on the
likelihood (ML) performance. Similar to the DMT exposition, SD algorithm [10] we here also consider the effect of the

our approach naturally captures the dependence of the SD . . . .
algorithm’s computational complexity on the codeword deny, code, as well as the constellation boundary; somethinghwhic

code size and channel randomness; providing simple closedrin IS €ssential for achieving arbitrary close to ML performanc
solutions in terms of the system dimensions and the multipleng

gain. A. System model and space-time codes
We consider the standard Rayleigh fading x ng quasi-
static point-to-point MIMO channel model with coherence-
The sphere decoding (SD) algorithm [1P] [has arguably time 7' given by
become the de-facto method for optimal and near optimal Y=HX+W (1)
decoding of practically implementable space-time bloateso
By choosing the sphere decoder search radius adaptively #ffere X € C"v*7, whereY € C"*7, and whereW ¢
allowing for an unbounded worst-case run-time the SD algh~"™*" denote the transmitted space-time block codeword, the
rithm can provide an exact implementation of the maximul{ock of received signals, and the additive spatially amaite-
likelihood (ML) decoder at a reducedveragecomplexity. fally white Gaussian noise. The channel gafifse C™r>*"*
However, a more realistic approach to system design th@ff assumed to be i.i.d. circularly symmetric complex Ganss
allocating unbounded computational reserves is to imposdi&., Rayleigh fading) and constant over the duration ef th
hard run-time limitation on the algorithm — declare decgdinfransmission, and we assume tha¢ > nr. The transmitted
outages when this limit is not met — and select the run-tinf@dewordsX" are drawn uniformly from a codebodk where

I. INTRODUCTION

limit so that the gap to ML performance is acceptable. This ) 1 )

naturally raises the intriguing question of how aggredgivae E{|| X7} = m Z 1 X7 = pT, )
can time-limit the SD algorithm without seriously degraglin Xed

the decoder performance. so thatp takes on the interpretation of an average SNR.

While this question is hard to answer in general, or evenBy vectorizing the model in (1) it follows that
ask in a rigorously meaningful way, we show that by following
[3] and considering the decoding of a sequence of codes in y=IroHz+w @)

the high signal-to-noise ratio (SNR) limit, not only can th@vherey = vec(Y), wherez = vec(X), wherew = vec(W)
question be made rigorous: It also admits surprisingly 8mpyng wherevec(-) denotes the operation whereby the columns

explicit answers. Drawing from the diversity-multipleBin o the argument are stacked to form a vector. For the class of

tradeoff (DMT) setting, which has also recently been ampliqcomplex) lattice codes considered here, the codewords tak
to concisely describe the reliability of reduced complexitine form

receivers [4], [5], [6], we introduce tH8D complexity exponent r — 0Gs (4)

as a measure of complexity that describes the SNR exponent

of the computational reserves required for decoding with tliwvhere6 regulates the transmit power, whaiee C*** is the

SD algorithm while guaranteeing a vanishing gap to MHRull rank generator matrix of the code, and whearbelongs to

performance. the Gaussian integers latti@g:|”. We make the restriction to
This conference paper represents the shortened versiorDMT optimal full rate threaded minimum delay codes, where



nt =T = n andx = n?, and where the data symbols arghat share the sanig,. The sphere decoding algorithm can be
drawn from the QAM-like constellation viewed as a branch and bound algorithm over a regular tree of
N - heightx with |S, | branches extending from each node, where
Sn={s|R(s), 3(s) € ZN [=n,n] } € Z[] ) eachs, corregpﬂnds to a node at laylerwhere the root node
wheren regulates the size of the constellation, and therefiy at layerk = 0, and where (11) is used to prune sub-trees
also the rate of the code. We omit the shift (translatiojom the search. The set of remaining, unpruned, nodeseit lev
of the Gaussian integer lattice that is typically present i is given by

QAM constellations as such shifts have no effect on our main N, 2105 cSk — R.3.12 < £2 12
results. Choosingn = pz= yields a sequence of codes with e =8k eS8, [ wSell" = €7} (12)
multiplexing gain It is common (cf. [10]) to use this total number of unpruned
1 log |X| (or visited) nodes
é li L5 4] 6 K
= logp ’ ©) N = Z [Nk ] (13)
k=1

and the power constraint in (2) mandates that= p'~=. _ _
At a given multiplexing gainr the probability of an ML &S & measure of the complexity of the qlgorlthm. It can _also
decoding error isP, = p~") whered(r) is the diversity be shown t_hat the total number of ﬂoatmg point operations
gain. When the sequence of codes generatedGbjs DMT (flops) requ_lred by the algorithm dewgtgs frdm by at most
optimal, as is assumed hereif(;) is maximized and equal by some dlmen5|on-dependent multlpllc_atlve constantat th
to the outage exponent [3] of the channel in (1). In additigi® independent op. It is also worth noting that whenever
to the assumptions listed above, we also need to assume fMaf” ¥; the sphere decoder recovers the ML decision.

the threaded code-structure of the codes in [8], [9] appties Ve assume that the sphere gadlgjgs a deterministic
order to complete the analysis, see [7] for details. We vaipa function of p that satisfiest = p°. This assumption may
hereafter for brevity use the wortbde both when refereing €2Sily be motivated by noting that — Rs = Q" w and

H A ; :
to a particular code and the sequence of codes generated By 42 w|? > zlogp) = p~* for z > 0, i.e., by choosing
single generator matrig. z > d(r) the probability of excluding the transmitted code-

word from A, is made arbitrarily small (and vanishing) in
B. The Sphere Decoding Algorithm relation to the probability of decoding error while satisfy
Combining (3) and (4) yields the equivalent data model & = zlog p < p°. Atthe same time, for any fixeglindependent
of p, the probability thats is not found is independent ¢f,
y=Ms+w (7)  whichis clearly undesirable when implementing DMT optimal
decoding, and which implies that should satisfy¢ > p°.
Finally, it should be stressed that while we for simplicity
M20(Iy ® HG € CnTxr, (8) consider a non-random search radius, it is in fact shown in
Let QR — M be the thin QR factorization oM, where [7] that the SD co.mpIeX|t_y exponent defined next canno_t be
H . . reduced by adaptive radius updates, e.g., those used in the
Q"'Q = I and R is upper triangular. The coherent ML . .
Schnorr-Euchner SD implementatio?|.[
decoder fors can then be expressed as

where the combined code-channel generator maifixs

R . . Il. THE SD COMPLEXITY EXPONENT
Smr, = arg i |~ — R3||, 9)

sy, To see what may be a reasonable scale of interest for mea-
g uring complexity it is illustrative to note that at a muléging

zain of r the codebook has a cardinality ot'| = p"™, and

the SD algorithm needs to find at ledst p° codeword. This

|lr — Rg;H? < &2 (10) motivates us to measure complexity in terms of a power of

. i i the SNR, i.e.p” for 0 < x < rn, and arrive at the following
for a givensearch radius{ > 0. The algorithm works by yefinition for the SD complexity exponent.
identifying partial symbol vector$,, where s, contains the

last £ elements ofs, for which

wherer = Q"y. The sphere decoding algorithm solves (
by enumerating all codeword hypothegethat satisfy

Definition 1: The SD complexity exponentr) is given by
A .

v — R8|% > |re — Rids|® > €2, (11) c(r) £ inf{z|¥(z) > d(r)} (14)

whered(r) is the diversity gain of the code at multiplexing

wherer; denotes the last components of-, where Ry, is gainr, and where

the lower right corner ofR, and where the first inequality
follows as R is upper triangular. Upon identifying these, W(z)2 — lim log P (N > p*) (15)
the algorithm proceeds to simultaneously reject all vesctor p—o0 log p

> . . . '
1As in [3] we use the= notation to denote equality in the exponent Wher(l:or 2 0 and for ¥ belng the compIeX|ty as gien by (13)

F(p) = p® denoteslim, . log f(p)/log p = a. The symbols<, >, < In order to see the operational significance of the SD
and > are similarly defined. complexity exponent, note that for any> ¢(r) we have by



definition thatP (N > p®) < p~%"), i.e., the probability that 10
the SD complexity exceeds® for > c(r) vanishes strictly ,
faster at high SNR than the minimum probability of decoding
error. This implies that if we were to put a run-time limit of
p* on the sphere decoder — and declare a decoding outac
whenever this limit is not met — it would cause a vanishing
degradation of the overall probability of error which wowalt
high SNR be completely dominated by ML errors. Further, as
the sphere decoder search radjusan be selected such that
the probability ofV,, = () can also be made arbitrarily small in
relation to the ML error probability, it follows that it is gsible

to implement a decoder based on the SD algorithm couplec
with a time-out policy that guarantees a worst-case conitylex
of p® for any = > ¢(r), and still obtain a vanishing SNR

gap to the ML decoder. This is however not possible for an')/ A | £} n (16) for the desoding of threaded
; e ig. 1. The SD complexity exponentr) in (16) for the decoding of threade

T < C(T)' Thus, up to t_he hlgh SNR eXponeE(T) quantl_ﬂes minimum delay DMT optimal codes with =T =n forn = 2,...,6.

the smallest computational reserves that must be desigmed+ihe complexity exponent is illustrated by the bold lineseFhin lines sho

in order to achieve both maximum diversity decoding with thie quadratic function(n — ), cf. (17).

SD algorithm as well as a vanishing gap to the ML decoder.

Fortunatelyc(r) can also be given explicitly as is shown next. _ N
to provide close to ML performance, thus benefiting from

¥he fact that good channels are likely to introduce reduced
complexity. Another observation to be made is that) is
c(ry=r(n—|r] —1)+ (NLTJ —7r(n— 1))* (16) independent of the number of receive antenmgsas long as
) ngr > nr. Finally, for anyr we have that(r) < rn wherern
for 0 < r < n, where|r| denotes the largest integer lowefs the SNR exponent dft’|, implying that SD requires strictly
than or equal to- and where(-)™ = max(-,0). For integer |ess complexity reserves than the full search.
values ofr, i.e., whenr = £, the expression in (16) becomes T4 get an intuitive understanding of the result of Theorem 1,
(k) = k(n — k). (17) and in particular (17), it is illustrative to consider a histic
argument involving low rank channel matricEb. As noted in
The proof of Theorem 1 is given in full in [7]. However,[3]. the typical outages at integer multiplexing gains- k are
in order to illustrate the main concepts behind the proof wi@used byH that are close to the set of rakkmatrices, i.e.,
provide a partial proof in Appendix A and B, establishing théhat haven —k small singular values. If we for the purpose of
upper bound:(r) < r(n— |r] — 1)+ (n|r] —r(n—1))*. We theillustration assume thd has rank, it follows thatI ®
hasten to add that while the partial proof offered in thisqrap® and M, have ranknk asn = T', and consequently a null-
makes no assumptions a& other than that it is square andsPace of dimension(n — k). This implies that thex(n — k) x
full rank, the threaded structure of the codes W [?], [8], "(n—Fk) lower right block ofR, R,,(, ), is” identically equal
[9] is explicitly used in the construction of the lower boumd {0 Z€ro, and the sphere decoder pruning criteria becomig/tota
c(r) in [7]. However, this also implies that (16) provides arneffective up to and including layer(n—Fk). As the size of,
upper bound for the SD complexity exponent when decodif§|Sy| = p» for r = k, the number of nodes searched at layer
any DMT optimal full rate minimum delay code, regardless(n—k) of the SD search tree is therefq%(”fm = ph(n=Fk)
of its structure. (cf. (17)). In order to ensure close to optimal performartice,
The SD complexity exponemrtr) in (16) is shown in Fig. 1 sphere decoder must be able to decodefbwheren — k
for n = 2,...,6. Here, a rather surprising characteristic ogingular values are close to zero. However, channels with ev
c(r) may be observed. At low multiplexing gaingy) tends more singular values close to zero occur with a probabihiaf t
to increase withr while the opposite is true for high multi- is small in relation to the probability of ML decoder errors
plexing gains. Consequently, the complexity is the higlast (or channel outages), and can thus be safely ignored by the
intermediate multiplexing gains and not at high multiptexi decoder without significant degradation in performance.
gains as may have been expected. The explanation to this
somewhat counterintuitive result is that at high multijex
gains, also the probability of error is higher and therettbie ~ We have introduced the SD complexity exponent as a
SD algorithm can tolerate a larger number of decoding ostagéeasure of SD complexity when the algorithm is applied
without significant performance degradation. Another way {0 decode DMT optimal threaded space-time codes. The SD
see this is that at high data-rates, only well conditionegheh ,_ _ _ _ _
This also requires that the firatc columns of R are linearly independent.

nels support theS.e rates and _qonsequently, the SD .algoritmrfbct, the rigorous treatment of this technical detailasgkly responsible
only has to deal with well conditioned instances of (9) inarrd for much of the difficulty in establishing the lower bounds &) in [7].

Complexity exponent(r)
O R, N W H» Ul O N 0O ©

Multiplexing gainr

Theorem 1:The SD complexity exponent for decoding an
DMT optimal n x n threaded full rate code is

IIl. CONCLUSION



complexity exponent naturally incorporates factors sush @he singular values aR;, are the same as those Rf, albeit
codeword density, codebook size, SNR, and channel fadwgh a multiplicity of 2, i.e., 0;(R;) = 0,,(;)(Rx) Where
into a single scalar quantity(r) that is expressed as a,,(i)=[i/m], and where[z] denotes the smallest integer
function of the multiplexing gaim of the code. To date;(r) larger than or equal to. By the interlacing property of singu-
also asymptotically represents the smallest known conitglexlar values of sub-matrices [12] we have thatR;) > 0;(R)
required for arbitrarily close to optimal decoding of, efre for i = 1,...,k and therefores;(R;) > o,,0;)(R) for
DMT optimal codes in [8], [9]. The simplicity of the expres-; = 1,...,2k. The singular values aR are the same as those
sions obtained for(r) allows for quickly assessing the ratepf M, asQ R = M with Q being unitary. The singular values
reliability, and complexity characteristics of commuriioa of M satisfy o;(M) > 6yo;(I7 ® H) wherey2 o, (G).
over the quasi-static MIMO channel using such coding arklrther, the singular values dfr ® H are the same as those
decoding schemes, which should prove useful both for iisighf H albeit with a multiplicity ofn = 7" [12]. This implies
into the algorithm as well as for system design. that o;(Ry,) > 0v0,,,)(H) for i = 1,...,2k, and by (21)
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PARTIAL PROOF OFTHEOREM 1 log p )
To obtain a bound on the number of nodes visited by the Si1€rear > ... > ay, or equivalentlyo;(H) = p~2 for
algorithm at layert, i.e., Ny, 2 |N;| with A, defined in (12), ¢ = 1---n. Applied to (22) this yields
we consider the following lemma, .prov.en in Ap;.)endix B. N min( 2¢ 72@n> = e
Lemma 1:Let £ C R™ be the ellipsoidal set given by 070y, i) (H )

& o(HYH)=p™ (23)

E2{deR™ | |c— Dd|* < €?} (18) Where
+
where D € R™™ andc € R™. Let B C R™ be the yi(a)émin(L _l+ la%(i)’ L) ’ (24)
hypercube given by n 22 2n
. . 1_ r . . _r . . .
BL{deR™ | |d] <1} (19) 37 = P, 0 = p273m, £ = p° andn = p3=. This implies
- that
where||d|| o £ max(|dy|, ..., |dn|). Then, the number of in- 2k o
. . IR . . vi(a) _ vi(a)
teger points contained in the intersectionéoénd B is upper Ny < Hp - pz“l ‘ (25)
bounded as =1
m 2% However, as/;(a) > 0 for i =1, ..., 2« it follows that
|5ﬂBﬂZm|SH|:\/E+min<—,2\/En)] , (20) " s . .

bale UZ(D) N = Z Ny < szizl vi(c) Spv(a) (26)
whereo,, (D) > ... > 01(D) denotes the ordered singular k=1 k=1
values ofD. where

In order to apply Lemma 1 to obtain the size ®f, note noo
thats, € NG, if and only if |, — Rys, |2 < €, 3w <, O(@ED_wil@) =Y min(r—n(l—a;), )", (27)
ands, € Z?*, where - =1 . =1 ound
i.e.,v(a) provides an asymptotic upper bound &nin terms
r, = F\E(r’“)} eR* R, = {C&E(Rk) _C‘\‘(Rk)} € R%*>2k  of the singularity levels off .
3(rx) S(Re)  R(Ri) For a DMT optimal code at multiplexing gain, typi-
and where . cal errors are caused by singularity levels in the outage
8, = [?{E(fk)} c 72k set A(r)2{a| >0, (1 — )t < r} [3]. In particular,
3(5k) it holds under the i.i.d. Rayleigh fading assumption that
Consequently, applying Lemma 1 with = 2k, withd = r,, P (a € A(r)) = p=%"), and thatP (a ¢ R%) = p=>°. If
and with D = R,, yields we leté(r) ésupaeﬁ/(T) v(a) where

2k n
Ni 2N < H {\/ﬁ—l— min<% ,2@77)} . (21) A'(r) éRi\A(r) =R} N {a‘ Z(l —a)t > r}



&

Fig. 2. lllustration of the proof of (20) in Lemma 1 in the caslen = 2.
The lemma provides an upper bound on the number of integetspwiithin
the shaded area, corresponding to the intersection of thmsat and the
constellation boundary.

Let C; be a hypercube with side-leng?h/mn, centered at the
origin and aligned witlC; (see Fig. 2). As the diagonal & is
2+/mn it follows that B C C», regardless of the orientation of
C». LetCs be given byC3 = C;NCs and note thaENB C C3 as
£ C Cy andB C Cs. As C; and(, are aligned, it follows that
Cs3 is also an orthotope. Lét, ..., [, denote the side-lengths
of C3 and note that; < min(e;, 2,/mn).

The number of integer lattice points in a set is under uniform
random perturbations of the lattice equal to its volume [13]
i.e., forC C R™ it holds that

Vol(C) :/ 12" 0 C + uldu (28)
u

wherel/ 2 [ — 3, 1]" denotes the unit cube iR". This is
referred to as the mean value theorem in [13]. Cetbe the
orthotope, aligned with and centered aroufif with side
lenghtsi; + /m (see Fig. 2). By construction, it follows
thatC3 C C4 + u for all w € U. It therefore follows by
(28) that|C3 N Z™| < Vol(Cs) = [Ii—, [v/m +1;]. where
l; <min (2§/0;(D), 2¢/mn). AsENB C C; the upper bound

in (20) follows.

we have thatP (N > p*") = P(a € A(r)) = p~@") as

a € A(r) implies that N < p°") by (26). In words,

¢(r) is the worst-case upper bound in (26) over the seif]
of o that are not in outage and occur with a probability
that do not vanish exponentially fast. By a similar argumeni]
we can strengthen this statementRgN > p*) < p~¢(") for
any z > ¢(r) by starting with A(r — €) and noting that
Plac Alr—e¢) = p~ =9 < p=d") asd(r —¢) > d(r)
for any ¢ > 0. Consequently¢(r) < ¢(r) is a valid upper
bound on the complexity exponent.

In order to evaluat&(r) we note that the sum on the left
hand side of (27) is symmetric i; and each term is equal to 5]
zero for smalla;, increases linearly witly; for intermediated
vales, and then saturates at a valuerdbr «; > 1. Using
these observations it is straightforward to see thabathat
maximizes v(a) over A'(r), labeled a* [af,...,ak)
satisfiesay = 1 fori = 1,...,n — k — 1 wherek = |r|,
ar ,=k+1—r,anda; =0fori=n—-k+1,...,n.
Note that this is also, not surprisingly, the samehat gives
the typical outagesn [3]. Evaluatingv(a*) gives

v@’) = () = r(n— 7] = 1) + (nlr] = r(n—1)"

and establishes one side of the equality in (16)@$ < &(r).
The expression in (17) for integer valuesrofs obtained by
settingk = r = |r| in (16). The proof that(r) > &(r) is
similar in spirit and provided in [7].

(3]

(4

(6]

(7]
(8]
El

[10]

[11]
APPENDIXB
PROOF OFLEMMA 1

The aim is to provide an upper bound on the number 8¢
integer points contained i&i N B N Z™ which is graphically [13
illustrated by the shaded region in Fig. 2. To this end, niag¢ t
the length of theth semi-axis of¢, is e; 2 2¢/0;(D). Let Cy
be the smallest orthotope (box), aligned with and contginin
&, i.e., C; is an orthotope with side lengths (see Fig. 2).
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