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Abstract— This work identifies the first lattice decoding so-
lution that achieves, in the most general outage-limited MIMO
setting and the high rate and high SNR limit, both a vanishing
gap to the error-performance of the exact solution of regularized
lattice decoding, as well as a computational complexity that is
subexponential in the number of codeword bits as well as the
rate. The proposed solution employs lattice reduction (LR)-
aided regularized (lattice) sphere decoding and proper timeout
policies.

In light of the fact that, prior to this work, a vanishing
gap was generally attributed only to full lattice searches that
have exponential complexity, in conjunction with the fact that
subexponential complexity was generally attributed to early-
terminated (linear) solutions which have though a performance
gap that can be up to exponential in dimension and/or rate, the
work constitutes the first proof that subexponential complexity
need not come at the cost of exponential reductions in lattice
decoding error performance. Finally, these performance and
complexity guarantees hold for the most general MIMO setting,
for all reasonable fading statistics, all channel dimensions, and
all lattice codes.

I. INTRODUCTION

The work applies to the general setting of outage lim-
ited MIMO communications, where MIMO techniques of-
fer significant advantages in terms of increased throughput
and reliability, although at the price of substantially higher
computational complexity for decoding at the receivers. This
complexity brings to the fore the need for efficient decoders
that nicely tradeoff performance with complexity.

In terms of ML-based decoding, the use of the brute-force
ML decoder, introduces a complexity that scales exponen-
tially with the channel dimension, time, and with the total
number of codeword bits. If on the other hand, a small gap
to the exact ML performance is acceptable, then different
branch-and-bound algorithms such as the sphere decoder
(SD) have been known to require reduced computational re-
sources. These decoding solutions require that the underlying
code be linear, an assumption that we adopt here. Despite the
reduced complexity of sphere decoding of such linear codes,
recent work in [1] has revealed that, to achieve vanishing
gap to ML solutions, even such branch and bound algo-
rithms generally require computational resources that, albeit
significantly smaller than exhaustive ML decoder in many
scenarios of practical interest, again grow exponentially in
the rate and the dimensionality and remain prohibitive for
problems characterized by large dimensionality.

A. Lattice decoding as a computationally efficient alternative
to ML-based decoding

The high complexity required by ML-based (bounded)
decoding solutions, serves as further motivation for exploring
other families of decoding methods. A natural alternative
is lattice decoding obtained by simply removing the con-
stellation boundaries of the ML-based search, an action that
loosely speaking exploits a certain symmetry which in turn
may yield faster implementations. It is the case though that
even with lattice decoding, the computational complexity
can be prohibitive: finding the exact solution to the lattice
decoding problem is generally an NP hard problem (cf. [2]).
At the same time though, the other extreme of very early
terminations of lattice decoding, such as linear solutions,
have been known to achieve computational efficiency at the
expense though of a very sizable gap to the exact solution
of the lattice decoding problem.

In this work we provide the first lattice decoding solution
that achieves, in the most general outage-limited MIMO
setting and the high rate and high SNR limit, both a vanishing
gap to the error-performance of the exact solution of regular-
ized lattice decoding, as well as a computational complexity
that is subexponential in the total number of codeword bits
as well as the rate.

This conference paper represents the shortened version of
a larger work in [3] which establishes that lattice reduction
(LR) is the special ingredient that allows for complexity
reductions. In light of this, it is important to note that while
there is a general agreement in the community that lattice
reduction does reduce complexity, cf. [4], this has not yet
been supported analytically in any relevant communication
settings. In fact, and quite opposite to common wisdom, it
was recently shown that for a fixed radius sphere decoding
implementation of the naive lattice decoder [5], LR does
not improve the sphere decoder complexity tail exponent.
What our present work shows is that in terms of the high
SNR complexity in the outage-limited MIMO setting, LR
brings down the complexity from a complexity cost that is
comparable to ML (bounded) sphere decoding – which is
exponential in the rate [1] – to a complexity cost that is sub-
exponential. However, due to space constraints and in order
to accentuate our main positive points we shall herein restrict
our attention to the proof that LR-aided regularized (lattice)



sphere decoding and proper timeout policies are sufficient
for achieving a vanishing SNR-gap to exact MMSE lattice
decoding at sub-exponential decoding complexity.

B. Rate, reliability and complexity in outage-limited MIMO
communications

In the high SNR regime (SNR will be henceforth denoted
as ρ), a given encoder Xr and decoder Dr are said to achieve
a spatial multiplexing gain r (cf. [6]) and diversity gain d(r)
if

lim
ρ→∞

R(ρ)
log ρ

= r, and − lim
ρ→∞

logPe
log ρ

= d(r)

where R(ρ) denotes the transmission rate and Pe denotes the
probability of codeword error.

A high SNR measure of the computational resources
required by Xr,Dr to achieve a certain rate-reliability per-
formance, was recently introduced in [1] to be the complexity
exponent

c(r), inf{x| − lim
ρ→∞

log P (N ≥ ρx)
log ρ

> d(r)} (1)

where N is the random variable describing the total number
of spent floating point operations (flops). Generally N fluc-
tuates with underlying channel, noise and transmitted code
vector. A simple operational interpretation would be that the
measure asymptotically describes the (maximum) number of
flops one should have at their disposal (irrespective of the
codeword and the channel realization) to achieve a certain
rate-reliability performance which in turn is asymptotically
described by d(r).

The nature of the complexity measure (N ) draws from
that of the reliability measure in outage limited communica-
tions, where neither average-case nor worst-case analysis is
revealing of the behavior of reliability (average case error-
behavior would simply state that at high SNR, the probability
of error approaches 1 for all rates below ergodic capacity,
whereas the worst-case behavior would simply state that
the capacity is zero). Similarly the complexity measure here
deviates from the classical worst-case approach, and reveals
a more pertinent effective complexity measure. Similarly the
complexity exponent aims to best capture the entirety of the
decoding complexity problem. Following the same analogy
with DMT, we note that in a nT × nR MIMO system,
the probability varies between 1 and K1 · ρ−nTnR , bringing
to the fore an error exponent d(r) ∈ [0, nTnR] (K1 is a
subpolynomial function of ρ). Similarly, the fact that the
complexity of any reasonable decoder can vary between 1
and K22RT = K2 · ρrT flops (again K2 is essentially a
constant), brings to the fore a complexity exponent c(r) ∈
[0, rT ].

For any simplified variant of the baseline (exact) MMSE-
preprocessed lattice decoder, the performance gap can, in the
high SNR regime, be quantified as

gL(c), lim
ρ→∞

Pe
P (x̂rld 6= x)

where P (x̂rld 6= x) describes the probability of error of
the exact MMSE-preprocessed lattice decoder, where Pe
denotes the probability of error of the simplified decoder,
and where c (i.e., c(r)) describes the (asymptotic rate of
increase of the) computational resources required to achieve
this performance gap. Generally a smaller computational
complexity c implies a larger gap gL(c). The clear task has
remained for some time to construct decoders that optimally
traverse this tradeoff between g and c, i.e., that reduce the
performance gap to the exact lattice decoding solution, with
reasonable computational complexity. Equivalently, in the
high SNR regime, and for Nmax denoting the computational
resources in flops required to achieve a certain gap g to
the baseline exact MMSE-preprocessed lattice decoder, the
above task can be described as trying to minimize

CL(g), inf{ lim
ρ→∞

logNmax

log ρ
: gL = g}.

This will be achieved later on.

C. Contributions

In this work we prove that the LR-aided MMSE-
preprocessed lattice decoder, implemented by a fixed-radius
sphere decoder and timeout policies that occasionally abort
decoding and declare an error, achieves

gL(ε) = 1, CL(g) = 0 ∀ε > 0, g ≥ 1,

i.e., achieves a vanishing gap to the exact implementation
of MMSE-preprocessed lattice decoding and does so with a
complexity exponent that vanishes to zero, which in turn
implies subexponential complexity in the sense that the
complexity scales slower that any conceivable exponential
function.

The complexity exponent of LR-aided regularized (non-
Euclidean metric) linear decoding, with a timeout policy
based on the cost of LR (recently shown to be DMT optimal
[7]) is zero, but with a potentially huge gap to ML and
also a potentially huge gap to a exact solution to the lattice
decoding problem, this gap can climb to g = 2κ/2, where κ is
the total dimensionality of the problem. This gap is covered
successfully by the LR-aided regularized lattice SD decoder,
which achieves a vanishing gap to the exact lattice decoding,
and does so with a complexity exponent that vanishes to
zero, making it the first solution to achieve a vanishing gap
to the exact lattice decoding problem, with complexity that
is subexponential in the number of codeword bits as well as
the rate.

D. Notation

We use .= to denote the exponential equality, i.e., we write

f(ρ) .= ρB to denote lim
ρ→∞

log f(ρ)
log ρ

= B, and
.
≤,

.
≥ are

similarly defined. With this notation, we can write Pe
.=

ρ−d(r). In this paper we use ‖(•)‖ to denote the Euclidean
norm of (•) and (•)H to denote the conjugate transpose of
(•).



II. SYSTEM MODEL

We consider the general m × n point-to-point multiple-
input multiple-output model given by

y =
√
ρHx + w (2)

where x ∈ Rm, y ∈ Rn and w ∈ Rn respectively denote
the transmitted codewords, the received signal vectors, and
the additive white Gaussian noise with unit variance, where
as stated the parameter ρ takes the role of the signal to
noise ratio (SNR), and where the fading matrix H ∈ Rn×m
is assumed to be random, with elements drawn from arbi-
trary statistical distributions. We consider that one use of
(2) corresponds to T uses of some underlying “physical”
channel. We further assume the transmitted codewords x to
be uniformly distributed over some codebook X ∈ Rm, to
be statistically independent of the channel H, and to satisfy
the power constraint

E{‖x‖2} ≤ T. (3)

We finally consider the rate,

R =
1
T

log |X |, (4)

in bits per channel use (bpcu), where |X | denotes the
cardinality of X .

We consider linear full rate codes, specifically, for r ≥ 0,
a (sequence of) linear (lattice) code(s) Xr is given by Xr =
Λr ∩ R

′
where Λr , ρ

−rT
κ Λ and Λ,{Gs|s ∈ Zκ}, where

Zκ denotes the κ = min{m,n} dimensional integer lattice,
where R′ is a compact convex subset of Rκ referred to as
the shaping region of the code, where R′ contains the all
zero vector, and where the full rank matrix G ∈ Rm×κ is
the generator matrix of Λ. Both R′ and G are taken to be
independent of ρ. For the class of lattice codes considered
here, the codewords take the form

x = ρ
−rT
κ Gs, s ∈ Sκr ,Zκ ∩ ρ rTκ R, (5)

where R ⊂ Rκ is a natural bijection of the shaping region
R′ that preserves the code. Combining (2) and (5) yields the
equivalent model

y = Mrs + w (6)

where

Mr = ρ
1
2−

rT
κ HG ∈ Rn×κ (7)

is a function of the multiplexing gain r. For simplicity of
notation we will, in most cases, denote Mr with M.

The basic naive lattice decoder which ignores R, while
keeping the decision metric of the ML decoder unaltered,
takes the form (cf. [7], also [4])

ŝnld = arg min
ŝ∈Zκ
‖y −Mŝ‖2 . (8)

As a result of neglecting the boundary region, the above
decoder declares an error if ŝnld /∈ Sκr , resulting in possi-
ble performance costs incurred by neglecting the boundary
constraint. These costs motivated the use of MMSE prepro-
cessing which essentially regularizes the decision metric to
penalize vectors outside the boundary constraint Sκr (cf. [7]).

III. LR-AIDED MMSE PREPROCESSED LATTICE SPHERE
DECODING COMPLEXITY

A. MMSE Preprocessed Lattice Decoding

The MMSE preprocessed lattice decoder is obtained by
implementing an unconstrained search over the MMSE pre-
processed lattice, and takes the form

ŝrld = arg min
ŝ∈Zκ
‖Fy −Rŝ‖2 , (9)

where F and R are respectively the MMSE forward and
feedback filters such that F = R−HMH , and where

RHR = MHM + α2
rI, (10)

for αr = ρ
−rT
κ . R is an upper triangular matrix (see

details in Appendix II). For r,Fy, the preprocessed model
transforms from (6) to

r = R−HMHMs + R−HMHw

= R−H(RHR− α2
rI)s + R−HMHw

= Rs− αr2R−Hs + R−HMHw

= Rs + w′ (11)

where

w
′

= −α2
rR
−Hs + R−HMHw, (12)

is the equivalent noise that includes self interference and
colored Gaussian noise. Consequently the corresponding
MMSE preprocessed lattice decoder takes the form

ŝrld = arg min
ŝ∈Zκ
‖r−Rŝ‖2 . (13)

B. LR-aided MMSE preprocessed Lattice Sphere Decoding

Lattice reduction techniques have been typically used in
the MIMO setting to provide better error performance in the
presence of suboptimal decoding solutions (cf. [8] [9]). In
the current setting the LR algorithm, which is employed at
the receiver after the action of MMSE preprocessing, aims
to properly modify the search of the MMSE preprocessed
lattice decoder (cf. (13)), from

ŝrld = arg min
ŝ∈Zκ
‖r−Rŝ‖2

to the new

s̃lr−rld = arg min
ŝ∈Zκ
‖r−RTŝ‖2 , (14)

by accepting as input the MMSE preprocessed lattice gener-
ator matrix R, and producing as output the matrix T ∈ Zκ×κ
which is unimodular meaning that it has integer coefficients
and unit-norm determinant, and which is designed so that the
eigenvalues of RT are more concentrated around one value.
As a result of this unimodularity, we have that T−1Zκ = Zκ,
and consequently the new search in (14) corresponds to yet
another lattice decoder, referred to as the LR-aided MMSE
preprocessed lattice decoder, which operates over a generally
better conditioned channel matrix RT.



Finally with sphere decoding in mind, the LR algorithm
is followed by the QR decomposition1 of the new lattice-
reduced MMSE preprocessed matrix RT, resulting in a new
upper triangular model

r̃ = R̃s̃ + w′′ (15)

and the new LR-aided MMSE preprocessed lattice search,
which accepts the application of the sphere decoder, and
which takes the form

s̃lr−rld = arg min
ŝ∈Zκ

∥∥∥r̃− R̃ŝ
∥∥∥2

, (16)

where Q̃R̃ = RT corresponds to the QR-decomposition
of RT, where R̃ is upper triangular, where r̃, Q̃Hr, s̃ =
T−1s, and where w′′ = Q̃Hw′.

At the very end,

ŝlr−rld = Ts̃lr−rld, (17)

allows for calculation of the estimate of the transmitted
(information) vector s in (6).

We note here that this (exact) solution of the LR-aided
MMSE preprocessed lattice decoder defined by (16), (17),
is identical to the exact solution of the MMSE preprocessed
lattice decoder given by (13), in the sense that

min
ŝ∈Zκ
‖r−Rŝ‖2 = min

ŝ∈Zκ

∥∥r−RTT−1ŝ
∥∥2

(a)
= min

ŝ∈Zκ

∥∥∥r− Q̃R̃T−1ŝ
∥∥∥2

(b)
= min

ŝ∈Zκ

∥∥∥r̃− R̃T−1ŝ
∥∥∥2

= min
ŝ∈T−1Zκ

∥∥∥r̃− R̃ŝ
∥∥∥2

(c)
= min

ŝ∈Zκ

∥∥∥r̃− R̃ŝ
∥∥∥2

, (18)

where (a) follows from the fact that Q̃R̃ = RT, (b) follows
from the rotational invariance of the Euclidean norm, and
(c) follows from the fact that T−1Zκ = Zκ.

The sphere decoder solves (16) by recursively enumerating
all lattice vectors ŝ ∈ Zκ within a given sphere of radius
ξ > 0, i.e., by identifying as candidates the vectors ŝ that
satisfy

‖r̃− R̃ŝ‖2 ≤ ξ2. (19)

The algorithm specifically uses the upper triangular nature
of R̃ to recursively identify partial symbol vectors ŝk, k =
1, · · · , κ, for which

‖r̃k − R̃kŝk‖2 ≤ ξ2, (20)

where ŝk and r̃k respectively denote the last k components
of ŝ and r̃, and where R̃k denotes the k × k lower right
submatrix of R̃. Clearly any set of vectors ŝ ∈ Zκ, with
common last k components that fail to satisfy (20), may be
excluded from the set of candidate vectors.

1A more proper statement would be that the QR decomposition is
performed by the LR algorithm it self.

The enumeration of partial symbol vectors ŝk is equivalent
to the traversal of a regular tree with κ layers – one layer
per symbol component of the information vectors, such that
layer k corresponds to the kth component of the transmitted
information vector s̃. There is a one-to-one correspondence
between the nodes at layer k and the partial vectors ŝk. We
say that a node is visited by the sphere decoder if and only
if the corresponding partial vector ŝk satisfies (20), i.e., there
is a bijection between the visited nodes at layer k and the
set

Nk ,{ŝk ∈ Zk | ‖r̃k − R̃kŝk‖2 ≤ ξ2}. (21)

The total number of visited nodes (in all layers of the tree)
is given by

NSD =
κ∑
k=1

Nk, (22)

where Nk , |Nk| is the number of visited nodes at layer
k of the search tree. The total number of visited nodes
is commonly taken as a measure of the sphere decoder
complexity. It is easy to show that in the scale of interest the
SD complexity exponent c(r) would not change if instead of
considering the number of visited nodes, we considered the
number of flops spent by the decoder2.

In choosing the search radius ξ, we note that for the
transmitted information vector s, the metric in (16) satisfies

‖r̃− R̃ŝ‖2 = ‖w
′′
‖2,

which means that if ‖w′′‖ > ξ, then the transmitted
information vector is excluded from the search, resulting
in a decoding error. As Lemma 2 will later argue, taking
into consideration the self-interference and non-Gaussianity
of w

′′
, we can set ξ =

√
z log ρ, for some z > z′ > d(r)

such that

P
(
‖w
′′
‖2 > ξ2

)
<̇ ρ−z

′
,

which implies a vanishing probability of excluding the trans-
mitted information vector from the search, and a vanishing
degradation of performance.

The usefulness of LR techniques in improving the er-
ror performance of suboptimal MIMO lattice decoders has
received substantial attention, with works like [8] and [9]
introducing the approach in the context of MIMO detectors,
and works like [7] rigorously revealing the approach’s error-
performance capabilities for a very broad setting. On the
other hand, as was discussed in the introduction, apart from
simulations little has been shown about the role of LR
in reducing the complexity of MIMO decoders. Thus, we
proceed to rigorously prove that indeed lattice reduction
techniques, and specifically a proper utilization of the LLL
algorithm [11], can dramatically reduce the complexity of
such MIMO decoders.

2This stems from the fact that the total number of flops required for
evaluating the bound in (20) may be upper and lower bounded by constants
that are independent of ρ (cf. [10]).



C. Decoding Complexity Analysis

We are here interested in establishing the SD complexity
behavior when implementing the search in (16). As in (21),
we now identify the corresponding unpruned sets at layer k
to be

Nk ,{ŝk ∈ Zk | ‖r̃k − R̃kŝk‖2 ≤ ξ2}, (23)

and in bounding the above, we first focus on understanding
the statistical behavior of the LLL-reduced submatrices R̃k

k = 1, · · · , κ. Towards this, and for dL(r − ε) denoting the
diversity gain of the exact implementation of the regularized
lattice decoder at multiplexing gain r − ε, we have the
following lemma whose proof appears in Appendix I.

Lemma 1: The smallest singular values σmin(R̃k) of the
submatrices R̃k, k = 1, · · · , κ, after MMSE preprocessing
and LLL lattice reduction, satisfy

P
(
σmin(R̃k)

.
< ρ

−εT
κ

) .
≤ ρ−dL(r−ε), for all r ≥ ε > 0.

(24)
To bound the cardinality Nk of Nk, and eventually the

total number NSD =
∑κ
k=1Nk of lattice points visited

by the SD, we proceed along the lines of the work in
[1], making the proper modifications to account for MMSE
preprocessing, for the removal of the bounding region, and
for lattice reduction.

Towards this we see that, after removing the bounding
constraint, Lemma 1 in [1] tells us that

Nk , |Nk| ≤
k∏
i=1

[√
k +

2ξ
σi(R̃k)

]
,

where

σmin(R̃k) = σ1(R̃k) ≤ · · · ≤ σk(R̃k)

are the singular values of R̃k. Consequently we have that

Nk ≤
[√

k +
2ξ

σmin(R̃k)

]k
.

(25)

As a result, for any R̃k such that

σmin(R̃k)
.
≥ ρ

−εT
κ , (26)

and given that ξ =
√
z log ρ for some finite z, then

Nk≤

(
√
k +

2
√
z log ρ

ρ
−εT
κ

)k
.= ρ

εTk
κ , (27)

which guarantees that the total number of visited lattice
points is upper bounded as

NSD =
κ∑
k=1

Nk
.
≤

κ∑
k=1

ρ
εTk
κ

.= ρεT . (28)

Consequently, directly from Lemma 1, we have that

P
(
NSD ≥̇ ρεT

)
≤̇ ρ−dL(r−ε). (29)

A similar approach deals with the complexity of the LLL
algorithm, which is known (cf. [12]) to be generally un-
bounded. Specifically drawing from [7, Lemma 2], under
the assumption of power-limited channels 3 (cf. [7]), and
for NLR denoting the number of flops spent by the LLL
algorithm, one can readily conclude that

P (NLR ≥ γ log ρ) ≤̇ ρ−dL(r−ε), (30)

for any γ > 1
2 (d(r−ε)). Consequently the overall complexity

N
.= NSD +NLR,

in flops, for the LR-aided MMSE preprocessed lattice sphere
decoder, satisfies the following

P
(
N≥̇ρεT

) .= P
(
{NSD≥̇ρεT } ∪ {NLR≥̇ρεT }

)
.
≤ ρ−dL(r−ε). (31)

As a result, going back to (1) we see that the complexity
exponent for the decoder, in the presence of appropriate
timeout policies, takes the form

c(r) = inf
{
x | − lim

ρ→∞

log P (N ≥ ρx)
log ρ

> dL(r)
}

= inf

ε | − lim
ρ→∞

log P
(
N

.
≥ ρεT

)
log ρ

> dL(r)


and vanishes arbitrarily close to zero, resulting in a zero
complexity exponent. The following theorem then holds.

Theorem 1: LR-aided MMSE preprocessed lattice sphere
decoding introduces a zero complexity exponent.

D. Gap to the exact solution of MMSE preprocessed lattice
decoding

We here go one step further and prove that the LR-aided
regularized lattice sphere decoder and the associated timeout
policies that guarantee a vanishing complexity exponent,
also guarantee a vanishing gap to the error performance
of the exact lattice decoding implementation. This result is
motivated by potentially exponential gaps in the performance
of other DMT optimal decoders (cf. [7]), where these gaps
may grow with an exponential form of up to 2

κ
2 (cf. [13]).

Towards establishing this gap, we recall that the exact
MMSE preprocessed lattice decoder in (13) makes errors
when ŝrld 6= s. On the other hand the LLL-reduced
MMSE preprocessed lattice sphere decoder with run-time
constraints, in addition to making the same errors (̂slr−rld 6=
s), also makes errors when the run-time limit of ρx becomes
active, i.e., when N ≥ ρx, as well as when a small search
radius causes Nκ = ∅. Consequently the corresponding
performance gap to the exact regularized decoder, takes the
form

gL(x) = lim
ρ→∞

P ({ŝlr−rld 6= s} ∪ {N ≥ ρx} ∪ {Nκ = ∅})
P (̂srld 6= s)

.

3This is a moderate assumption that asks that E
{
‖H‖2F

} .
≤ ρ. We note

that this holds true for any telecommunications setting.



To bound the above gap, we apply the union bound and the
fact that

P (Nκ = ∅) ≤ P (‖w′′‖ > ξ)

to get that

gL(x) ≤ lim
ρ→∞

P (̂slr−rld 6= s)
P (̂srld 6= s)

+ lim
ρ→∞

P (N ≥ ρx)
P (̂srld 6= s)

+ lim
ρ→∞

P (‖w′′‖ > ξ)
P (̂srld 6= s)

. (32)

Furthermore from (18) we observe that

P (̂slr−rld 6= s) = P (̂srld 6= s) , (33)

and from (31), and under the assumption that dL(r − ε) >
dL(r), we recall that

P
(
N≥̇ρεT

) .
≤ ρ−dL(r−ε)

which implies that for any x > 0 it holds that

lim
ρ→∞

P (N ≥ ρx)
P (̂srld 6= s)

= 0. (34)

Finally the last term in (32) relates to the search radius ξ,
and to the behavior of the noise w

′′
which was shown in

(12), (15) to take the form

w′′ = Q̃H
(
−α2

rR
−Hs + R−HMHw

)
.

The following lemma, whose proof is found in Ap-
pendix II, accounts for the fact that w

′′
includes self in-

terference and colored noise, to bound the last term in (32).
Lemma 2: There exist a finite z > dL(r) for which a

search radius ξ =
√
z log ρ guarantees that

lim
ρ→∞

P (‖w′′‖ > ξ)
P (̂srld 6= s)

= 0. (35)

Consequently combining (33), (34) and (35) gives that
gL(x) = 1, ∀x > 0. The following directly holds.

Theorem 2: LR-aided MMSE preprocessed lattice sphere
decoding with a computational constraint activated at ρx

flops, allows for a vanishing gap to the exact solution
of MMSE preprocessed lattice decoding, for any x > 0.
Equivalently the same LR-aided decoder guarantees that

gL(ε) = 1, CL(g) = 0 ∀ε > 0, g ≥ 1,

for all fading statistics, all MIMO scenarios, and all lattice
designs.

IV. CONCLUSIONS

In the setting of outage limited MIMO communications,
the work proved that a vanishing gap to the error performance
of fully implemented regularized lattice decoder can be
achieved at a computational complexity that is subexponen-
tial in the rate. These performance and complexity guarantees
hold for the most general MIMO settings, for almost all fade
statistics, all channel dimensions and all lattice codes.

The vanishing gap approach serves as an analytical re-
finement over basic diversity analysis which generally fails
to address potentially massive gaps between theory and prac-
tice. A vanishing gap essentially guarantees that the two error

curves are arbitrarily close, given a sufficiently high SNR,
which is a much stronger condition than DMT optimality
which only guarantees an error gap that is subexponential in
ρ, and can thus be unbounded and infinite.

APPENDIX I
PROOF FOR LEMMA 1

For RH
r Rr = MH

r Mr + α2
rI (cf. (10))4, it follows by

the bounded orthogonality defect of LLL reduced bases that
there is a constant Kκ > 0 independent of Rr and ρ, for
which (c.f. [11] and the proof in [14])

σmax(R̃−1
r ) ≤ Kκ

λ(Rr)
(36)

where

λ(Rr), min
c∈Zκ\0

‖Rrc‖ (37)

denotes the shortest vector in the lattice generated by Rr.
As a result we have that

σmin(R̃r) ≥
λ(Rr)
Kκ

. (38)

Looking to lower bound σmin(R̃r), we seek a bound on
λ(Rr). Towards this let r′ = r − γ for some r ≥ γ > 0, in
which case for s being the information vector corresponding
to the transmitted vector, and for any ŝ ∈ Zκ such that ŝ 6= s,
it follows that

‖r−Rr′ ŝ‖ = ‖(r−Rr′s) + Rr′(s− ŝ)‖
≤ ‖r−Rr′s‖+ ‖Rr′(s− ŝ)‖ (39)

and

‖Rr′(s− ŝ)‖ ≥ ‖r−Rr′ ŝ‖ − ‖r−Rr′s‖
= ‖r−Rr′ ŝ‖ − ‖w‖. (40)

From (40) it is clear that to find a lower bound on λ(Rr′),
we need to lower bound ‖r − Rr′ ŝ‖ for all ŝ ∈ Zκ and
upper bound ‖w‖. Let us, for now, assume that ‖w‖2 ≤ ρb.
To lower bound ‖r−Rr′ ŝ‖, we draw from the equivalence
of MMSE preprocessing and the regularized metric (cf.
equation (45) in [7]), and rewrite

‖r−Rr′ ŝ‖2 = ‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖

2 − c, (41)

where c,yH [I−MH
r′ (M

H
r′Mr′ + α2

r′I)
−1Mr′ ]y ≥ 0. We

now note that for ŝ = s then ‖y −Mr′s‖2 + α2
r′ ‖s‖

2 =
‖w‖2 ≤ ρb, and since the left hand side of (41) cannot be
negative, and furthermore given that c is independent of ŝ,
we conclude that c ≤ ρb.

We will now proceed to lower bound ‖y −Mr′ ŝ‖2 +
α2
r′ ‖ŝ‖

2 and then use (41) to lower bound ‖r − Rr′ ŝ‖.
Towards lower bounding ‖y −Mr′ ŝ‖2 + α2

r′ ‖ŝ‖
2 we draw

from Theorem 1 in [7] and let B be the spherical region
given by

B,{d ∈ Rκ| ‖d‖2 ≤ Γ}

4Note the transition to the notation reflecting the dependence of R on r



where the radius Γ > 0, which is independent of ρ, is chosen
so that d1 + d2 ∈ R for any d1,d2 ∈ B. The existence of
the set B follows by the assumption that 0 is contained in
the interior of R. Now let

νr′ , min
d∈ρ

r′T
κ B∩Zκ:d6=0

1
4
‖Mr′d‖2 ,

and for given γ > ζ > 0 choose b > 0 such that

2ζT
κ

> b > 0.

This may clearly be done for arbitrary ζ > 0. We will in the
following temporarily assume that νr′+ζ ≥ 1 and prove that,
together with ‖w‖2 ≤ ρb, the two conditions are sufficient
for λ(R̃r′)

.
≥ ρ

ζT
κ to hold.

In order to bound the metric for ŝ ∈ Zκ where ŝ 6= s, we
note that νr′+ζ ≥ 1 implies that ∀ d ∈ ρ

(r′+ζ)T
κ B∩Zκ,d 6=

0 it is the case that
1
4
‖Mr′+ζd‖2 ≥ 1

1
4

∥∥∥ρ 1
2−

(r′+ζ)T
κ HGd

∥∥∥2 (a)

≥ 1

1
4

∥∥∥ρ 1
2−

r′T
κ HGd

∥∥∥2

≥ ρ
2ζT
κ (42)

where (a) follows from the fact that

Mr = ρ
1
2−

rT
κ HG.

Consequently
1
4
‖Mr′d‖2 ≥ ρ

2ζT
κ ∀ d ∈ ρ

(r′+ζ)T
κ B ∩ Zκ,d 6= 0. (43)

As R is bounded, and as ζ > 0, it holds that R ⊂ 1
2ρ

ζT
κ B

for all ρ ≥ ρ1 for a sufficiently large ρ1. This implies that

s ∈ 1
2
ρ

(r′+ζ)T
κ B for ρ ≥ ρ1

since s ∈ ρ r
′T
κ R.

For s,d ∈ 1
2ρ

(r′+ζ)T
κ B∩Zκ, there exists a ŝ ∈ ρ

(r′+ζ)T
κ B∩

Zκ, ŝ 6= s, such that ŝ = d+s. Hence for any ŝ ∈ ρ
(r′+ζ)T

κ B∩
Zκ, we have from (43) that

1
4
‖Mr′ (̂s− s)‖2 =

1
4
‖Mr′d‖2 ≥ ρ

2ζT
κ . (44)

As ‖w‖2 ≤ ρb, it follows that

1
4
‖Mr′d‖2 ≥ ‖w‖2

for large ρ, and that

‖y −Mr′ ŝ‖2 = ‖Mr′(s− ŝ) + w‖2
.
≥ ρ

2ζT
κ . (45)

Consequently

‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖

2 .
≥ ρ

2ζT
κ . (46)

On the other hand if ŝ /∈ ρ
(r′+ζ)T

κ B, then by definition of
B we have that

α2
r′ ‖ŝ‖

2 ≥ 1
4

Γρ
2ζT
κ ,

and consequently that

‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖

2 ≥ 1
4

Γρ
2ζT
κ . (47)

From (46) and (47) we then conclude that

‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖

2 .
≥ ρ

2ζT
κ . (48)

Given (46) and (48), for any ŝ ∈ Zκ such that ŝ 6= s, it is
the case that

‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖

2 .
≥ ρ

2ζT
κ ,

which combined with c ≤ ρb allows for (41) to give that

‖r−Rr′ ŝ‖2
.
≥ ρ

2ζT
κ . (49)

Applying (37) and (40), we have

λ(Rr′) ≥ ‖r−Rr′ ŝ‖ − ‖w‖
.
≥ ρ

ζT
κ − ρ b2

.= ρ
ζT
κ (50)

where the exponential inequality follows from (49). Further-
more we know that

λ(Rr) = ρ
−γT
κ λ(Rr′)

.
≥ ρ

−εT
κ (51)

where ε = γ − ζ, r ≥ ε > 0, and from (38) and (51) it
follows that σmin(R̃r)

.
≥ ρ−εTκ .

We now note that the above implies that for νr′+ζ ≥ 1
and ‖w‖2 ≤ ρb then σmin(R̃r)

.
≥ ρ−εTκ , and thus applying

the union bound yields

P
(
σmin(R̃r)

.
< ρ

−εT
κ

)
= P

(
(νr′+ζ < 1) ∪ (‖w‖2 > ρb)

)
≤ P (νr′+ζ < 1) + P

(
‖w‖2 > ρb

)
.

We know from the exponential tail of the Gaussian distri-
bution that

P
(
‖w‖2 > ρb

)
.= ρ−∞

and from Lemma 1 in [7] that

P (νr′+ζ < 1)
.
≤ ρ−dML(r′+ζ),

where dML(r′ + ζ) denotes the diversity gain of the ML
decoder at multiplexing gain r′ + ζ. Hence

P
(
σmin(R̃r)

.
< ρ

−εT
κ

) .
≤ ρ−dML(r−ε)

for all r ≥ ε > 0.
The association with the singular values

σ1(R̃r,k) ≤ · · · ≤ σk(R̃r,k)

is made using the interlacing property of singular values of
sub-matrices, which gives that

σi(R̃r,k) ≥ σi(R̃r), i ≤ k = 1, · · · , κ, (52)

and for k = 1, · · · , κ, that

P
(
σmin(R̃r,k)

.
< ρ

−εT
κ

) .
≤ ρ−dML(r−ε).

From DMT optimality of the exact implementation of the
regularized lattice decoder, we have that

P
(
σmin(R̃r,k)

.
< ρ

−εT
κ

) .
≤ ρ−dL(r−ε).

This proves Lemma 1.�



APPENDIX II
PROOF FOR LEMMA 2

For a search radius that grows as ξ =
√
z log ρ .= ρ0, we

first prove that

P
(
‖w
′′
‖2 > ξ2

)
.= ρ−z

′

for z > z′ > dL(r). To do this, we will need an understand-
ing of the equivalent noise, and thus consider an equivalent
representation of the MMSE preprocessed lattice decoder.
Towards this let (cf. [15])

QR =
[

Q1

Q2

]
R =

[
M
αrI

]
∈ R(n+m)×m (53)

be the thin QR factorization of the modified channel matrix,
where

Q1 = R−1M ∈ Rn×m, Q2 = αrR−1 ∈ Rm×m

and where
RHR = MHM + α2

rI.

It then follows that for F = QH
1 , the MMSE-preprocessed

lattice decoder is equivalent to lattice decoding in the pres-
ence of channel R and noise

w
′

= −α2
rR
−Hs + R−HMHw

= −αrQH
2 s + QH

1 w. (54)

Consequently we calculate

P
(
‖w
′
‖ > ξ

)
= P

(
{‖ − αrQH

2 s‖+ ‖QH
1 w‖} > ξ

)
(a)
= P

(
{‖ − αrQH

[
s
0

]
‖+ ‖QH

[
w
0

]
‖} > ξ

)
≤ P

(
m{ sup

s∈Sκr
‖ − αrs‖+ ‖w‖} > ξ

)
(b)
= P (mK +m‖w‖ > ξ)

= P
(
m‖w‖ > (z log ρ)

1
2 −mK

)
(c)

≤ P
(
m‖w‖ > (z1 log ρ)

1
2

)
= P

(
‖w‖2 > z1

m2
log ρ

)
(d)
= P

(
‖w‖2 > z2 log ρ

)
.= ρ−z2 (55)

where (a) follows from the MMSE preprocessed equivalent
channel representation, and where the inequalities in (b), (c)
and (d) follow for some fixed K and for some arbitrary z1, z2
satisfying z > z1 > z2 > 0 independent of ρ. Consequently

P
(
‖w
′′
‖ > ξ

)
= P

(
‖Q̃Hw

′
‖ > ξ

)
.= ρ−z

′

for some 0 < z′ < z2 and we have

lim
ρ→∞

P
(
‖w′′‖ > ξ

)
P (̂srld 6= s)

= lim
ρ→∞

ρ(dL(r)−z′) = 0,

where last equality follows after choosing the search radius
such that z > z′ > dL(r). This proves Lemma 2.�
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