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Abstract—We consider the complexity of the sphere decoding
(SD) algorithm when decoding a class of full rate space-timeblock
codes that are optimal, over the quasi-static MIMO channel,with
respect to the diversity-multiplexing tradeoff (DMT). Towards
this we introduce the SD complexity exponent which represents
the high signal-to-noise ratio (SNR) exponent of the tightest
run-time complexity constraints that can be imposed on the
SD algorithm while maintaining arbitrarily close to maximu m
likelihood (ML) performance. Similar to the DMT exposition ,
our approach naturally captures the dependence of the SD
algorithm’s computational complexity on the codeword density,
code size and channel randomness; providing simple closed form
solutions in terms of the system dimensions and the multiplexing
gain.

I. I NTRODUCTION

The sphere decoding (SD) algorithm [1], [?] has arguably
become the de-facto method for optimal and near optimal
decoding of practically implementable space-time block codes.
By choosing the sphere decoder search radius adaptively and
allowing for an unbounded worst-case run-time the SD algo-
rithm can provide an exact implementation of the maximum
likelihood (ML) decoder at a reducedaveragecomplexity.
However, a more realistic approach to system design than
allocating unbounded computational reserves is to impose a
hard run-time limitation on the algorithm – declare decoding
outages when this limit is not met – and select the run-time
limit so that the gap to ML performance is acceptable. This
naturally raises the intriguing question of how aggressively one
can time-limit the SD algorithm without seriously degrading
the decoder performance.

While this question is hard to answer in general, or even
ask in a rigorously meaningful way, we show that by following
[3] and considering the decoding of a sequence of codes in
the high signal-to-noise ratio (SNR) limit, not only can the
question be made rigorous: It also admits surprisingly simple
explicit answers. Drawing from the diversity-multiplexing
tradeoff (DMT) setting, which has also recently been applied
to concisely describe the reliability of reduced complexity
receivers [4], [5], [6], we introduce theSD complexity exponent
as a measure of complexity that describes the SNR exponent
of the computational reserves required for decoding with the
SD algorithm while guaranteeing a vanishing gap to ML
performance.

This conference paper represents the shortened version of

a larger work [7] that computes the SD complexity exponent
for the decoding of a large class of full rate linear dispersion
lattice space-time codes. However, due to space constraints and
in order to accentuate the main points we shall herein restrict
our attention to a class of DMT optimal full rate threaded
minimum delay codes that includes the codes in [?], [?] and
the perfect codes in [8], [9]. Extending recent work on the
SD algorithm [10] we here also consider the effect of the
code, as well as the constellation boundary; something which
is essential for achieving arbitrary close to ML performance.

A. System model and space-time codes

We consider the standard Rayleigh fadingnT × nR quasi-
static point-to-point MIMO channel model with coherence-
time T given by

Y = HX + W (1)

whereX ∈ CnT×T , whereY ∈ CnR×T , and whereW ∈
CnR×T denote the transmitted space-time block codeword, the
block of received signals, and the additive spatially and tempo-
rally white Gaussian noise. The channel gainsH ∈ CnR×nT

are assumed to be i.i.d. circularly symmetric complex Gaussian
(i.e., Rayleigh fading) and constant over the duration of the
transmission, and we assume thatnR ≥ nT. The transmitted
codewordsX are drawn uniformly from a codebookX where

E{‖X‖2
F} =

1

|X |
∑

X∈X

‖X‖2
F = ρT , (2)

so thatρ takes on the interpretation of an average SNR.
By vectorizing the model in (1) it follows that

y = (IT ⊗ H)x + w (3)

wherey = vec(Y ), wherex = vec(X), wherew = vec(W ),
and wherevec(·) denotes the operation whereby the columns
of the argument are stacked to form a vector. For the class of
(complex) lattice codes considered here, the codewords take
the form

x = θGs (4)

whereθ regulates the transmit power, whereG ∈ Cκ×κ is the
full rank generator matrix of the code, and wheres belongs to
the Gaussian integers latticeZ[i]κ. We make the restriction to
DMT optimal full rate threaded minimum delay codes, where



nT = T = n and κ = n2, and where the data symbols are
drawn from the QAM-like constellation

Sη , {s | ℜ(s),ℑ(s) ∈ Z ∩ [−η, η] } ⊂ Z[i]κ (5)

where η regulates the size of the constellation, and thereby
also the rate of the code. We omit the shift (translation)
of the Gaussian integer lattice that is typically present in
QAM constellations as such shifts have no effect on our main
results. Choosing1 η

.
= ρ

r
2n yields a sequence of codes with

multiplexing gain

r , lim
ρ→∞

1

n

log |X |
log ρ

, (6)

and the power constraint in (2) mandates thatθ2 .
= ρ1− r

n .
At a given multiplexing gainr the probability of an ML
decoding error isPe

.
= ρ−d(r) where d(r) is the diversity

gain. When the sequence of codes generated byG is DMT
optimal, as is assumed herein,d(r) is maximized and equal
to the outage exponent [3] of the channel in (1). In addition
to the assumptions listed above, we also need to assume that
the threaded code-structure of the codes in [8], [9] appliesin
order to complete the analysis, see [7] for details. We will also
hereafter for brevity use the wordcodeboth when refereing
to a particular code and the sequence of codes generated by a
single generator matrixG.

B. The Sphere Decoding Algorithm

Combining (3) and (4) yields the equivalent data model

y = Ms + w (7)

where the combined code-channel generator matrixM is

M , θ(IT ⊗ H)G ∈ C
nRT×κ . (8)

Let QR = M be the thin QR factorization ofM , where
QHQ = I and R is upper triangular. The coherent ML
decoder fors can then be expressed as

ŝML = arg min
ŝ∈Sκ

η

‖r − Rŝ‖2 , (9)

wherer = QHy. The sphere decoding algorithm solves (9)
by enumerating all codeword hypothesesŝ that satisfy

‖r − Rŝ‖2 ≤ ξ2 (10)

for a given search radiusξ > 0. The algorithm works by
identifying partial symbol vectorŝsk, whereŝk contains the
last k elements of̂s, for which

‖r − Rŝ‖2 ≥ ‖rk − Rkŝk‖2 > ξ2 , (11)

whererk denotes the lastk components ofr, whereRk is
the lower right corner ofR, and where the first inequality
follows asR is upper triangular. Upon identifying thesêsk,
the algorithm proceeds to simultaneously reject all vectors ŝ

1As in [3] we use the
.
= notation to denote equality in the exponent where

f(ρ)
.
= ρa denoteslimρ→∞ log f(ρ)/ log ρ = a. The symbols

.

≤,
.

≥,
.

<

and
.

> are similarly defined.

that share the samêsk. The sphere decoding algorithm can be
viewed as a branch and bound algorithm over a regular tree of
heightκ with |Sη| branches extending from each node, where
eachŝk corresponds to a node at layerk, where the root node
is at layerk = 0, and where (11) is used to prune sub-trees
from the search. The set of remaining, unpruned, nodes at level
k is given by

Nk , { ŝk ∈ S
k
η | ‖rk − Rkŝk‖2 ≤ ξ2 } . (12)

It is common (cf. [10]) to use this total number of unpruned
(or visited) nodes

N =

κ
∑

k=1

|Nk| (13)

as a measure of the complexity of the algorithm. It can also
be shown that the total number of floating point operations
(flops) required by the algorithm deviates fromN by at most
by some dimension-dependent multiplicative constants, that
are independent ofρ. It is also worth noting that whenever
Nκ 6= ∅, the sphere decoder recovers the ML decision.

We assume that the sphere radiusξ is a deterministic
function of ρ that satisfiesξ

.
= ρ0. This assumption may

easily be motivated by noting thatr − Rs = QHw and
P(‖QHw‖2 > z log ρ)

.
= ρ−z for z > 0, i.e., by choosing

z > d(r) the probability of excluding the transmitted code-
word from Nκ is made arbitrarily small (and vanishing) in
relation to the probability of decoding error while satisfying
ξ = z log ρ

.

≤ ρ0. At the same time, for any fixedξ independent
of ρ, the probability thats is not found is independent ofρ,
which is clearly undesirable when implementing DMT optimal
decoding, and which implies thatξ should satisfyξ

.

≥ ρ0.
Finally, it should be stressed that while we for simplicity
consider a non-random search radius, it is in fact shown in
[7] that the SD complexity exponent defined next cannot be
reduced by adaptive radius updates, e.g., those used in the
Schnorr-Euchner SD implementation [?].

II. T HE SD COMPLEXITY EXPONENT

To see what may be a reasonable scale of interest for mea-
suring complexity it is illustrative to note that at a multiplexing
gain of r the codebook has a cardinality of|X | .

= ρrn, and
the SD algorithm needs to find at least1

.
= ρ0 codeword. This

motivates us to measure complexity in terms of a power of
the SNR, i.e.,ρx for 0 ≤ x ≤ rn, and arrive at the following
definition for the SD complexity exponent.

Definition 1: The SD complexity exponentc(r) is given by

c(r) , inf{x |Ψ(x) > d(r)} (14)

whered(r) is the diversity gain of the code at multiplexing
gain r, and where

Ψ(x),− lim
ρ→∞

log P (N ≥ ρx)

log ρ
(15)

for x ≥ 0 and forN being the complexity as given by (13).

In order to see the operational significance of the SD
complexity exponent, note that for anyx > c(r) we have by



definition thatP (N ≥ ρx)
.
< ρ−d(r), i.e., the probability that

the SD complexity exceedsρx for x > c(r) vanishes strictly
faster at high SNR than the minimum probability of decoding
error. This implies that if we were to put a run-time limit of
ρx on the sphere decoder – and declare a decoding outage
whenever this limit is not met – it would cause a vanishing
degradation of the overall probability of error which wouldat
high SNR be completely dominated by ML errors. Further, as
the sphere decoder search radiusξ can be selected such that
the probability ofNκ = ∅ can also be made arbitrarily small in
relation to the ML error probability, it follows that it is possible
to implement a decoder based on the SD algorithm coupled
with a time-out policy that guarantees a worst-case complexity
of ρx for any x > c(r), and still obtain a vanishing SNR
gap to the ML decoder. This is however not possible for any
x < c(r). Thus, up to the high SNR exponent,c(r) quantifies
the smallest computational reserves that must be designed for
in order to achieve both maximum diversity decoding with the
SD algorithm as well as a vanishing gap to the ML decoder.
Fortunately,c(r) can also be given explicitly as is shown next.

Theorem 1:The SD complexity exponent for decoding any
DMT optimal n × n threaded full rate code is

c(r) = r(n − ⌊r⌋ − 1) +
(

n⌊r⌋ − r(n − 1)
)+

(16)

for 0 ≤ r ≤ n, where⌊r⌋ denotes the largest integer lower
than or equal tor and where(·)+ = max(·, 0). For integer
values ofr, i.e., whenr = k, the expression in (16) becomes

c(k) = k(n − k) . (17)

The proof of Theorem 1 is given in full in [7]. However,
in order to illustrate the main concepts behind the proof we
provide a partial proof in Appendix A and B, establishing the
upper boundc(r) ≤ r(n−⌊r⌋− 1)+ (n⌊r⌋− r(n− 1))+. We
hasten to add that while the partial proof offered in this paper
makes no assumptions onG other than that it is square and
full rank, the threaded structure of the codes in [?], [?], [8],
[9] is explicitly used in the construction of the lower boundon
c(r) in [7]. However, this also implies that (16) provides an
upper bound for the SD complexity exponent when decoding
any DMT optimal full rate minimum delay code, regardless
of its structure.

The SD complexity exponentc(r) in (16) is shown in Fig. 1
for n = 2, . . . , 6. Here, a rather surprising characteristic of
c(r) may be observed. At low multiplexing gains,c(r) tends
to increase withr while the opposite is true for high multi-
plexing gains. Consequently, the complexity is the highestat
intermediate multiplexing gains and not at high multiplexing
gains as may have been expected. The explanation to this
somewhat counterintuitive result is that at high multiplexing
gains, also the probability of error is higher and thereforethe
SD algorithm can tolerate a larger number of decoding outages
without significant performance degradation. Another way to
see this is that at high data-rates, only well conditioned chan-
nels support these rates and consequently, the SD algorithm
only has to deal with well conditioned instances of (9) in order
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Fig. 1. The SD complexity exponentc(r) in (16) for the decoding of threaded
minimum delay DMT optimal codes withnT = T = n for n = 2, . . . , 6.
The complexity exponent is illustrated by the bold lines. The thin lines show
the quadratic functionr(n − r), cf. (17).

to provide close to ML performance, thus benefiting from
the fact that good channels are likely to introduce reduced
complexity. Another observation to be made is thatc(r) is
independent of the number of receive antennasnR as long as
nR ≥ nT. Finally, for anyr we have thatc(r) < rn wherern
is the SNR exponent of|X |, implying that SD requires strictly
less complexity reserves than the full search.

To get an intuitive understanding of the result of Theorem 1,
and in particular (17), it is illustrative to consider a heuristic
argument involving low rank channel matricesH. As noted in
[3], the typical outages at integer multiplexing gainsr = k are
caused byH that are close to the set of rankk matrices, i.e.,
that haven−k small singular values. If we for the purpose of
the illustration assume thatH has rankk, it follows thatIT ⊗
H, andM , have ranknk asn = T , and consequently a null-
space of dimensionn(n−k). This implies that then(n−k)×
n(n−k) lower right block ofR, Rn(n−k), is2 identically equal
to zero, and the sphere decoder pruning criteria become totally
ineffective up to and including layern(n−k). As the size ofSη

is |Sη| .
= ρ

k
n for r = k, the number of nodes searched at layer

n(n−k) of the SD search tree is therefore|Sn(n−k)
η | .

= ρk(n−k)

(cf. (17)). In order to ensure close to optimal performance,the
sphere decoder must be able to decode forH wheren − k
singular values are close to zero. However, channels with even
more singular values close to zero occur with a probability that
is small in relation to the probability of ML decoder errors
(or channel outages), and can thus be safely ignored by the
decoder without significant degradation in performance.

III. C ONCLUSION

We have introduced the SD complexity exponent as a
measure of SD complexity when the algorithm is applied
to decode DMT optimal threaded space-time codes. The SD

2This also requires that the firstnk columns ofR are linearly independent.
In fact, the rigorous treatment of this technical detail is largely responsible
for much of the difficulty in establishing the lower bounds onc(r) in [7].



complexity exponent naturally incorporates factors such as
codeword density, codebook size, SNR, and channel fading
into a single scalar quantityc(r) that is expressed as a
function of the multiplexing gainr of the code. To date,c(r)
also asymptotically represents the smallest known complexity
required for arbitrarily close to optimal decoding of, e.g., the
DMT optimal codes in [8], [9]. The simplicity of the expres-
sions obtained forc(r) allows for quickly assessing the rate,
reliability, and complexity characteristics of communication
over the quasi-static MIMO channel using such coding and
decoding schemes, which should prove useful both for insight
into the algorithm as well as for system design.
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APPENDIX A
PARTIAL PROOF OFTHEOREM 1

To obtain a bound on the number of nodes visited by the SD
algorithm at layerk, i.e., Nk , |Nk| with Nk defined in (12),
we consider the following lemma, proven in Appendix B.

Lemma 1:Let E ⊂ Rm be the ellipsoidal set given by

E ,{d ∈ R
m | ‖c − Dd‖2 ≤ ξ2} (18)

where D ∈ Rm×m and c ∈ Rm. Let B ⊂ Rm be the
hypercube given by

B,{d ∈ R
m | ‖d‖∞ ≤ η} , (19)

where‖d‖∞ ,max(|d1|, . . . , |dm|). Then, the number of in-
teger points contained in the intersection ofE andB is upper
bounded as

|E ∩ B ∩Z
m| ≤

m
∏

i=1

[√
m + min

(

2ξ

σi(D)
, 2

√
mη

)]

, (20)

whereσm(D) ≥ . . . ≥ σ1(D) denotes the ordered singular
values ofD.

In order to apply Lemma 1 to obtain the size ofNk, note
that ŝk ∈ Nk if and only if ‖rk −Rkŝk‖2 ≤ ξ2, ‖ŝk‖∞ ≤ η,
and ŝk ∈ Z2k, where

rk =

[

ℜ(rk)
ℑ(rk)

]

∈ R
2k, Rk =

[

ℜ(Rk) −ℑ(Rk)
ℑ(Rk) ℜ(Rk)

]

∈ R
2k×2k,

and where

ŝk =

[

ℜ(ŝk)
ℑ(ŝk)

]

∈ Z
2k .

Consequently, applying Lemma 1 withm = 2k, with d = rk,
and withD = Rk yields

Nk , |Nk| ≤
2k
∏

i=1

[√
2k + min

(

2ξ

σi(Rk)
, 2
√

2kη

)]

. (21)

The singular values ofRk are the same as those ofRk albeit
with a multiplicity of 2, i.e., σi(Rk) = σι2(i)(Rk) where
ιm(i),⌈i/m⌉, and where⌈x⌉ denotes the smallest integer
larger than or equal tox. By the interlacing property of singu-
lar values of sub-matrices [12] we have thatσi(Rk) ≥ σi(R)
for i = 1, . . . , k and thereforeσi(Rk) ≥ σι2(i)(R) for
i = 1, . . . , 2k. The singular values ofR are the same as those
of M , asQR = M with Q being unitary. The singular values
of M satisfy σi(M) ≥ θγσi(IT ⊗ H) where γ ,σ1(G).
Further, the singular values ofIT ⊗H are the same as those
of H albeit with a multiplicity ofn = T [12]. This implies
that σi(Rk) ≥ θγσι2n(i)(H) for i = 1, . . . , 2k, and by (21)
that

Nk ≤
2k
∏

i=1

[√
2k + min

(

2ξ

θγσι2n(i)(H)
, 2
√

2kη

)]

, (22)

which upper bounds the number of nodes visited at layerk in
terms of the singular values ofH.

Next, and following [3], we introduce the notion ofsingu-
larity levelsα = [α1, . . . , αn] defined by

αi ,− logσi(H
HH)

log ρ
⇔ σi(H

HH) = ρ−αi (23)

whereα1 ≥ . . . ≥ αn, or equivalentlyσi(H) = ρ−
1

2
αi for

i = 1, . . . , n. Applied to (22) this yields
√

2k + min

(

2ξ

θγσι2n(i)(H)
, 2
√

2kη

)

.
= ρνi(α)

where

νi(α),min

(

r

2n
− 1

2
+

1

2
αι2n(i) ,

r

2n

)+

, (24)

as γ
.
= ρ0, θ

.
= ρ

1

2
− r

2n , ξ
.
= ρ0, and η

.
= ρ

r
2n . This implies

that

Nk

.

≤
2k
∏

i=1

ρνi(α) = ρ
∑

2k

i=1
νi(α) . (25)

However, asνi(α) ≥ 0 for i = 1, . . . , 2κ it follows that

N =

κ
∑

k=1

Nk

.

≤
κ

∑

k=1

ρ
∑

2k

i=1
νi(α) .

≤ ρυ(α) (26)

where

υ(α),

2κ
∑

i=1

νi(α) =
n

∑

i=1

min
(

r − n(1 − αi) , r
)+

, (27)

i.e., υ(α) provides an asymptotic upper bound onN in terms
of the singularity levels ofH .

For a DMT optimal code at multiplexing gainr, typi-
cal errors are caused by singularity levels in the outage
set A(r),{α | ∑n

i=1(1 − αi)
+ < r} [3]. In particular,

it holds under the i.i.d. Rayleigh fading assumption that
P (α ∈ A(r))

.
= ρ−d(r), and thatP

(

α /∈ Rn
+

) .
= ρ−∞. If

we let c̄(r), sup
α∈Ā′(r) υ(α) where

Ā′(r), R
n
+\A(r) = R

n
+ ∩

{

α

∣

∣

∣

n
∑

i=1

(1 − αi)
+ ≥ r

}
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Fig. 2. Illustration of the proof of (20) in Lemma 1 in the caseof n = 2.
The lemma provides an upper bound on the number of integer points within
the shaded area, corresponding to the intersection of the ellipsoid and the
constellation boundary.

we have thatP
(

N ≥ ρc̄(r)
) .

= P (α ∈ A(r))
.
= ρ−d(r) as

α ∈ Ā′(r) implies that N ≤ ρc̄(r) by (26). In words,
c̄(r) is the worst-case upper bound in (26) over the set
of α that are not in outage and occur with a probability
that do not vanish exponentially fast. By a similar argument
we can strengthen this statement toP (N ≥ ρx)

.
<ρ−d(r) for

any x > c̄(r) by starting withA(r − ǫ) and noting that
P (α ∈ A(r − ǫ))

.
= ρ−d(r−ǫ)

.
< ρ−d(r) as d(r − ǫ) > d(r)

for any ǫ > 0. Consequently,c(r) ≤ c̄(r) is a valid upper
bound on the complexity exponent.

In order to evaluatēc(r) we note that the sum on the left
hand side of (27) is symmetric inαi and each term is equal to
zero for smallai, increases linearly withαi for intermediated
vales, and then saturates at a value ofr for αi ≥ 1. Using
these observations it is straightforward to see that anα that
maximizes υ(α) over Ā′(r), labeled α⋆ = [α⋆

1, . . . , α
⋆
n]

satisfiesα⋆
i = 1 for i = 1, . . . , n − k − 1 wherek = ⌊r⌋,

α⋆
n−k = k + 1 − r, and α⋆

i = 0 for i = n − k + 1, . . . , n.
Note that this is also, not surprisingly, the sameα that gives
the typical outagesin [3]. Evaluatingυ(α⋆) gives

υ(α⋆) = c̄(r) = r(n − ⌊r⌋ − 1) +
(

n⌊r⌋ − r(n − 1)
)+

and establishes one side of the equality in (16) asc(r) ≤ c̄(r).
The expression in (17) for integer values ofr is obtained by
settingk = r = ⌊r⌋ in (16). The proof thatc(r) ≥ c̄(r) is
similar in spirit and provided in [7]. �

APPENDIX B
PROOF OFLEMMA 1

The aim is to provide an upper bound on the number of
integer points contained inE ∩ B ∩ Z

m which is graphically
illustrated by the shaded region in Fig. 2. To this end, note that
the length of theith semi-axis ofE , is ei , 2ξ/σi(D). Let C1

be the smallest orthotope (box), aligned with and containing
E , i.e., C1 is an orthotope with side lengthsei (see Fig. 2).

Let C2 be a hypercube with side-length2
√

mη, centered at the
origin and aligned withC1 (see Fig. 2). As the diagonal ofB is
2
√

mη it follows thatB ⊂ C2, regardless of the orientation of
C2. LetC3 be given byC3 = C1∩C2 and note thatE∩B ⊂ C3 as
E ⊂ C1 andB ⊂ C2. As C1 andC2 are aligned, it follows that
C3 is also an orthotope. Letl1, . . . , lm denote the side-lengths
of C3 and note thatli ≤ min(ei , 2

√
mη).

The number of integer lattice points in a set is under uniform
random perturbations of the lattice equal to its volume [13],
i.e., for C ⊂ Rn it holds that

Vol(C) =

∫

U

|Zn ∩ C + u|du (28)

whereU ,
[

− 1
2 , 1

2

]n
denotes the unit cube inRn. This is

referred to as the mean value theorem in [13]. LetC4 be the
orthotope, aligned with and centered aroundC3, with side
lenghts li +

√
m (see Fig. 2). By construction, it follows

that C3 ⊂ C4 + u for all u ∈ U . It therefore follows by
(28) that |C3 ∩ Zm| ≤ Vol(C4) =

∏n

i=1 [
√

m + li]. where
li ≤ min (2ξ/σi(D) , 2

√
mη). As E∩B ⊂ C3 the upper bound

in (20) follows. �
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