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Abstract

We deal with zero-sum two-player stochastic games withegeihformation. We propose two algorithms to find the umifor
optimal strategies and one method to compute the optinralitge of discount factors. We prove the convergence in fiinite for
one algorithm. The uniform optimal strategies are alsonogtifor the long run average criterion and, in transient garfa the
undiscounted criterion as well.

Keywords: Stochastic games, multi-agent Markov decision procegsefect information, uniform optimal strategies, optiital
range

1. Introduction (f*,g"), which are optimal in the long run average criterion as
well. The convergence in a finite time of the first algorithm,

Stochastic games, also called multi-agent Markov DecisiofPased on policy improvement, is proven in Secfibn 5. A simple
Processes, are multi-stage interactions among severtat-par method to find the range of discount factors in whi¢h g*)
ipants in an environment whose conditions change stoehastre discount optimal is shown in Sectldn 6. We present our sec
cally, influenced by the decisions of the players. A detailed®nd algorithm, which is a best response algorithm, in Segio
Survey on th|s topic can be found in the bo()k [1] by Fi|ar In SeCtiO@ we show by simulation that the second algorithm
and Vrieze. In this paper we deal with zero-sum Stochasti@as a |0Wer Complexity than the fiI‘St one, in terms Of number Of
games with two players and with perfect information. UnderPivot operations. In Sectidn 9 we finally prove that, for siamt
the perfect information assumption, the reward and thestran Stochastic gamesf*,g*) are optimal under the undiscounted
tion probabilities in each state are controlled at most by on criterion as well.
player. Our results are grounded on the following refersnce  Some notation remarks: the ordering relation between vec-
Filar proved in [2] an ordered field property for the value of tors of the same lengta> (<)b means that for every compo-
switching control stochastic games; the games with peifiect Nnenta(i) andb(i), a(i) > (<)b(i). The indicator function is
formation are a specific case of them. Raghavan and Syed prtgferred to as 1. The symbélstands for Kronecker delta. The
vided in [3] a policy improvement algorithm to determine the discount factor and the interest rate are barred, i®&p), if
optimal strategies for two-player zero-sum perfect infation ~ they represent a fixed real value; the symhisp) represent
games under the discounted criterion, for a fixed discount fa the related real variables.
tor. Inspired by the work of Jeroslow [4], Hordijk, Dekkenda
Kallenberg proposed in|[5] to find the optimal discount strat
gies for Markov Decision Processes (MDP’s) for all discount
factors close enough to 1 by utilizing the simplex methodhin t
ordered field of rational functions with real coefficientslak ) .
Altman, and Avrachenkov presented|in [6] some algorithms fo S= {81’3_2’_' oSN} F(i?r each S(ti?t& the S%Of actlo_nS available
the computation of uniform optimal strategies in the contgx (0 Playeri is calledA™ (s) = {a,°(s),. .., a5 (8)},1=1,2. In
perturbed MDP’s; inl[[7], the same authors proposed an dfficie zero-sum games, for each triple a;,ap) with a; € A (s),
asymptotic simplex method based on Laurent series expansioa, € A?(s) we assign an immediate rewards,a;,ay) to
Our contribution is organized as follows. We first introduce Player 1,—r(s,a;,ay) to Player 2 and a transition probability
our stochastic game model in Sectidn 2. In Sedtion 3 we provdistributionp(.|s,a;,a2) onS.
that, for all discounted factors close enough to 1, the distad A stationary strategyu € Ug for Playeri determines the
value belongs to the field of rational functions with realfeoe probability u(als) that in states Playeri chooses the action
ficients. Moreover, we summarize the main results bf [5]. Inac Al)(s). We assume that both the number of states and the
Sectiorf# we present some useful results on uniform optiynali overall number of available actions are finite. L#®&|s,f,g)
in perfect information games. Then, we propose two algorih andr(s,f,g) be the expectation with respect to the stationary
which compute a pair of uniform discount optimal strategiesstrategiegf,g) of p(s'|s) and ofr (s), respectively.

2. The model

In a two-player stochastic ganfewe have a set of states
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Let B € [0;1) be the discount factor and be the interest
rate such thaB(1+p) = 1. Note that wher8 1 1, thenp | O.
We definedJB(f,g) as theN-by-1 vector whosé-th component

CDE(s,f,g) equals the expecteB-discounted reward when the
initial state of the stochastic gamess

o (f,g) = S BP(F.g)r(f,g),
5(f.9) t;f (f,or(f,9)

whereP(f,g) andr(f,g) are theN-by-N transition probability

matrix and theN-by-1 state-wise expected reward vector assousual way (seel [5]).

ciated to the pair of strategi¢g g), respectively.

Definition 1. TheB-discounted value of the garfiés such that

GJE( )_suplnqu (f,g) = igf S}Jp%(ﬁg). Q)

An optimal strategy*ﬁ (g%) for Player 1 (2) assures to him a
reward which is at least (at most)5(I").

Let &(f,g) be the long run average reward of the game
associated to the pair of strategiég):

Z}P‘fg (f,9)

and letd(I") be the value vector for the long run average crite-
rion of the gamd", defined in an analogous way to expression
(@). The existence of optimal strategies in discountedstsiic
games is guaranteed by the following Theorem.

lim ——

q)(f g T—o T 1

Theorem 2.1([1]). Under the hypothesis of discounted reward
criterion, stochastic games possess a value, the optimeatkst

gies (f*E, g%) exist among stationary strategies and, moreover,

(0P

®p(1) =g

Definition 2. A stationary strategy is said to be uniform di-
scount optimal (or equivalently uniform optimal) for Playe
i=1,2if his optimal for Player i for every3 close enough
to 1 (or, equivalently, for alp close enough to 0).

In the present paper we deal with stochastic games with pe
fect information.

Definition 3. Under the hypothesis of perfect information, in

each state at most one player has more than one action avalla-

ble.

LetS ={s1,...,5, } be the set of states controlled by Player
1l andS = {s;+1,..., S;+1,} be the set controlled by Player 2,
with t;+t; <N.

3. The ordered field of rational functions with real coeffi-
cients

Let P(R) be the ring of the polynomials with real coeffi-
cients.

Definition 4. The dominating coefficient of a polynomial
p(X) = ap + a1x+ --- + anX" is the coefficient @ where k=
min{i : & # 0} and we denote it witl9 ().

Let F(R) be the non-Archimedean ordered field of fractions
of polynomials with coefficients ifR:

Co+ C1X+ -+ - + CpX"
do + diX+ - - - 4 dpx™

f(x) = f e F(R),

where the operations of sum and product are defined in the
Two rational functios'g, p/q are
identical (and we say/g = p/q) if and only if h(x)q(x)

P(X)g(x), Vx € R.

Lemma 3.1([5]). A complete ordering in ER) is obtained by
the rule: p/q > 0if and only if Z(p)Z(q) > 0, where pqg €
P(R).

In the same way, we also define the operations of maximum
(max) and minimum (mip) in F(R).

Lemma 3.2([5]). The rational function pq is positive(p/q >
0) if and only if there existsgpc> 0 such that (¥x) /q(x) > O for
every xc (0;g).

3.1. Computation of Blackwell optimum policy in MDP’s

Let us consider a Markov Decision Process (MDP), which
can be seen as a two-player stochastic game in which one of the
two players fixes its own strategy. LA{s) be the finite action
space available in state= S Letm(s) = |A(s)|.

Definition 5. The strategyf* is Blackwell optimal if and only
if there existsp* > 0 such thatf* is optimal in the(p +1)~1-
discounted MDP for all the interest ratg@se (0;0*].

In [5] the authors provide an algorithm to compute the Black-
well optimal policy in MDP’s. It consists in solving the follv-
ing parametric linear programming model:

max 353 50 Xsa(p)r (s,)

LI+ P& - pislsa)xealo) < L, S €5 @)
XsA,a(p) >0, seSacA(y)

in the ordered field of rational functions with real coeffi-
cients F(R). The Blackwell optimal strategy is computed
V¥ (als) := 1 (x;4(p) > 0) for all s€ S a e A(s), where
{xsa(p), Vs,a} is the solution of[(R).

3.2. Application to stochastic games

In this section we will introduce the ordered figidRR) in
stochastic games, not necessarily with perfect informatio

Theorem 3.3. Letf, g be two stationary strategies for Players
1 and 2, respectively. L&, (f,g) : R — RN be the discounted
reward associated t¢f, g), expressed as a function pf Then,

®,(f,g) € F(R).



Proof. For any pair of stationary strategi€sg), we can write
Vse [1;N]:

N

; [(1+p)ds — P(S[s T,9)|Pp(S,f,9) = (1+p)r (s f,0),
=1

As in the case in which the discount interest rate is fixed, we
achieve the following result. Its proof directly stems froine
Bellman optimality equations in the ordered fi€l¢R).

Lemma 4.3. Letl be a stochastic game with perfect informa-
tion. A pair of pure stationary strategi€$*,g*) is uniform di-

wherep is a variable. By solving the above system of equationsscount optimal if and only if no uniform adjacent improveten

in the unknowr®, by Cramer rule, itis evident that, (f,g) €
F(R).

From TheoremB 211 arild 3.3 we obtain the following Lemma

which ensures that, for discounted factors close enough to

is possible for both players.

In perfect information games, the following result holds.

}emma 4.4 ([3]). In a zero-sum, perfect information, two-

the discounted value exists and belongs to the field of ration Player discounted stochastic gamavith interest ratep > 0, a

functions with real coefficients.

pair of pure stationary strategieg*,g*) is optimal if and only
if ®5(f*,g") = ®5(I"), the value of the discounted stochastic

Lemma 3.4. Letl be a zero-sum stochastic game possessingamer .

uniform discount optimal strategiés andg* for Players 1 and
2, respectively. Then, there exi€t§(I") € F(R) such that:

q)p(fvg*) §| q:’p(f*?g*) =l CD:.)(F) §| ¢P(f*7g)7

Proof. By hypothesis, there exisgg’ >0 such tha(f*,g*) are
discounted optimal for all the interest rafes (0;p*]. For The-
orem[3.3,9,(f*,g") € F(R) and, from Theorerh 211, the uni-
form optimum valueb;(I") = ®5(f*,g*) Vp € (0;0*]. Hence,
the saddle point relation ifil(3) holds. O

vf,g. (3)

Definition 6. @ (I"), defined as irfd), is the uniform discount
value of the stochastic ganiie

4. Uniform optimality in perfect information games

From the above result we can easily derive the analogous pro-
perty in the ordered fiel& (R).

Lemma 4.5. In a zero-sum, two-player stochastic garme
with perfect information, a pair of pure stationary straieg
(f*,g*) are uniform discount optimal if and onlydf, (f*,g*) =|
@5 () € F(R), wheredy(I") is the uniform discount value of
r.

Proof. The only if statement coincides with the assertion of
Theoreni21l. Conversely, if a pair of strategigsg*) has the
property®, (f*,g*) = @ ("), then there existg* >0 such that
Vp € (0;p*], @5(f*,g*) coincides with the value of the game
I, Vp € (0;p*]. Then, thanks to Lemnfa4.4, we can say that
the strategieg’, g* are optimal in the discounted garndor any

In a perfect information game, a pure stationary strategy foP € (0;0*], which means that they are uniform optimal. [

Playeri is a probability distributiorf(.|s) on the action space
Ai(s) such that there exisese Aj(s) for whichf(als) = 1, for
everyse S

Theorem 4.1(]1]). For a stochastic game with perfect informa-
tion, both players possess uniform discount optimal puse st

tionary strategies, which are optimal for the average aiia
as well.

Remark 1. Generally, the discounted value of a stochastic
game for all the interest rates close enough to 0 belongsedo th
field of real Puiseux series (see [1]).

Let s be a state controlled by Player 1,2 andX C Ai(s).
Let us calll’}; the stochastic game which is equivalenftex-
cept in states, where Player has only the actionX available.
We present the following Lemma, whose proof is analogous to

Definition 7. We call two pure stationary strategies adjacent if the one in the real field (selg [3]).

and only if they differ only in one state.

Lemma 4.6. Leti=1,2and s € S, XCA(s), YCA(s),

The following property holds, whose proof is analogous tox Ny = 0. Then@;(FtXUY) € F(R), the uniform value of the

the one in the field of real numbers in [3].

Lemma 4.2. Letg be a strategy for Player 2 anfif, be two
adjacent strategies for Player 1. Then, eith@p(f1,9) >
D, (f,9) or Dp(f1,9) < Pp(f,9), which means that the two vec-
tors are partially ordered.

The Lemmd 4R allows us to give the following definition.

Definition 8. Let (f,g) be a pair of pure stationary strategies
for Player 1 and 2, respectively. We c8ll(g1) a uniform adja-
cent improvement for Player 2) in state s if and only iff;
(1) is a pure stationary strategy which differs frdnfg) only
in state s and ®,(f1,9) > Pp(f,9) (Pp(f,01) < Pp(f,0)),
where the strict inequality holds in at least one component.

3

gamel, , equals

@ (Mkuy) =1 max {®p (M%), ®(MY)}  if i=1,
@ (Mkuy) =1 min {@, (M), @p(MY)}  if i=2.

5. Policy improvement algorithm

In this section we find a policy improvement algorithm
which allows to find the uniform discount optimal strategies
for both players in a stochastic game with perfect infororati
Such strategies coincide with the optimal strategies fetdhg
run average criterion, for Theordm ¥.1. Following the liogés
Raghavan and Syed'’s algorithm [3] for a fixed discount factor



we propose an algorithm suitable for the ordered fie(®). Theorem 5.2. Algorithm[5.] stops in a finite time and the pair
of strategies(f*,g*) are both uniform discount and long run

Let I be a zero-sum two-player stochastic game with perfecaverage optimal in the stochastic game

information. Letl;(f) be the MDP faced by Playeémwhen the

opponent fixes its own strategy Proof. The proof follows the Iines_ of thg analogous one in the
real field (se€ell3]). It proceeds by induction on the overaithr
Algorithm 5.1. ber of actions and it exploits Lemm@as4.3 4.6. The main

difference from|[3], that does not affect the correctnesthef

Step1 Select randomly a stationary deterministic pure stratggy proof, is that Player 1 is not constrained in optimizing texi

for Player 2. graphically the MDH 1(g). For Theorend 4]1(f*,g*) are long
Step 2 Find the Blackwell optimal strategy for Player 1 in the "Un average optimal as well. N

MDP I'1(g) by solving within the field ER) the follow-

ing linear programming model: 5.1. Round-off errors sensitivity

N <m(s The first non-zero coefficients of the polynomials (humarato
MaX 2s-12a-1 Xsa(P)r(s.a.0) and denominator) of the tableaux obtained throughout the- al
N, z?i(f)[(ler)c‘S&g —p(sls,a,0)]%sa(p) =11, €S rithm unfolding determine the positiveness of the elemeifits
Xsa(p) >10, seS aecAs the tableaux themselves. Hence, Algorithn] 5.1 is highlyssen
(4) tive to the round-off errors that affect the null coefficignt
and compute the pure stratefps If the rewards and the transition probabilities for eachr pi

i strategies are rational, then it is possible to work in thacex
f(als) :==1(%a(p) >10)  VseS acAy(s), (5) arithmetic and such unconveniences are completely avolded
fact, if all the input data are rational, they will stay ratéd after

where{x{,(p), Vs,a} is the solution of[(4). the algorithm execution.

Step 3 Find the minimum k such that iR $x € {S;11,.--, S+t }
there exists an adjacent improvemehtor Player 2, with : S
the help of the simplex tableau associated to the foIIowingG' Computation of the optimality range factor

linear programming model. Let us report the analogous result to Lemimd 4.3 when the

. discount factor is fixed.
min &4 St xsa(p)r (s.1,3)

Zgzl z?i(f)[(lw)ésg —p(s|sf,a)xsa(p)=11,5 €S Lemma 6.1([3]). Letl be a stochastic game with perfect in-

Xsa(p) >1 0, S€S acAys) formation. LetB €[0;1). The pure stationary strategi¢t', g*)
’ B (6)  are B-discount optimal if and only if no uniform adjacent im-
where the entering variables afgsa : g(als) = 1, Vs}. provements are possible for both players in Bliscounted

If no such improvement for Player 2 is possible, then go tostochastic gameé.

step 4, otherwise sgt=g' and go to step 2. . . .
P =9 g P Let us define witi{ (f,), wheref, € F(R), the set of positive

Step 4 Set(f*,g*) := (f,g) and stop. The strategig$*,g*) are  roots off, such thatd f, /dp|p—u < 0, Yue {(fp). The follow-
uniform discount and long run average optimal in the sto-ing Lemma suggests how to compute the optimality range of
chastic gamé for Player 1 and Player 2, respectively.  discount factors.

Note that all the algebraic operations and the order signgoar Lemma 6.2. Let C be the set of the reduced costs associated to
be intended in the fiel& (R). the two optimal tableaux obtained at the step 2 and 3 of the las
iteration of Algorithm[5l. Lep* = min; {(c), where ce C.

If p* does not exist, then the uniform optimal stratediésg*)

are optimal for allB € [0;1). Otherwise = (14 p*) Lis the
smallest value such th&t*,g*) are B-discount optimal in the
Remark 3. Clearly, the roles of Player 1 and 2 can be swappedgamer, for all B&[B";1).

in Algorithm[5.1. For simplicity, throughout the paper the
Player 1 will be assigned to step 2.

Remark 2. Unlike the solution in|[3], Algorithni 5]1 does not
require the strategy search for Player 1 to be lexicograplhic
fact, Player 1 faces in step 2 a classic Blackwell optimazati

Proof. If p* does not exist, then the reduced costs are non-
negative for any > 0. Hence(f*,g*) are optimalv/' 3 € [0; 1).
Remark 4. In step 3 of Algorithni 511, once the staig,gis  Otherwise,vp € (0;p*], the reduced costs are positive, hence
found, the adjacent improvement involves the pivoting f anno adjacent improvements are possible for both playersio8o,
of the non basic variablesx,, a to which corresponds a non Lemmd6.1 they are discounted optimalplf>- p* andp™ € R,

positive (in the field FR)) reduced cost. then at least one reduced cost is negative, hence at leadjean a
cent improvement is possible arftf,g*) are notf-discount
Let us prove the convergence in finite time of Algorithml5.1.  optimal, whergB = (1+p) 1. O

4



7. Best response algorithm M»: Algorithm([5.1, in which in step 2 Player 1 pursues a lex-
icographic search, pivoting iteratively with respect te th
first non-basic variable with a negative (in the fiél{R))
reduced cost. This method is analogous to the one shown

Algorithm 7.1. in [3], but in the fieldF (R).
Mg3: Algorithm[Z13.

Letl be a zero-sum two-player stochastic game with perfect
information. Consider the following best-response altponi

Step 1 Select a stationary pure strategyfor Player 2. Set k=0.

Step 2 Find the Blackwell optimal strateg for Player 1 in the The results are shown in Tables 1 and 2. The simulations were

MDP 1(gk). carried out on 1Hrandomly generated stochastic games with 4
states, 2 for Player 1 and 2 for Player 2. In each state 5 action
Step 3 If g is Blackwell optimal inl»(fy), then set(f*,g*) :=  are available for the controlling player.
(fx,gk) and stop. Otherwise, find the Blackwell optimal
strategygk.1 for Player 2 in the MDA (fk), setk=k+1 n. pivotings > (%) M My M3
and go to step 2. My 40.59 My - 52.85 1857
M, 41.87 M, 4218 - 15.26
Obviously, if Algorithm[Z.1 stopsf*,g*) is a pair of uniform M3 24.93 Mz  80.05 82.75 -

discount and long run average optimal strategies, singesttee _ N
both Blackwell optimal in the respective MDP’E;L(g*) and Table 1: Average number of pivo- Table 2:M; > M; when, fixing the

N tings for the 3 methods. game, the number of pivotings in
r2(f ) ) ) ) M; is strictly smaller than the num-
The proof that Algorithni 711 never cycles is still an opentpro ber of pivoting inM;.

lem. We found thatPy (fii1,9kr1) <i Pp(fk, k), is not true in
general. However, if the conjecture In [3] were valid, them w It is evident that AlgorithnM3 is much faster than the other
could conclude that Algorithin 7.1 terminates in a finite time  two. In our numerical experimen¥)s never cycled. The differ-
ence betweeM; andM is due to the more efficient simplex

8. Complexity: simulation results method used by Player 1 i,.

In Algqrithm 51, P.Iayer 1 faces at. each itergtion an MDPg  Transient games
optimization problem in the field of rational functions witkal
coefficients, which is solvable in polynomial time. Player 2  Let p(s'|s) be the probability that the process is in stsitat
instead, is involved in a lexicographic search throughbetal-  timet given thatsis the initial state. Let us give the definition
gorithm unfolding, whose complexity is at worst expondritia  of transient games.
the number of stated. Player 2 lexicographically expands its o ) ) ) ) )
search of its optimal strategy, and at #h iteration the two Definition 9. A stochaspg game is transient if and onI)_/ if
players find the solution of a subgari& which monotoni-  Yt=02sesPt(S[s,f,g) is finite for all s S and for any pair
cally tends to the entire stochastic gafe of stationary strategief,g).
The efficiency o_f Algorithn{ 511 i_s mostly due to the fact that o e we present the result of this section.
most of the actions totally dominate other actions. In other
words, it often occurs that an optimal action found in the-sub Theorem 9.1. The uniform optimal strategie§*,g*) for a
gamerl ¥ is optimum also irf’, and consequently remains the transient stochastic game with perfect information areropt
same during all the remaining iterations. This exponegtia-  in the undiscounted criterion, i.g8 =1, as well.

duces the policy space in which the algorithm needs to search _ ) _ . i
Proof. The uniform optimal strategies are still optimal when

Remark 5. Since in Algorithn{ 511 players’ roles are inter- p | 0, since the reduced costs of the tableaux built at the end
changeble and since most of the actions dominate totallgroth of Algorithm[5.1 are non negative whgn| 0. We know from
actions, we suggest to assign the step 2 of the algorithmeto th]1] that, for transient stochastic games, the reward aatexti
player whose total number of available actions is bigger. to each pair of stationary strategigfsg) is finite. By invoking

. | Abel's Theorem on power series [8], we claim that the reward
Differently from [3], the search for Player 1 does not neecjassociated to any stationaffyg) tends to the undiscounted re-

to be lexicographic, and Player 1 is left totally free to optie ward whenp | 0. Hence, the saddle-point relatidd (3) is stil
the MDP that it faces at each iteration of the algorithm in thevalid whenp — 0 and (f* é*) are optimal in the undiscounted

most efficient way. criterion as well. O

Let us compare in terms of number of pivotings the following
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