
Secret Sets and Applications

R. Molva� G. Tsudiky

August 14, 1997

Abstract

This paper introduces the notion of a secret set { a basic construct for communication with groups of mutually suspicious
entities. A set is secret if any entity can test its membership in the set but can determine neither the other set members nor

the cardinality of the set. A number of possible secret set constructions are presented, analyzed and contrasted according to

criteria such as: security (strength) as well as bandwidth and processing overheads. Example applications of secret sets are
discussed.

Keywords: secret sets, secret multicast, location secrecy, mobile networks.

1 Introduction

Under certain conditions, electronic communication must be conducted in a manner that preserves the secrecy

of either (or both) senders or receivers. While this is particularly applicable to military environments, similar

requirements can also arise in civilian communications. For example, since mobile (especially, cellular) networks are

often vulnerable to hostile eavesdropping, there is a need to provide location secrecy for network users.

In this paper we introduce a basic mechanism for building a secret set of identi�ers that addresses the problem of

receiver secrecy in computer communication. We �rst devise and discuss several solutions for constructing secret

sets and then demonstrate two applications of the secret sets: secret multicasting and location secrecy in mobile

networks.

The crux of the problem considered in this paper is how to construct a secret set. We call a set secret if and only if

the following conditions hold:

C1 Any party (whether a set member or not) can test its membership in the set.

C2 No one, with the exception of the originator of the set, can test another party's membership in the set.

C3 No one, with the exception of the originator of the set, can determine with certainty the number of members

in the set. (However, the upper bound on the number of members may be known.)

Our design goals are twofold: 1) Security: adherence to secret set conditions C1-C3, and 2) E�ciency: minimiza-

tion of both time and space complexity for secret set construction and membership testing.

However, certain issues are considered to be out of scope of this paper, i.e., they constitute explicit non-goals:

� Data secrecy/privacy

It is assumed that, if needed, bulk data privacy is provided by a parallel, independent mechanism. We note

that, in some environments, data privacy might not be important or desired at all.

�Institut Eur�ecom, Sophia Antipolis, FRANCE, molva@eurecom.fr

yUSC Information Sciences Institute, Marina del Rey, CA, USA, gts@isi.edu

1

� Data integrity, origin authentication and non-repudiation of all kinds

Similar to data privacy, these services are considered to be independent of (parallel to) the issue of secret set

construction. General-purpose security tools can be used to obtain all of these services.

� Denial of Service (DoS) Attacks

Our initial model of an adversary is relatively weak (see below) and does not include DoS attacks.

The rest of this paper is organized as follows. We begin with some preliminaries in the next section. Sections 3{5

discuss several approaches to secret set construction; they are summarized in Section 6. The paper concludes with

some application examples (Sections 7 and 7.2) and directions for future work (Section 8.)

2 Preliminaries

In the present context, an adversary is an entity whose goal is to attack the system in one the following ways:

A1 Determine whether a certain party is a member of a secret set (without collusion with or, subversion of, that

party but with potential collusion with any number of other secret set members.)

A2 Determine the number of parties included in a secret set. We will also consider the special case of all set

members colluding (without knowing that they constitute the entire set) in order to determine whether they

constitute the entire set or a proper subset thereof.

The following notation is used throughout the rest of this paper:

� Let U = fST1; :::; STng be the \universe", i.e., the publicly-known set of all potential secret set members. (We

use a special symbol STsrc to denote the originator of the secret set.)

� For any subset S = fSTi1 ; :::; STimg � U , let IND(S) = fi1; :::; img denote a set of indices of set members

(each ranging in [1; n])

� For each STj 2 U (j 2 [1; n]), let [PKj; SKj] denote the public and secret key components (respectively) of

STj 's public key-pair.

� PKj(data) and SKj (data) denote encryption of data under the public and secret public key components,

respectively. Throughout the paper, we assume that encryption is always performed in tandem with data

integrity, i.e., encrypted data is non-malleable. Mechanisms for doing this are described in [2].

3 A Trivial Solution

The most straightforward representation of an m-member secret set S is:1

PKi1
(txti1); :::; PKim

(txtim)

where txtij (for j 2 [1;m]) denotes some unambiguous indication that STij is a member of S. To protect against

veri�able-plaintext attacks, we assume that each encryption operation is randomized (salted) and integrity-protected

as described in [2].2

The present method has two important drawbacks:

� The e�ciency is poor since a member has no way of determining which encrypted block corresponds to it.

� Attack A2 is possible because encryption blocks are listed sequentially. This makes it trivial for anyone to

determine the cardinality of S.)

1Encryption with integrity is assumed. See [2].
2If encryption is not randomized and txtij is predictable, the adversary could guess txtij and verify it by encrypting it with PKij

.

2

The �rst issue can be helped if the members of U were somehow numbered or ordered. However, even if all members

of U form an ordered set, and, moreover, all members of S are ordered, a member STj 2 S has to try decrypting at

least one and, at most min(m; j; (n � j + 1)) blocks before �nding PKip
(txtip) where ip = j.

On the other hand, if STj 62 S it has to always perform min(m; j; (n� j + 1)) decryptions just to discover that it is

not in the set.

(In either case, STj has to make a choice of starting from the �rst encrypted block or from the last one and working

backwards. This decision depends on the value of min(m; j; (n� j+1)). In case min(m; j; (n� j +1)) = m, STj can

start with either the �rst or the last block. If min(m; j; (n � j + 1)) = j, STj starts from the �rst block, otherwise

it starts from the last.)

A2-type attacks can be made harder if STsrc introduces noise or decoys into the representation of S. This can be

done with random \garbage" blocks sprinkled amongst real encrypted blocks or with actual bona �de encryption

blocks where txtij is amended to take on a binary meaning, i.e., it can be used to indicate non-membership as well

as membership in S. Once again, we note that because our encryption is done with integrity, a \garbage" block

can not be misinterpreted as a bona �de one. At the same time, a \garbage" block and an encrypted block are

indistinguishable.

An unpleasant side-e�ect of using decoys and noise is the corresponding increase in processing costs. Every noise or

decoy block must be processed (via attempted decryption) by a multitude of members.

3.1 Variation on the Theme

In order to address the drawbacks discussed above, we now consider a straight-forward extension. It involves repre-

senting any secret set S as a sequence of n blocks, regardless of the real number of members in S. The length of a

block is determined by the (globally set) public key encryption block size, e.g., modulus length in case of RSA [5]. If

STj 2 S, the j-th block is PKj(txtj), as before. Otherwise, the j-th block is a sequence of random bits the length

of the standard encryption block. This has two attractive features:

1. Increased e�ciency: since blocks are ordered and there are as many blocks as members, only one decryption

attempt needs to be made by each member.

2. A2 resistance: representations of all secret sets are of the same length { n blocks. Hence, it is impossible to

determine jSj, the cardinality of the secret set.

Despite the above, this method is impractical chie
y because of the communication overhead. (Consider, for example,

the population size of 1024 and the use of RSA encryption with 1024-bit modulus. Irrespective of the cardinality of

S, a staggering 1 Mbit would be needed to represent S!)

3.2 Using Pairwise Shared Keys

We now make an assumption that STsrc shares a conventional, secret key with every potential member, i.e., the

system either operates on conventional cryptography alone or uses Di�e-Hellman key agreement method to compute

pairwise keys. (Let Ksrc

j
denote a secret key shared between STsrc and STj .)

The secret set S can now be constructed as:

Ksrc

i1
(txti1); :::;K

src

im
(txtim)

This is very similar to the public key-based version. The only important di�erence is that there is no requirement

for each encryption operation to be randomized. Since all pairwise keys are secret, veri�able-plaintext attacks (of

the sort mentioned in Section 3) do not apply.

For example, txtij can be set to R, a random quantity generated by STsrc. In this case, R must be also included in

cleartext as part of S' representation; known-plaintext attacks notwithstanding.

Finally, since encryption block size for a typical conventional cryptosystem is smaller than that for a typical public

key cryptosystem, spatial complexity can be reduced. For example, an eightfold decrease in length can be obtained

if IDEA [4] (128-bit keys) is used instead of RSA [5] with 1024-bit moduli.

3

4 CRT Construction

It is evident from the preceding discussion that the simple-minded solutions are ine�cient owing to both computa-

tional and spatial complexity. (This is besides lacking any notion of elegance.)

In order to remedy the situation, we now base the construction of S on the well-known Chinese Remainder Theorem

(CRT).

In brief, Chinese Remainder Theorem (CRT) states that:

Given a sequence of primes: p1; p2; :::; pn and n values:

yi = xi mod pi 0 < i � n

there exist (and can be computed) a single value X such that 0 < X �
Q

n

i=1
pi. Using n prime moduli

p1; :::; pn, each xi can be subsequently recovered from X by computing xi = X mod pi

A secret set is constructed as follows:

Step S0: We require each member STq to have a unique public prime pq. (This is in addition to a public key-pair

[PKq; SKq] that STq is already assumed to possess.)

Step S1: As in Section 3, for each STij 2 S (0 < j � m) STsrc generates a random quantity Rj and computes

xj = PKij
(Rj).

3

Step S2: Given all xj values and the corresponding primes pij , STsrc computes (in m � 1 steps) the value X that

satis�es the CRT. X itself becomes the representation of the secret set S.

A receiver of a secret set processes it as follows:

Step R1: In order to �nd out whether it is part of the secret set STq �rst computes x̂q = X mod pq

Step R2: Next, STq decrypts x̂q with SKq . If the decryption (speci�cally, the integrity check) then STq 62 S.

4.1 Evaluation

It is evident that, with respect to A1-type attacks, the security of the CRT-based secret set construction is equivalent

to that of the trivial PK-based approaches of Sections 3 and 3.1.

A2-type attacks are more subtle. According to CRT, X is bounded by
Q

n

i=1
(pi) which can allow an adversary to

guess the number of members in S. However, the situation is di�erent from the construction in Section 3 where

encrypted blocks are listed sequentially and jSj is evident to any observer. The CRT construction does not allow a

deterministic and veri�able guess of jSj; only its upper and lower bounds.

As far as bandwidth overhead, in the worst case the present construction is similar to that in Section 3 (once again,

because X <
Q

n

i=1
(pi).) The processing overhead, however, is greatly reduced. Recall that, in PK-based construction,

a potential member has to attempt decryption of a number of blocks before either �nding the correct block or giving

up after processing all (or most, depending on the numbering/ordering scheme) blocks. CRT construction allows for

uniform and e�cient processing of S by all members (whether members of S or not):

Every STq performs the same long integer division operation to obtain (X mod pq) and attempts to

decrypt the result.

The only time-consuming task in CRT construction is the process of set construction by STsrc. In addition to m

public key encryption operations to compute all xj values, STsrc needs to go through m � 1 invocations of the

Euclidean algorithm to compute X.

4.2 Decoys

One way to make the CRT construction less susceptible to A2-type attacks, is by introducing decoys. A decoy is

essentially a random value factored into the computation of X. Suppose that we pick a particular STq 62 S to be a

3Once again, we require encryption with integrity as described in [2].

4

decoy. The originator, STsrc, picks a random value Rq < pq and sets xq = Rq. Then, X is computed to include xq
so that, in the end, X mod pq = xq.

Of course, when STq receives X and obtains xq, the decryption will fail. In fact, STq can not tell the di�erence

between being a decoy and not being considered at all. Any number of decoys can be factored into X in the same

manner. The result is that the A2 attack can be made more di�cult by obscuring S.

It should be noted that the use of decoys comes at the expense of not only additional computation steps but also

the increased length of X, i.e., additional bandwidth.

4.3 Comparison with Related Work

The CRT construction discussed above is very similar to that used by Chiou and Chen in their Secure Lock construct

[3]. The main di�erence is in the goals: [3] concentrated on secure broadcasting which entails encrypting a

message under a one-time key and then encrypting the key individually for each group member. We, on the other

hand, consider a somewhat di�erent problem; secret set construction requires only the addressing information to be

kept secret. This lends itself to simpler constructs.

In addition, the Secure Lock construct does not take into account condition C2 as de�ned in Section 1. In other

words, it allows any set member to test any other entity's membership in the set. This is possible because each set

member's "share" is de�ned as: xj = PKij
(d̂) where d̂ is the secret key that can be used to decrypt the data message.

All PKij
values are publicly-known and d̂ is the same for all set members. A set member STq �rst obtains d̂ by

extracting its share and decrypting it. Then, STq can test whether another entity STr is in the set by computing

PKr(d̂) and comparing it to Xmodpr .

5 Bit Vectors

Having examined and discussed the issues surrounding secret set construction we can observe that very little infor-

mation needs to be communicated to each potential member of the secret set. Conceptually, this information can

be thought of as the value of a binary function MEMBER(STq ;S) which can be captured in a single bit. This can

be interpreted to mean that the total amount of information needed to represent a secret set equals the cardinality

of that set, i.e., the number of members therein. However, the di�culty in actually reducing the representation of a

secret set S to m = jSj bits is the need to label them somehow. It is easy to see that simply generating a bit vector

of length m (m < n = jUj) will result in confusion since a potential member has no means to determine the correct

bit position (i.e., the bit it should process.)

Based on the above, we can conjecture that the minimum length for a bit vector representation of a secret set is the

number of all possible members { the cardinality of U .

The only remaining question is exactly how to specify the function MEMBER(STq ;S) so as to resist A1- and

A2-type attacks.

One possibility is to use Di�e-Hellman key agreement as follows:

Assumption: Each receiver STq 2 U pre-distributes its Di�e-Hellman public exponent: gaqmodP

(where g is the base, aq is STq 's private key and P is a large prime, P � 1 being the group order.)

1. STsrc generates a random quantity b and computes gb(modP).

2. 8 STq 2 U , STsrc computes Ksrc

q
= gbaq .

3. Set the q-th bit of the bit vector to:

MEMBER(STq ;S) =

�
MSB(Ksrc

q
) if STq 2 S

MSB(Ksrc

q
) + 1 (mod2) otherwise

where MSB(y) denotes the leftmost (most signi�cant) bit of y.

The length of the resulting bit vector is n; however, the total length of the secret set is (n+ log2 P). The

di�erence is in the size of the one-time residue gb(modP) that needs to accompany every bit vector.

5

This method has an important advantage in that its security is based directly on the well-established Di�e-Hellman

key agreement protocol. This is further reinforced by a recent result by Boneh and Venkatesan [9] that evaluates the

hardness of (the adversary) computing the leftmost 32 bits of a Di�e-Hellman key.

Another bene�t is that, even if all secret set members collude (without knowing that they constitute the entire set)

they are unable to determine the cardinality of the set.

As an aside, there are alternative ways to construct a bit vector. Assuming pairwise shared keys (as in Section 3.2)

the individual bits can be computed as:

MEMBER(STq ;S) =

�
MSB(Ksrc

q
(b)) if STq 2 S

MSB(Ksrc

q
(b)) + 1(mod2) otherwise

where b and MSB are as before.

6 Summary

Of all secret set constructs presented above only the CRT-based and the bit-vector are interesting. The bit vector

construct is advantageous chie
y because its space complexity is minimal (in most cases; see Section 8.) On the other

hand, its main drawback is the need to perform a costly exponentiation for each entity; whether secret set member

or not.

In contrast, the CRT construct requires much more space (not always; see Section 8.) but o�ers some important

operational advantages. Most importantly, the number of encryption operations is proportional to the cardinality of

the secret set. Furthermore, since a full encrypted block is conveyed to each member of the secret set, the integrity

of the membership information can be assured on an individual basis; for example, by signing the contents of the

block before encryption and enclosing the signature within.4 This does not, however, protect the integrity of the set

as a whole.

7 Application Examples

7.1 Secret Multicast

One �tting application for secret sets is secret multicast, a special case of multicast that maintains the secrecy of

the set of receivers. The most basic setting where secret multicast may be applied is a broadcast local area network

(LAN) such as an Ethernet. (See Figure 1.) We assume that there are n stations connected to the LAN; equivalently,

the superset U is composed of at most n potential receivers. The problem at hand is how to multicast a message to

m (m � n) receivers while satisfying the aforementioned conditions C1-C3.

STsrc

ST1 ST2 ST3 STn−1 STn

secret set member

multicast address

data
sends

secret multicast message

payload

secret set − SMA

Figure 1: Secret Multicast on a LAN

We note that a simpler problem of unicasting to a secret receiver (i.e., multicasting to a secret set of size one)

on a broadcast LAN has been solved by P�tzmann and Waidner [6]. Basically, the solution involves encrypting

4The integrity of the secret set information can also be protected in the bit vector construct by signing the entire bit vector.

6

the message or portion thereof (including, at least, the sender and receiver addresses) under the public key of the

intended receiver. While all stations receive the message, only the intended receiver can successfully decrypt it. (The

solution presented in section 3 above can be considered a trivial extension of secret unicasting).

Secret multicasting, as de�ned in this paper, is also very similar to the well-known problem of broadcast encryption

[10], [8]. It has been the subject of more than a few publication in the cryptographic community. However, one of

the central goals of broadcast encryption is the secrecy (and, optionally, integrity) of the messages, i.e., bulk data.

Secret multicasting is a narrower problem which is only concerned with the secrecy of the receivers' identities. This

important di�erence allows us to employ the secret set mechanism that is much simpler than full-blown encryption.

A secret multicast scheme can be obtained by a straightforward assignment of secret set roles depicted in section 2

to the principal entities of a multicast communication. In the secret multicast scheme thus obtained:

� U = fST1:::STng denotes all possible receivers;

� STsrc denotes the sender of the secret multicast;

� S denotes the receivers of the secret multicast or the secret multicast group.

� SMA, Secret Multicast Address, is the representation of the secret set obtained through one of the aforemen-

tioned secret set computation techniques.

SMA is appended to the multicast message and allows the receivers to �nd out whether they are part of the secret

multicast group.

7.2 Location Privacy in Mobile Networks

Another application of secret sets is as a solution to the problem of location privacy in a mobile network. This

essentially amounts to preventing an observer from tracking the whereabouts of a mobile user.

In a typical implementation of a mobile network, each mobile user is registered with a home domain and each domain

maintains a Home Domain Agent (HDA). HDA's task is to keep a record of the current location of each mobile user

registered in the domain. When user A calls another mobile user B, the call from A �rst reaches the HDA of B's

home domain. Then, the call from A reaches B based on the location information provided by the HDA. In order

for the HDA to keep accurate information on B's location, B has to keep HDA informed of all location changes.

This mobility management technique inherently requires a central entity that maintains timely location records

for each constituent user. Its utility as a network mechanism notwithstanding, it constitutes a potential threat to

privacy. A complete history of each user's mobile behavior and network utilization can be drawn from the location

records kept by the HDA. Furthermore, this kind of exposure is an inherent weakness of all existing mobile network

architectures (e.g., GSM, CDPD, DECT, Mobile IP) since they all require a central entity similar to the HDA to

keep record of the mobile user's location.

We note that a related, albeit more general, anonymity problem has been already addressed in [1, 7]. These solutions

involve hiding the user's true identity from intruders and from remote entities. Since the underlying mobile networks

require an HDA for mobility management, these solutions su�er from the location privacy problem and can not hide

the mobile user's location from the HDA.

The second application of the secret set mechanism allows for user mobilitymanagement based on central HDA's like

in the current mobile network architectures while preserving the privacy of the user's whereabouts. In the suggested

scheme, the HDA keeps a timely record of some secret routing information instead of the location record. Like

the location record, the secret routing information is used by a calling party to reach the mobile user. The main

di�erence between the secret routing information and the location record of the existing architectures is that the

secret routing information does not give away any information on the user's location.

For each new location visited by the mobile user, the secret routing information is computed using the secret set

construct, where the roles of the entities are instantiated as follows:

� U = fST1:::STng denotes the set of all possible routing nodes;

7

� STsrc denotes the originator of the secret routing information; this can either be the mobile user itself or a

trusted routing node that is closest to the new location;

� S = fSTi1 ; :::; STimg � U , denotes the secret routing information;

� SR is the representation of the secret routing information obtained through one of the aforementioned secret

set techniques.

For each mobile user B and each new location of B, a new value of SR is computed and placed in the HDA along with

B's identi�cation. Whenever another user A wants to communicate with B, A �rst contacts B's HDA. A's message is

then prepended with the current value of SR and the resulting message is broadcasted to all routing nodes adjacent

to HDA. Using the secret set mechanism, each routing node decides whether it is a member of the secret set. If a

node determines that it is a member, it forwards the message on to all of its neighbors. Conversely, non-members

do not forward.

The transmission of the message from HDA to B initially resembles a
ooding mechanism but, soon thereafter, the

ooding e�ect is reduced by having only the nodes on the actual route (the members of the secret set) forwarding

the message. In order to create confusion and prevent the entire actual route from being discovered, some nodes that

are not part of the actual route can be introduced to create so-called decoy routes. These generate message threads

that vanish after a few hops, whereas only the thread corresponding to the actual route eventually reaches B. The

example in Figure 2 illustrates a secret routing scenario where the actual route is: SR = fST2; ST4; ST5; ST7; ST3g,

and ST3; ST7 are decoys.

ST1

ST2

ST3

STsrc
 B

Amessage for B

ST3

B’s
HDA

ST4

ST5
ST6

ST7

ST8

− non−member − "real" SR member − decoy

Figure 2: Location secrecy with secret sets

Variations on the basic secret routing scheme can be devised where the need for an HDA can be eliminated by

placing the secret routing information in a public directory. Similarly, the routing mechanism can be re�ned by the

introduction of several routing levels in order to keep only a portion of the routing information secret.

8 Future Work

This paper represents only an initial e�ort in the area of secret sets and their applications. There remain a number

of items for follow-up work:

� The CRT and bit vector constructs need to be compared more systematically. Intuitively, the relationship

between the total member population (n) and the cardinality of the secret set (m) can be used to determine

8

which of the two methods is more e�cient. However, other considerations (e.g., susceptability to A2 attacks)

need to be reckoned with.

� Methods presented in this paper are all relatively simple. There needs to be further investigation of more

sophisticated secret set constructs.

� Parallel security services such as secret set data integrity, and originator (source) anonymity need to be inte-

grated with the secret set constructs.

� There are, undoubtedly, application examples other than the two presented above.

� A reference implementation of the secret set functions needs to be built. This can serve as a basis for the actual

performance evaluation.

References

[1] D. Chaum, Security Without Identi�cation: Transactions Systems to Make Big Brother Obsolete, CACM Vol. 28, No. 10,

October 1985.

[2] M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, EUROCRYPT'94.

[3] G. Chiou and W. Chen, Secure Broadcasting Using the Secure Lock, IEEE Transactions on Software Engineering, Vol. 15

No. 8, August 1989.

[4] X. Lai and J. Massey, A proposal for a New Block Encryption Standard, EUROCRYPT'90.

[5] R. Rivest, A. Shamir, and L. M. Adleman, Cryptographic Communications System and Method, U.S Patent 4,405,829,

September 1983.

[6] A. P�tzmann and M. Waidner, Networks Without User Observability { Design Options, EUROCRYPT'85, Also in

Computers & Security, Vol. 6 No. 2, 1987.

[7] D. Chaum, The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability, Journal of Cryptol-

ogy, Vol. 1 No. 1, 1988.

[8] A. Fiat and M. Naor, Broadcast Encryption, CRYPTO'93.

[9] D. Boneh and R. Venkatesan, Hardness of Computing the Most Signi�cant Bits of Secret Keys in Di�e-Hellman and

Related Schemes, CRYPTO'96.

[10] C. Blundo and A. Cresti, Space Requirements for Broadcast Encryption, EUROCRYPT'94.

9

