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Abstract

We deal with zero-sum two-player stochastic games with perfect information. We propose two algorithms to find the uniform
optimal strategies and one method to compute the optimalityrange of discount factors. We prove the convergence in finitetime for
one algorithm. The uniform optimal strategies are also optimal for the long run average criterion and, in transient games, for the
undiscounted criterion as well.
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1. Introduction

Stochastic games, also called multi-agent Markov Decision
Processes, are multi-stage interactions among several partic-
ipants in an environment whose conditions change stochasti-
cally, influenced by the decisions of the players. A detailed
survey on this topic can be found in the book [1] by Filar
and Vrieze. In this paper we deal with zero-sum stochastic
games with two players and with perfect information. Under
the perfect information assumption, the reward and the transi-
tion probabilities in each state are controlled at most by one
player. Our results are grounded on the following references.
Filar proved in [2] an ordered field property for the value of
switching control stochastic games; the games with perfectin-
formation are a specific case of them. Raghavan and Syed pro-
vided in [3] a policy improvement algorithm to determine the
optimal strategies for two-player zero-sum perfect information
games under the discounted criterion, for a fixed discount fac-
tor. Inspired by the work of Jeroslow [4], Hordijk, Dekker, and
Kallenberg proposed in [5] to find the optimal discount strate-
gies for Markov Decision Processes (MDP’s) for all discount
factors close enough to 1 by utilizing the simplex method in the
ordered field of rational functions with real coefficients. Filar,
Altman, and Avrachenkov presented in [6] some algorithms for
the computation of uniform optimal strategies in the context of
perturbed MDP’s; in [7], the same authors proposed an efficient
asymptotic simplex method based on Laurent series expansion.
Our contribution is organized as follows. We first introduce
our stochastic game model in Section 2. In Section 3 we prove
that, for all discounted factors close enough to 1, the discounted
value belongs to the field of rational functions with real coef-
ficients. Moreover, we summarize the main results of [5]. In
Section 4 we present some useful results on uniform optimality
in perfect information games. Then, we propose two algorithms
which compute a pair of uniform discount optimal strategies

(f∗,g∗), which are optimal in the long run average criterion as
well. The convergence in a finite time of the first algorithm,
based on policy improvement, is proven in Section 5. A simple
method to find the range of discount factors in which(f∗,g∗)
are discount optimal is shown in Section 6. We present our sec-
ond algorithm, which is a best response algorithm, in Section 7.
In Section 8 we show by simulation that the second algorithm
has a lower complexity than the first one, in terms of number of
pivot operations. In Section 9 we finally prove that, for transient
stochastic games,(f∗,g∗) are optimal under the undiscounted
criterion as well.

Some notation remarks: the ordering relation between vec-
tors of the same lengtha≥ (≤)b means that for every compo-
nenta(i) andb(i), a(i) ≥ (≤)b(i). The indicator function is
referred to as 1I. The symbolδ stands for Kronecker delta. The
discount factor and the interest rate are barred, i.e. (β ,ρ), if
they represent a fixed real value; the symbols(β ,ρ) represent
the related real variables.

2. The model

In a two-player stochastic gameΓ we have a set of states
S= {s1,s2, . . . ,sN}. For each states, the set of actions available

to Playeri is calledA(i)(s) = {a(i)
1 (s), . . . ,a(i)

mi(s)
(s)}, i = 1,2. In

zero-sum games, for each triple(s,a1,a2) with a1 ∈ A(1)(s),
a2 ∈ A(2)(s) we assign an immediate rewardr(s,a1,a2) to
Player 1,−r(s,a1,a2) to Player 2 and a transition probability
distributionp(.|s,a1,a2) onS.

A stationary strategyu ∈ US for Player i determines the
probability u(a|s) that in states Player i chooses the action
a∈ A(i)(s). We assume that both the number of states and the
overall number of available actions are finite. Letp(s′|s, f,g)
and r(s, f,g) be the expectation with respect to the stationary
strategies(f,g) of p(s′|s) and ofr(s), respectively.
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Let β ∈ [0;1) be the discount factor andρ be the interest
rate such thatβ (1+ ρ) = 1. Note that whenβ ↑ 1, thenρ ↓ 0.
We defineΦβ (f,g) as theN-by-1 vector whosei-th component

Φβ (si , f,g) equals the expectedβ -discounted reward when the
initial state of the stochastic game issi :

Φβ (f,g) =
∞

∑
t=0

β t
Pt(f,g)r(f,g),

whereP(f,g) andr(f,g) are theN-by-N transition probability
matrix and theN-by-1 state-wise expected reward vector asso-
ciated to the pair of strategies(f,g), respectively.

Definition 1. Theβ -discounted value of the gameΓ is such that

Φβ (Γ) = sup
f

inf
g

Φβ (f,g) = inf
g

sup
f

Φβ (f,g). (1)

An optimal strategyf∗
β

(g∗
β
) for Player 1 (2) assures to him a

reward which is at least (at most)Φβ (Γ).

Let Φ(f,g) be the long run average reward of the gameΓ
associated to the pair of strategies(f,g):

Φ(f,g) = lim
T→∞

1
T +1

T

∑
t=0

Pt(f,g)r(f,g)

and letΦ(Γ) be the value vector for the long run average crite-
rion of the gameΓ, defined in an analogous way to expression
(1). The existence of optimal strategies in discounted stochastic
games is guaranteed by the following Theorem.

Theorem 2.1([1]). Under the hypothesis of discounted reward
criterion, stochastic games possess a value, the optimal strate-
gies(f∗

β
,g∗

β
) exist among stationary strategies and, moreover,

Φβ (Γ) = Φβ (f∗
β
,g∗

β
).

Definition 2. A stationary strategyh is said to be uniform di-
scount optimal (or equivalently uniform optimal) for Player
i = 1,2 if h is optimal for Player i for everyβ close enough
to 1 (or, equivalently, for allρ close enough to 0).

In the present paper we deal with stochastic games with per-
fect information.

Definition 3. Under the hypothesis of perfect information, in
each state at most one player has more than one action availa-
ble.

Let S1 = {s1, . . . ,st1} be the set of states controlled by Player
1 andS2 = {st1+1, . . . , st1+t2} be the set controlled by Player 2,
with t1+t2≤N.

3. The ordered field of rational functions with real coeffi-
cients

Let P(R) be the ring of the polynomials with real coeffi-
cients.

Definition 4. The dominating coefficient of a polynomial
p(x) = a0 + a1x+ · · ·+ anxn is the coefficient ak, where k=
min{i : ai 6= 0} and we denote it withD( f ).

Let F(R) be the non-Archimedean ordered field of fractions
of polynomials with coefficients inR:

f (x) =
c0 +c1x+ · · ·+cnxn

d0 +d1x+ · · ·+dmxm f ∈ F(R),

where the operations of sum and product are defined in the
usual way (see [5]). Two rational functionsh/g, p/q are
identical (and we sayh/g =l p/q) if and only if h(x)q(x) =
p(x)g(x), ∀x∈ R.

Lemma 3.1([5]). A complete ordering in F(R) is obtained by
the rule: p/q >l 0 if and only ifD(p)D(q) > 0, where p,q ∈
P(R).

In the same way, we also define the operations of maximum
(maxl ) and minimum (minl ) in F(R).

Lemma 3.2([5]). The rational function p/q is positive(p/q>l

0) if and only if there exists x0 > 0 such that p(x)/q(x) > 0 for
every x∈ (0;x0].

3.1. Computation of Blackwell optimum policy in MDP’s

Let us consider a Markov Decision Process (MDP), which
can be seen as a two-player stochastic game in which one of the
two players fixes its own strategy. LetA(s) be the finite action
space available in states∈ S. Let m(s) = |A(s)|.

Definition 5. The strategyf∗ is Blackwell optimal if and only
if there existsρ̄∗ > 0 such thatf∗ is optimal in the(ρ̄ + 1)−1-
discounted MDP for all the interest rates̄ρ ∈ (0;ρ̄∗].

In [5] the authors provide an algorithm to compute the Black-
well optimal policy in MDP’s. It consists in solving the follow-
ing parametric linear programming model:











max
x

l ∑N
s=1 ∑m(s)

a=1 xs,a(ρ)r(s,a)

∑N
s=1 ∑m(s)

a=1 [(1+ρ)δs,s′ − p(s′|s,a)]xs,a(ρ) =l 1, s′ ∈ S
xs,a(ρ) ≥l 0, s∈ S, a∈ A(s)

(2)

in the ordered field of rational functions with real coeffi-
cients F(R). The Blackwell optimal strategy is computed
as v∗(a|s) := 1I

(

x∗s,a(ρ) >l 0
)

for all s ∈ S, a ∈ A(s), where
{x∗s,a(ρ), ∀s,a} is the solution of (2).

3.2. Application to stochastic games

In this section we will introduce the ordered fieldF(R) in
stochastic games, not necessarily with perfect information.

Theorem 3.3. Let f,g be two stationary strategies for Players
1 and 2, respectively. LetΦρ(f,g) : R → R

N be the discounted
reward associated to(f,g), expressed as a function ofρ . Then,
Φρ(f,g) ∈ F(R).
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Proof. For any pair of stationary strategies(f,g), we can write
∀s∈ [1;N]:

N

∑
s′=1

[(1+ρ)δs,s′ − p(s′|s, f,g)]Φρ(s′, f,g) = (1+ρ)r(s, f,g),

whereρ is a variable. By solving the above system of equations
in the unknownΦρ by Cramer rule, it is evident thatΦρ(f,g) ∈
F(R).

From Theorems 2.1 and 3.3 we obtain the following Lemma,
which ensures that, for discounted factors close enough to 1,
the discounted value exists and belongs to the field of rational
functions with real coefficients.

Lemma 3.4. Let Γ be a zero-sum stochastic game possessing
uniform discount optimal strategiesf∗ andg∗ for Players 1 and
2, respectively. Then, there existsΦ∗

ρ(Γ) ∈ F(R) such that:

Φρ(f,g∗) ≤l Φρ(f∗,g∗) =l Φ∗
ρ(Γ) ≤l Φρ(f∗,g), ∀ f,g. (3)

Proof. By hypothesis, there existsρ∗ >0 such that(f∗,g∗) are
discounted optimal for all the interest ratesρ ∈ (0;ρ∗]. For The-
orem 3.3,Φρ(f∗,g∗) ∈ F(R) and, from Theorem 2.1, the uni-
form optimum valueΦρ(Γ) = Φρ(f∗,g∗) ∀ρ ∈ (0;ρ∗]. Hence,
the saddle point relation in (3) holds.

Definition 6. Φ∗
ρ(Γ), defined as in(3), is the uniform discount

value of the stochastic gameΓ.

4. Uniform optimality in perfect information games

In a perfect information game, a pure stationary strategy for
Playeri is a probability distributionf(.|s) on the action space
Ai(s) such that there existsa ∈ Ai(s) for which f(a|s) = 1, for
everys∈ S.

Theorem 4.1([1]). For a stochastic game with perfect informa-
tion, both players possess uniform discount optimal pure sta-
tionary strategies, which are optimal for the average criterion
as well.

Definition 7. We call two pure stationary strategies adjacent if
and only if they differ only in one state.

The following property holds, whose proof is analogous to
the one in the field of real numbers in [3].

Lemma 4.2. Let g be a strategy for Player 2 andf, f1 be two
adjacent strategies for Player 1. Then, eitherΦρ(f1,g) ≥l

Φρ(f,g) or Φρ(f1,g)≤l Φρ(f,g), which means that the two vec-
tors are partially ordered.

The Lemma 4.2 allows us to give the following definition.

Definition 8. Let (f,g) be a pair of pure stationary strategies
for Player 1 and 2, respectively. We callf1 (g1) a uniform adja-
cent improvement for Player 1(2) in state st if and only if f1

(g1) is a pure stationary strategy which differs fromf (g) only
in state st and Φρ(f1,g) ≥l Φρ(f,g) (Φρ(f,g1) ≤l Φρ(f,g)),
where the strict inequality holds in at least one component.

As in the case in which the discount interest rate is fixed, we
achieve the following result. Its proof directly stems fromthe
Bellman optimality equations in the ordered fieldF(R).

Lemma 4.3. Let Γ be a stochastic game with perfect informa-
tion. A pair of pure stationary strategies(f∗,g∗) is uniform di-
scount optimal if and only if no uniform adjacent improvement
is possible for both players.

In perfect information games, the following result holds.

Lemma 4.4 ([3]). In a zero-sum, perfect information, two-
player discounted stochastic gameΓ with interest rateρ > 0, a
pair of pure stationary strategies(f∗,g∗) is optimal if and only
if Φρ(f∗,g∗) = Φρ(Γ), the value of the discounted stochastic
gameΓ.

From the above result we can easily derive the analogous pro-
perty in the ordered fieldF(R).

Lemma 4.5. In a zero-sum, two-player stochastic gameΓ
with perfect information, a pair of pure stationary strategies
(f∗,g∗) are uniform discount optimal if and only ifΦρ(f∗,g∗) =l

Φ∗
ρ(Γ) ∈ F(R), whereΦ∗

ρ(Γ) is the uniform discount value of
Γ.

Proof. The only if statement coincides with the assertion of
Theorem 2.1. Conversely, if a pair of strategies(f∗,g∗) has the
propertyΦρ(f∗,g∗)=l Φ∗

ρ(Γ), then there existsρ∗>0 such that
∀ρ ∈ (0;ρ∗], Φρ(f∗,g∗) coincides with the value of the game
Γ, ∀ρ ∈ (0;ρ∗]. Then, thanks to Lemma 4.4, we can say that
the strategiesf∗,g∗ are optimal in the discounted gameΓ for any
ρ ∈ (0;ρ∗], which means that they are uniform optimal.

Remark 1. Generally, the discounted value of a stochastic
game for all the interest rates close enough to 0 belongs to the
field of real Puiseux series (see [1]).

Let st be a state controlled by Playeri =1,2 andX⊂Ai(st).
Let us callΓt

X the stochastic game which is equivalent toΓ ex-
cept in statest , where Playeri has only the actionsX available.
We present the following Lemma, whose proof is analogous to
the one in the real field (see [3]).

Lemma 4.6. Let i= 1,2 and st ∈ Si , X ⊂Ai(st), Y⊂Ai(st),
X ∩Y = /0. ThenΦ∗

ρ(Γt
X∪Y) ∈ F(R), the uniform value of the

gameΓt
X∪Y, equals

Φ∗
ρ(Γt

X∪Y) =l maxl {Φ∗
ρ(Γt

X),Φ∗
ρ(Γt

Y)} if i = 1,

Φ∗
ρ(Γt

X∪Y) =l minl {Φ∗
ρ(Γt

X),Φ∗
ρ(Γt

Y)} if i = 2.

5. Policy improvement algorithm

In this section we find a policy improvement algorithm
which allows to find the uniform discount optimal strategies
for both players in a stochastic game with perfect information.
Such strategies coincide with the optimal strategies for the long
run average criterion, for Theorem 4.1. Following the linesof
Raghavan and Syed’s algorithm [3] for a fixed discount factor,
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we propose an algorithm suitable for the ordered fieldF(R).

Let Γ be a zero-sum two-player stochastic game with perfect
information. LetΓi(f) be the MDP faced by Playeri when the
opponent fixes its own strategyg.

Algorithm 5.1.

Step 1 Select randomly a stationary deterministic pure strategyg
for Player 2.

Step 2 Find the Blackwell optimal strategy for Player 1 in the
MDP Γ1(g) by solving within the field F(R) the follow-
ing linear programming model:











max
x

l ∑N
s=1 ∑m1(s)

a=1 xs,a(ρ)r(s,a,g)

∑N
s=1 ∑m1(s)

a=1 [(1+ρ)δs,s′ − p(s′|s,a,g)]xs,a(ρ) =l 1, s′ ∈ S
xs,a(ρ) ≥l 0, s∈ S, a∈ A1(s)

(4)
and compute the pure strategyf as

f(a|s) := 1I
(

x∗s,a(ρ) >l 0
)

∀s∈ S, a∈ A1(s), (5)

where{x∗s,a(ρ), ∀s,a} is the solution of (4).

Step 3 Find the minimum k such that in st1+k ∈ {st1+1, . . . ,st1+t2}
there exists an adjacent improvementg′ for Player 2, with
the help of the simplex tableau associated to the following
linear programming model:











min
x

l ∑N
s=1 ∑m2(s)

a=1 xs,a(ρ)r(s, f,a)

∑N
s=1 ∑m2(s)

a=1 [(1+ρ)δs,s′ − p(s′|s, f,a)]xs,a(ρ) =l 1, s′ ∈ S
xs,a(ρ) ≥l 0, s∈ S, a∈ A2(s)

(6)
where the entering variables are{xs,a : g(a|s) = 1, ∀s}.
If no such improvement for Player 2 is possible, then go to
step 4, otherwise setg:=g′ and go to step 2.

Step 4 Set(f∗,g∗) := (f,g) and stop. The strategies(f∗,g∗) are
uniform discount and long run average optimal in the sto-
chastic gameΓ for Player 1 and Player 2, respectively.

Note that all the algebraic operations and the order signs are to
be intended in the fieldF(R).

Remark 2. Unlike the solution in [3], Algorithm 5.1 does not
require the strategy search for Player 1 to be lexicographic. In
fact, Player 1 faces in step 2 a classic Blackwell optimization.

Remark 3. Clearly, the roles of Player 1 and 2 can be swapped
in Algorithm 5.1. For simplicity, throughout the paper the
Player 1 will be assigned to step 2.

Remark 4. In step 3 of Algorithm 5.1, once the state st1+k is
found, the adjacent improvement involves the pivoting of any
of the non basic variable xst1+k,a to which corresponds a non
positive (in the field F(R)) reduced cost.

Let us prove the convergence in finite time of Algorithm 5.1.

Theorem 5.2. Algorithm 5.1 stops in a finite time and the pair
of strategies(f∗,g∗) are both uniform discount and long run
average optimal in the stochastic gameΓ.

Proof. The proof follows the lines of the analogous one in the
real field (see [3]). It proceeds by induction on the overall num-
ber of actions and it exploits Lemmas 4.3 and 4.6. The main
difference from [3], that does not affect the correctness ofthe
proof, is that Player 1 is not constrained in optimizing lexico-
graphically the MDPΓ1(g). For Theorem 4.1,(f∗,g∗) are long
run average optimal as well.

5.1. Round-off errors sensitivity

The first non-zero coefficients of the polynomials (numerator
and denominator) of the tableaux obtained throughout the algo-
rithm unfolding determine the positiveness of the elementsof
the tableaux themselves. Hence, Algorithm 5.1 is highly sensi-
tive to the round-off errors that affect the null coefficients.

If the rewards and the transition probabilities for each pair of
strategies are rational, then it is possible to work in the exact
arithmetic and such unconveniences are completely avoided. In
fact, if all the input data are rational, they will stay rational after
the algorithm execution.

6. Computation of the optimality range factor

Let us report the analogous result to Lemma 4.3 when the
discount factor is fixed.

Lemma 6.1([3]). Let Γ be a stochastic game with perfect in-
formation. Letβ ∈ [0;1). The pure stationary strategies(f∗,g∗)
are β -discount optimal if and only if no uniform adjacent im-
provements are possible for both players in theβ -discounted
stochastic gameΓ.

Let us define withζ ( fρ), wherefρ ∈F(R), the set of positive
roots of fρ such thatd fρ/dρ|ρ=u < 0, ∀u∈ζ ( fρ). The follow-
ing Lemma suggests how to compute the optimality range of
discount factors.

Lemma 6.2. Let C be the set of the reduced costs associated to
the two optimal tableaux obtained at the step 2 and 3 of the last
iteration of Algorithm 5.1. Letρ∗ = minc ζ (c), where c∈ C.
If ρ∗ does not exist, then the uniform optimal strategies(f∗,g∗)
are optimal for allβ ∈ [0;1). Otherwise,β ∗

=(1+ρ∗)−1 is the
smallest value such that(f∗,g∗) are β -discount optimal in the
gameΓ, for all β ∈ [β ∗

;1).

Proof. If ρ∗ does not exist, then the reduced costs are non-
negative for anyρ > 0. Hence,(f∗,g∗) are optimal∀β ∈ [0;1).
Otherwise,∀ρ ∈ (0;ρ∗], the reduced costs are positive, hence
no adjacent improvements are possible for both players. So,for
Lemma 6.1 they are discounted optimal. Ifρ > ρ∗ andρ∗ ∈ R,
then at least one reduced cost is negative, hence at least an adja-
cent improvement is possible and(f∗,g∗) are notβ -discount
optimal, whereβ =(1+ρ)−1.
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7. Best response algorithm

Let Γ be a zero-sum two-player stochastic game with perfect
information. Consider the following best-response algorithm.

Algorithm 7.1.

Step 1 Select a stationary pure strategyg0 for Player 2. Set k:=0.

Step 2 Find the Blackwell optimal strategyfk for Player 1 in the
MDP Γ1(gk).

Step 3 If gk is Blackwell optimal inΓ2(fk), then set(f∗,g∗) :=
(fk,gk) and stop. Otherwise, find the Blackwell optimal
strategygk+1 for Player 2 in the MDPΓ2(fk), set k:=k+1
and go to step 2.

Obviously, if Algorithm 7.1 stops,(f∗,g∗) is a pair of uniform
discount and long run average optimal strategies, since they are
both Blackwell optimal in the respective MDP’s,Γ1(g∗) and
Γ2(f∗).
The proof that Algorithm 7.1 never cycles is still an open prob-
lem. We found thatΦρ(fk+1,gk+1) ≤l Φρ(fk,gk), is not true in
general. However, if the conjecture in [3] were valid, then we
could conclude that Algorithm 7.1 terminates in a finite time.

8. Complexity: simulation results

In Algorithm 5.1, Player 1 faces at each iteration an MDP
optimization problem in the field of rational functions withreal
coefficients, which is solvable in polynomial time. Player 2,
instead, is involved in a lexicographic search throughout the al-
gorithm unfolding, whose complexity is at worst exponential in
the number of statesN. Player 2 lexicographically expands its
search of its optimal strategy, and at thek-th iteration the two
players find the solution of a subgameΓ(k) which monotoni-
cally tends to the entire stochastic gameΓ.
The efficiency of Algorithm 5.1 is mostly due to the fact that
most of the actions totally dominate other actions. In other
words, it often occurs that an optimal action found in the sub-
gameΓ(k), is optimum also inΓ, and consequently remains the
same during all the remaining iterations. This exponentially re-
duces the policy space in which the algorithm needs to search.

Remark 5. Since in Algorithm 5.1 players’ roles are inter-
changeble and since most of the actions dominate totally other
actions, we suggest to assign the step 2 of the algorithm to the
player whose total number of available actions is bigger.

Differently from [3], the search for Player 1 does not need
to be lexicographic, and Player 1 is left totally free to optimize
the MDP that it faces at each iteration of the algorithm in the
most efficient way.

Let us compare in terms of number of pivotings the following
three algorithms:

M1: Algorithm 5.1, in which in step 2 Player 1 pivots with re-
spect to the variable with the minimum reduced cost until
it finds its own Blackwell optimal strategy.

M2: Algorithm 5.1, in which in step 2 Player 1 pursues a lex-
icographic search, pivoting iteratively with respect to the
first non-basic variable with a negative (in the fieldF(R))
reduced cost. This method is analogous to the one shown
in [3], but in the fieldF(R).

M3: Algorithm 7.1.

The results are shown in Tables 1 and 2. The simulations were
carried out on 104 randomly generated stochastic games with 4
states, 2 for Player 1 and 2 for Player 2. In each state 5 actions
are available for the controlling player.

n. pivotings
M1 40.59
M2 41.87
M3 24.93

Table 1: Average number of pivo-
tings for the 3 methods.

> (%) M1 M2 M3

M1 - 52.85 18.57
M2 42.18 - 15.26
M3 80.05 82.75 -

Table 2: Mi > M j when, fixing the
game, the number of pivotings in
Mi is strictly smaller than the num-
ber of pivoting inM j .

It is evident that AlgorithmM3 is much faster than the other
two. In our numerical experiment,M3 never cycled. The differ-
ence betweenM1 andM2 is due to the more efficient simplex
method used by Player 1 inM1.

9. Transient games

Let pt(s′|s) be the probability that the process is in states′ at
time t given thats is the initial state. Let us give the definition
of transient games.

Definition 9. A stochastic game is transient if and only if
∑∞

t=0 ∑s′∈Spt(s′|s, f,g) is finite for all s∈ S and for any pair
of stationary strategies(f,g).

Here we present the result of this section.

Theorem 9.1. The uniform optimal strategies(f∗,g∗) for a
transient stochastic game with perfect information are optimal
in the undiscounted criterion, i.e.β =1, as well.

Proof. The uniform optimal strategies are still optimal when
ρ ↓ 0, since the reduced costs of the tableaux built at the end
of Algorithm 5.1 are non negative whenρ ↓ 0. We know from
[1] that, for transient stochastic games, the reward associated
to each pair of stationary strategies(f,g) is finite. By invoking
Abel’s Theorem on power series [8], we claim that the reward
associated to any stationary(f,g) tends to the undiscounted re-
ward whenρ ↓ 0. Hence, the saddle-point relation (3) is still
valid whenρ = 0 and(f∗,g∗) are optimal in the undiscounted
criterion as well.
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