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Abstract—In this paper1, we will provide a straightforward
look at semi blind spectrum sensing technique exploiting spectral
masks. The proposed spectrum sensing technique is deployed on
two stages. At a first level, the spectral masks database is built
during the synchronization phase of the transmission, then in a
second processing, a matched filter based detection is deployed
to infer the nature of the sensed signals. Simulation results
obtained for noisy OFDM signals witness the efficiency of the
proposed detector. The performance comparison with a simple
matched filter shows that the new designed scheme achieves close
performance to matched filtering while preserving a fundamental
property of blind processing.

Index Terms—Cognitive radio, blind sensing, spectral masks,
matched filtering.

I. INTRODUCTION

During the last decades, we have witnessed a great progress
and an increasing need for wireless communications systems
in order to satsfy costumers demands of more flexible, wire-
less, smaller, more intelligent and practical devices and thus
markets invaded by smartphones, PDAs, tablets and Netbooks.

All this need for flexibility and more ”mobile” devices lead
to more and more needs to afford the spectral resources that
shall be able to satisfy costumers need for mobility. But, as
wide as spectrum seems to be, all those needs and demands
made it a scarce resource and highly misused.

Trying to face this shortage in radio resources, telecom-
munication regulators and standardization organisms recom-
mended sharing this valuable resource between the different
actors in the wireless environment. The Federal Communica-
tions Commission (FCC), for instance, defined a new policy
of priorities in the wireless systems, giving some privileges
to some users, called Primary Users (PU) and less to others,
called Secondary Users (SU), who will use the spectrum in an
opportunistic way with a minimum interference to PU systems.

Cognitive Radio (CR) as introduced by Mitola [1], is one
of those possible devices that could be deployed as SU
equipments and systems in Wireless networks. As originally
defined, a CR is a self aware and ”intelligent” device that
can adapt itself to the Wireless environment changes. Such a
device is able to detect the changes in Wireless network to

1The work reported herein was partially supported by the European projects
CROWN and SACRA.

which it is connected and adapt its radio parameters to the
new opportunities that are detected. This constant track of the
environment change is called the spectrum sensing function of
a CR device.

Thus, spectrum sensing in CR aims in finding the holes
in the PU transmission which are the best opportunities to
be used by the SU. Many statistical approaches already exist.
The easiest to implement and the reference detector in terms of
complexity is still the Energy Detector (ED). Nevertheless, the
ED is highly sensitive to noise and does not perform well in
low Signal to Noise Ratio (SNR). Other advanced techniques
based on signals modulations and exploiting some of the
transmitted signals inner properties were also developed. For
instance, the detector that exploits the built-in cyclic properties
on a given signal is the cyclostationary Features Detector
(CFD). The CFD do have a great robustness to noise compared
to ED but its high complexity is still a consequent draw
back. Some other techniques, exploiting a wavelet approach to
efficient spectrum sensing of wideband channels were also de-
veloped [2]. The signal spectrum over a wide frequency band
is decomposed into elementary building blocks of subbands
that are well characterized by local irregularities in frequency.
As a powerful mathematical tool for analyzing singularities
and edges, the wavelet transform is employed to detect and
estimate the local spectral irregular structure, which carries
important information on the frequency locations and power
spectral densities of the subbands. Along this line, a couple
of wideband spectrum sensing techniques are developed based
on the local maxima of the wavelet transform modulus and the
multi-scale wavelet products.

There are several spectrum sensing techniques that were
proposed for CR [4]. A few completely blind sensing methods
that do not consider any prior knowledge about the transmitted
signal have been derived in the literature, but all of them
suffer from the noise uncertainty and fading channel variations.
One of the most popular is the energy detector (ED) [5].
Despite its easy implementation and low complexity, the ED
does not perform well at a low signal-to-noise-ratio (SNR)
and cannot differentiate between noise and signals. Moreover,
this kind of detector is inconvenient when the level of noise
is completely unknown. Two other blind techniques were
proposed at EURECOM. The first technique analyzes the
distribution of the primary user received signal to sense vacant
frequency sub-bands over the spectrum band. Specifically, the



distribution analysis detector (DAD) exploits model selection
tools like the Akaike information criterion (AIC) to detect
vacant holes in the spectrum band [6] [7]. In this paper,
we present a novel approach to spectrum sensing combining
a spectral mask estimation via algebraic tools and matched
filtering approach. The paper is organized as follows. After
the presentation of the common framework study in Section II,
the spectrum sensing techniques are discussed in Section III.
In Section IV, the performance evaluation and advantages are
described. Finally, Section V concludes the paper.

II. SYSTEM MODEL

In this section, we describe the system model that will be
used throughout this paper. For the radio channel measurement
we have chosen to thoroughly investigate the DVB-T primary
user system. In this system, the transmitted signal is convolved
with a multi-path channel and a Gaussian noise is added. The
received signal at time n, denoted by xn, can be modeled as:

xn = Ansn + en (1)

where An being the transmission channel gain, sn is the trans-
mit signal sent from the primary user and en is a stationary,
Gaussian noise with zero mean. The goal of spectrum sensing
is to decide between the following two hypotheses:

xn =
{

en H0

Ansn + en H1
(2)

We decide a spectrum band to be unoccupied if it contains
only noise, as defined in H0; on the other hand, once there
exist primary user signals besides noise in a specific band, as
defined in H1, we say the band is occupied. Let PF be the
probability of false alarm given by:

PF = P (H1 | H0) = P (xn is present | H0) (3)

that is the probability of the spectrum detector having detected
a signal under hypothesis H0, and PD the probability of
detection expressed as:

PD = 1− PM = 1− P (H0 | H1)
= 1− P (xn is absent | H1) (4)

the probability of the detector having detected a signal under
hypothesis H1, where PM indicates the probability of missed
detection.

We develop in this paper a common framework to make
a comparison of three blind sensing algorithms. In order to
decide on the nature of the received signal, we calculate a
threshold for each detector. The decision threshold is deter-
mined using the required probability of false alarm PFA given
by (3). The threshold Th for a given false alarm probability
is determined by solving the equation:

PFA = P (T (xn) > Th|H0) (5)

where T (xn) denotes the test static for the given detector. Note
that, for each detector we compute a particular threshold Th
that tests the decision statistic based on a fixed false alarm
probability value.

III. SPECTRUM SENSING TECHNIQUES

A. Matched Filtering

Matched filter is the optimum detector of a known signal
in the presence of additive Gaussian noise. It is the linear
filter that maximizes the SNR of the output. The output of the
matched filter is given by

y = sHΣ−1
n x (6)

where x is the observation vector, s is the known deter-
ministic signal to be detected, and Σn is the noise covariance
matrix. Assuming that the noise is Gaussian it follows that the
output y is Gaussian as well since it is a linear transformation
of a Gaussian random vector. The mean of y is zero under H0

and sHΣ−1
n s under H1. The variance is sHΣ−1

n s under both
hypotheses. Consequently, the hypothesis test may be defined
as:

y>H1

<H0
λ

B. Algebraic Spectrum Estimation

The AD is a new approach based on the advances lead in the
fields of differential algebra and operational calculus. In this
paragraph we present how such technique can be used in order
to estimate spectrum shape. In this approach, the mathematical
representation of the amplitude spectrum of the received signal
Xn in frequency domain is assumed to be a piecewise N th

order polynomial signal expressed as follows:

Xn =
K∑

k=1

χk[nk−1, nk]pk(n− nk−1) + En (7)

where χk[nk−1, nk] is the characteristic function, pk(n) is
an N th order polynomials and En is the additive corrupting
noise. K is the number of subsection, and n is the normalized
frequency. For simulation results, M/K = 1000.

Let Sn be the clean version of the received signal given by:

Sn =
K∑

k=1

χk[nk−1, nk]pk(n− nk−1) (8)

And let b be a frequency bandwidth such that in each interval
Ib = [nk−1, nk] = [ν, ν + b], ν ≥ 0 one and only one change
point occurs. Denoting Sν(n) = Sn+ν , n ∈ [0, b] for the
restriction of the signal in the interval Ib and redefine the
change point relatively to Ib say nν given by:

{
nν = 0 if Sν is continuous
0 < nν ≤ b otherwise (9)

The primary user presence on a sensed sub-band is equiv-
alent to finding 0 < nν ≤ b in this band. The AD gives the
opportunity to build a whole family of detectors for spectrum
sensing, depending on a given model order N . Depending on
this model order, we can show that the performance of the AD
increases as the order N increases.



The proposed algorithm is implemented as a filter bank
composed of N filters mounted in a parallel way. The impulse
response of each filter is:

hk+1,n =

{
(nl(b−n)N+k)(k)

(l−1)! 0 < n < b

0 otherwise
(10)

where k ∈ [0..N−1] and l is chosen such that l > 2×N . The
proposed expression of hk+1,n was determined by modeling
the spectrum by a piecewise regular signal in the frequency
domain and casting the problem of spectrum sensing as a
change point detection in the primary user transmission [8].
Finally, in each stage of the filter bank, we solve the following
equation:

ϕk+1 =
M/K∑
m=0

Wkhk+1,mXm (11)

where Wm are the weights for numeric integration defined by:

Wk = 0.5 for k = 0,M
Wk = 1 otherwise (12)

The mask is thus obtained from the equation below:

Df =
N−1∏

k=0

|ϕk+1| (13)

C. Spectral Masks based detection

In the proposed algorithm the process is done in two
phases. The algorithm is ”semi-blind” as it creates the a priori
information to be used in a first phase, then makes benefit of
the created database containing the spectrum masks.

The mask of a received signal xn is estimated via the filter
bank output: Df =

∏N−1
k=0 |ϕk+1|. Each detected mask is to

be stored in a ”database” as a first step and then the matched
filtering is done by correlating the received signal xn and
the stored mask sn. The following pseudo-code describes the
sensing algorithm:

Algorithm 1 Spectral Masks based spectrum sensing
Step1: Building Masks Database while receiving SYNC
frames do

Estimate spectral mask given by: Df =
∏N−1

k=0 |ϕk+1|
Store masks in database.

end
Step2: Detection of PU presence exploiting masks DB while
receiving DATA frames do

Calculate thresholds corresponding to Matched Filtering
Compute test statistic y = sHΣ−1

n xn˙
Compare test statistic to threshold and infer about PU
presence

end

IV. PERFORMANCE EVALUATION

For simulation results, the choice of the DVB-T primary
user system is justified by the fact that most of the pri-
mary user systems utilize the OFDM modulation format.
This choice is done in the context of the European research
project SENDORA [14]. The channel models implemented
are AWGN, Rician and Rayleigh channels. The latter two
correspond to the two different types of propagation that
have to be handled in practice, namely line-of-sight (LOS)
and Non-line-of-sight (NLOS). Slow fading is simulated by
adding log-normal shadowing. The simulation scenarios are
generated by using different combinations of parameters given
in Table I. The evaluation framework for all simulations has
been implemented in Matlab.

Bandwidth 8MHz
Mode 2K
Guard interval 1/4
Channel models Rayleigh/Rician (K=1)
Maximum Doppler shift 100Hz
Frequency-flat Single path
Sensing time 1.25ms
Location variability 10dB

TABLE I
THE TRANSMITTED DVB-T PRIMARY USER SIGNAL PARAMETERS

Fig. 1 show the output of the first stage of the proposed
technique, which is the mask derived from the OFDM trans-
mission. Those kind of masks are stored in a database and are
to be matched with the received signals in the second phase.
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Fig. 1. Spectral Mask derivation via Algebraic framework

Fig. 2 depicts the detection comparison of a simple matched
filter and the proposed technique. This figure shows the proba-
bility of detection versus SNR ranging between −20 dB and 0



dB at a constant false alarm rate (PFA = 0.05). We used here
a DVB-T primary user system with Rician channel. Threshold
values are computed according to the common framework and
depend only on the PFA value. From the simulation results, we
show that the proposed technique is performing quiet similar
to the matched filtering under the same SNR condition. Our
technique (star curve) is shown to operate quiet closely to the
matched filtering (dots) and has the benefit to build its own
signals database on a first stage and then perform a matched
filtering with received signals.
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Fig. 2. Probability of detection vs. SNR with PFA = 0.05 for a DVB-T
primary user system with Rician channel.

V. CONCLUSION

We present in this work a new sensing technique which
combines matched filtering to an algebraic method to detect
spectrum masks. In a first step, we designed a filter bank,
derived from an algebraic framework mostly used in control
theory. Then, we applied a matched filter in order to identify
and locate spectrum holes. The performance comparison with
a simple matched filter shows that the new designed scheme
achieves close performance to matched filtering while preserv-
ing a fundamental property of blind processing.
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