
Combined Compressive Sampling and Distribution

Discontinuities Detection Approach to Wideband

Spectrum Sensing for Cognitive Radios

Wael Guibène †, Hessam Moussavinik ‡and Aawatif Hayar *
†Mobile Communication Department, EURECOM, P.O. Box 193-06904 Sophia Antipolis, France

‡Dept. of Electronics and Telecommunication, NTNU, N-7491 Trondheim, Norway
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Abstract—This paper 1 presents a new sensing technique for
cognitive radio systems which combines algebraic tools and com-
pressive sampling techniques. The proposed approach consists
of the detection of spectrum holes using spectrum distribution
discontinuities detector fed by a compressed measurements. The
compressed sensing algorithm is designed to take advantage from
the primary signals sparsity and to keep the linearity and prop-
erties of the original signal in order to be able to apply algebraic
detector on the compressed measurements. The complexity of the
proposed detector is also discussed and compared with the energy
detector as reference algorithm. The comparison shows that the
proposed technique outperforms energy detector in addition to
its low complexity.

Index Terms—Compressed sensing, compressive sampling,
spectrum sensing, cognitive radio, distribution discontinuities,
algebraic detection, sensing algorithm, wideband, change point
detection.

I. INTORDUCTION

Recently, compressed sensing/compressive sampling (CS)

has been considered as a promising technique to improve and

implement cognitive radio (CR) systems. The increasing de-

mand for spectrum from various wireless devices and networks

emerges the technical society to use the radio spectrum more

efficiently. Cognitive radio is an smart wireless communication

system that is able to promote the efficiency of the spectrum

usage by exploiting the free frequency bands in the spectrum,

namely spectrum holes [1], [2]. Detection of spectrum holes

is of the first steps of implementing a cognitive radio system.

In wideband radio one may not be able to acquire a signal

at the Nyquist sampling rate due to the current limitations in

Analog-to-Digital Converter (ADC) technology [3]. Compres-

sive sensing makes it possible to reconstruct a sparse signal by

taking less samples than Nyquist sampling, and thus wideband

spectrum sensing is doable by CS. An sparse signal or a

compressible signal is a signal that is essentially dependent

on a number of degrees of freedom which is smaller than the

dimension of the signal sampled at Nyquist rate. In general,
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signals of practical interest may be only nearly sparse [3].

And typically the wireless signal in open networks are sparse

in the frequency domain since depending on location and at

some times the percentage of spectrum occupancy is low due

to the idle radios [1], [4].

In CS a signal with a sparse representation in some basis

can be recovered from a small set of nonadaptive linear

measurements [5]. A sensing matrix takes few measurements

of the signal, and the original signal can be reconstructed from

the incomplete and contaminated observations accurately and

sometimes exactly by solving a simple convex optimization

problem [3], [6]. In [7] and [8] conditions on this sensing

matrix are introduced which are sufficient in order to recover

the original signal stably. And remarkably, a random matrix

fulfills the conditions with high probability and performs an

effective sensing [5], [9].

Apart from reconstructing the original signal, detection is more

required and interesting in the context of cognitive radio.

Generally, for detection purposes it is not necessary to recon-

struct the original signal, but only an estimate of the relevant

sufficient statistics for the problem at hand is enough. This

leads to less required measurements and lower computational

complexity [10]. We are interested to skip the estimation of the

original signal and directly use the measurements for detection

purpose, and so reduce the complexity of the system as much

as possible.

In [4] a wavelet-based detection approach using CS to identify

the spectrum holes is introduced. To find the frequency band

boundaries they derive a convex optimization formulation that

the solution gives the band boundaries of the spectrum without

requiring to reconstruct the original signal.

In this paper we develop a combined compressive sampling

and distribution discontinuities detection technique based on

algebraic method for the sensing task of identifying the

spectrum holes. The proposed algebraic detector is a linear

detector and we would like to feed the algorithm directly

with the compressed measurements. For this purpose we find

a proper sensing matrix that gives the possibility of feeding

the algebraic detector with the measurements directly.

The rest of the paper is organized as follows. Section II states



the motivation and problem formulation. Section III details the

proposed sensing technique based on combined compressive

sampling and distribution discontinuities detection. Section IV

is dedicated to performance results, and section V concludes

this paper.

II. MOTIVATION AND PROBLEM FORMULATION IN THE

CONTEXT OF SENSING IN CR

A. Motivation

The increasing demand for spectrum from various wireless

devices and networks emerges the technical society to use

the radio spectrum more efficiently. Measurements lead by

the FCC (Federal Communication Commission) in the USA

have shown that in some regions and/or at some day intervals

up to 70 percent of the statically allocated spectrum is left

idle [11]. Facing this inefficient usage of spectrum, the

FCC recommends deploying unlicensed users in the wireless

networks. These unlicensed users, also called secondary user

(SU), are allowed to use those idle wireless resources only

when the licensed users, also called primary user (PU), is not

using them so they do not interfere with their transmissions.

In order to make such a concept of spectrum sharing feasible,

SUs are cognitive radios (CRs) deployed in the primary

networks. CR as introduced by Joseph Mitola [12] is a self

aware and intelligent device that can adapt itself to the wireless

environment changes by first detecting them, and then adapting

its radio parameters to the new opportunities. Cognitive radio

technique is an smart wireless communication system that

is able to promote the efficiency of the spectrum usage by

exploiting the idle frequency bands in the spectrum, namely

spectrum holes [1], [2]. Detection of spectrum holes is of the

first steps of implementing a cognitive radio system. Different

statistical approaches already exist. The easiest to implement

and the reference one in terms of complexity is the energy

detector (ED) [13]. Nevertheless, the ED is highly sensitive

to noise and does not perform well in low signal to noise

ratio (SNR). Other advanced techniques based on signals

modulations and exploiting some of the transmitted signals

inner features were also developed [14]. For instance, the

cyclostationary features detector (CFD) exploits the built-in

cyclic properties of the PU received signal. The CFD has

a great robustness to noise compared to ED but its high

complexity is still a consequent drawback. Other techniques

that were developed by researchers at Eurécom Institute are

based on model selection tools and entropy investigation [15]–

[17].

An important issue of complexity in spectrum sensing by

cognitive radio is the sampling rate used to sample the received

signal at a CR. Specially that usually the spectrum to be

sensed is wide which makes the sampling more challenging.

In wideband radio one may not be able to acquire a signal

at the Nyquist sampling rate due to the current limitations in

Analog-to-Digital Converter (ADC) technology [3].

Furthermore, cooperative sensing is generally required to

detect hidden nodes to a CR, that is several CR nodes sense

the spectrum cooperatively to detect PUs and available holes.

In such scenarios, the amount of data processing at each

CR node, in both centralized and decentralized schemes, and

the amount of data exchange between CR nodes and the

fusion center in the centralized scheme are important factors

in complexity and power consumption of the system. Also,

high number of samples, sampled at Nyquist rate, increase

the power consumption and complexity at CR nodes.

In order to actualize sensing in wide spectrum and to reduce

the complexity and power consumption at CR nodes, sampling

at a smaller rate than Nyquist rate, while reconstruction or

detection of signal is accurately possible, is a prominent

key. Hence, compressive sampling or compressed sensing

(CS) becomes a promising solution in realization of cognitive

radio and reducing the complexity and power consumption.

Compressive sampling enables us to do the sampling at a

smaller rate than Nyquist rate, sometimes much smaller, and

accurately reconstruct the sparse signal, or perform detection

or estimation.

The first step of cognitive radio is to sense the spectrum

and identify the spectrum holes, or in other words, detect

the occupied frequency bands. Typically the wireless signal

in open access networks is sparse in the frequency domain

since depending on location and at some times the percentage

of spectrum occupancy is low due to the idle radios [1], [4].

For example, we can model the spectrally sparse wideband

signals as

s(t) =
N−1
∑

j=0

βje
i2πjt/N , t = 0, · · · , N − 1 (1)

where N is very large but the number of nonzero coefficients

βj is much less than N . In this sense we can say that the

signal is spectrally sparse [9]. Therefore, we would like to

implement spectrum sensing in the context of cognitive radio

by performing compressed sensing combined with distribu-

tion discontinuities detection. To avoid signal reconstruction

burden we find a sensing matrix that enables the algebraic de-

tector properly works while accepting the compressed samples

directly as input.

-
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Fig. 1. An example of power spectral density vs. the frequency of a spectrally
sparse wideband signal. PSD stands for power spectral density and f is
frequency.



B. Problem Formulation

Let us consider a discrete representation of the received

signal given by:

x(n) = Ans(n) + e(n) (2)

where An is modeling the channel, s(n) represents the

discrete signal, that is s(t) sampled at Nyquist rate, and

e(n) ∼ N (0, σ2In) is i.i.d. Gaussian noise where In is

an identity matrix of size n.

We would like to distinguish between two classified hypothesis

H0 and H1:

H0 : x(n) = e(n) (3)

H1 : x(n) = Ans(n) + e(n) (4)

where H0 means that the sensed frequency band is white

containing only noise and H1 means that the sensed frequency

band is occupied with a signal corrupted by noise. The key

parameter of all spectrum sensing algorithms are the false

alarm probability PF and the detection probability PD . PF

is the probability to determine a frequency band as occupied

while it is free, thus PF should be kept as small as possible.

PF = P (H1|H0) = P (a signal (user) is present|H0) (5)

PD is the probability to determine a frequency band as

occupied when there exists a signal, thus PD should be kept

as large as possible.

PD = 1 − PM = (6)

1 − P (H0|H1) = 1 − P (no signal (user) is present|H1)

where PM denote the probability of missed detection. To

design the optimal detector on Neyman-Pearson criterion, we

try to maximize the overall PD under a given overall PF .

In order to infer on the nature of the received signal, we

calculate a threshold for each of the detectors. The decision

threshold is determined using the required probability of false

alarm PF given by (5). The threshold Th for a given PF is

determined by solving the equation:

PF = P (a signal is present|H0)) = 1 − FH0(Th) (7)

where FH0 denote the cumulative distribution function (CDF)

under H0.

The algebraic approach is able to detect the signal distribution

discontinuities and find their positions in the spectrum, having

the complete signal (Nyquist rate samples) as input to the

detector. The problem is that sampling a wideband signal with

Nyquist rate is constrained due to the reasons highlighted in

section I. In order to make the detection possible with less

number of samples or smaller sampling rate, relatively to

Nyquist rate, we would like to implement compressed sensing

technique. In this sense by considering the sparseness of the

signal we observe the received signal compressively with a

smaller rate than Nyquist rate such as:

y = Φx+ e (8)

where y ∈ R
M is the compressed measurements, Φ is the

sensing matrix, x ∈ R
N is the received signal like Ans(n)

as above, e is the additive noise, and M ≪ N . It is shown

that with some conditions on Φ it is possible to recover x
accurately based on y.

We would like to use the compressed samples directly to

detect the frequency holes without recovering the signal itself.

Since the algebraic detection of distribution discontinuities is

a linear approach we should find a proper sensing matrix that

makes it possible to use the compressed samples as the input

to the linear detector. In following section we discuss about

compressed sensing and the selection of the sensing matrix.

III. COMBINED COMPRESSIVE SAMPLING AND

DISTRIBUTION DISCONTINUITIES DETECTION

A. Compressed Sensing

Let x ∈ R
N be a signal with expansion in an orthonormal

basis Ψ as

x(t) =

N−1
∑

j=0

αjψj(t), t = 0, · · · , N − 1 (9)

where Ψ is the N × N matrix with the waveforms ψj as

rows. To use convenient matrix notations we can write the

decomposition as x = Ψα or equivalently, α = Ψ∗x where

Ψ∗ denotes conjugate transpose of Ψ. A signal x is sparse in

the Ψ basis if the coefficient sequence α is supported on a

small set. We say that a vector α is S-sparse if its support

{j : αj 6= 0} is of cardinality less or equal to S [3]. Consider

that we would like to recover all the N coefficients of x, vector

α, from measurements y about x of the form

ym = 〈x, φm〉 =
N−1
∑

n=0

φmnx[n],m = 0, · · · ,M − 1 (10)

or

y = Φx = ΦΨα = Θα (11)

where we are interested in the case that M ≪ N , and

the rows of the M × N sensing matrix Φ are incoherent

with the columns of Ψ. Then it is shown that signal x can

accurately and sometimes exactly be recovered, considering

that the recovered signal x⋆ is given by x⋆ = Ψα⋆, and α⋆ is

the solution to the convex optimization program

min
α̃∈RN

||α̃||l1 subject to ΦΨα̃ = Θα̃ = y (12)

where ||α̃||l1 :=
∑N

j=1 |α̃j |. The compressed sensing (CS)

theory states that there exists a measuring factor c > 1 such

that only M := cS incoherent measurements y are needed to

recover x with high probability. We also have to mention that

except l1-minimization solution other methods such as greedy

algorithms in [18] exist for recovering the sparse signal [3],

[6], [9], [10], [19], [20].

In case of noisy measurements, i.e., y = Φx + e, where e is

noise with ||e||l2 ≤ ǫ, [6] shows that solution to

min
α̃∈RN

||α̃||l1 subject to ||Θα̃− y||l2 ≤ ǫ (13)



recovers the sparse signal with an error at most proportional

to the noise level. Also, [6] discuss the conditions for stable

recovery from noisy measurements.

We are interested in doing the spectrum holes detection using

algebraic approach directly from the compressed measure-

ments without reconstructing the original signal itself. For

this reason we must find out the appropriate sensing matrix

according to the detection technique. The proposed detection

technique is a linear algebraic algorithm. This technique uses

the Fourier transform of the observed signal to detect the

occupied frequency bands in the observed spectrum. Therefore

the compressed measurements of the observed signal must

keep the linearity and properties of the original signal in

order to apply the detection algorithm successfully on the

compressed measurements. To find the sensing matrix we start

by looking at the Fourier transform of the signal x ∈ R
N .

Xl =

N−1
∑

n=0

x[n] exp(−ωln), l = 0, · · · , N − 1 (14)

where ω = 2πi
N and i is the imaginary unit. The Fourier

transform of the measured signal is

Yk =

M−1
∑

m=0

y[m] exp(−ωkm), k = 0, · · · ,M − 1. (15)

From (11) we replace y[m] and we have

Yk =
M−1
∑

m=0

(
N−1
∑

n=0

φmnx[n]) exp(−ωkm), k = 0, · · · ,M − 1

(16)

where φmn denotes the element of Φ at the cross of row m
and column n. Then by linearity properties we have

Yk =

N−1
∑

n=0

M−1
∑

m=0

φn[m] exp(−ωkm)x[n], k = 0, · · · ,M − 1

(17)

where φn[m] denotes the mth element of the nth column vector

of Φ, φn, and we see that

M−1
∑

m=0

φn[m] exp(−ωkm) = Φ̂nk
, k = 0, · · · ,M − 1 (18)

that is the Fourier transform of the nth column vector of Φ,

Φ̂n. Then from (17) and (18)

Yk =

N−1
∑

n=0

Φ̂nk
x[n], k = 0, · · · ,M − 1. (19)

And, as we said, in order to feed the detection algorithm

directly by the compressed measurements we seek that

Yk(ω) = aXl(ω), k ∈ {0, · · · ,M − 1}, l ∈ {0, · · · , N − 1}
(20)

where a > 0 is a constant. From (19) and to satisfy (20) we

find that

Φ̂nk
= a exp(−ωzn), z ∈ {1, · · · , N}, k = 0, · · · ,M − 1

(21)

and therefore from inverse Fourier transform we have

φn = aδ(n− z), z ∈ {1, · · · , N} (22)

which means that any row vector of the sensing matrix is

a Dirac function, that is, only one column of each row is

nonzero.

Now that the general format of the sensing matrix is clear,

we should find a way to generate it. The ΦT matrix can be

generated by randomly selecting M columns of an identity

matrix IN . Φ is given by transpose of ΦT , and we define

a = 1 to make sure that the columns of the sensing matrix are

unit-normed. So the sensing matrix Φ that we acheived has a

form like this

Φ ∼







0 1 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 · · · 0 1 0 0







M×N

. (23)

This form of sensing matrix gives us the opportunity to use

the compressed measurements directly as input to the alge-

braic detection algorithm and thus avoiding the computation

complexity of reconstructing the original signal. Following, the

algebraic detection technique with compressed measurements

as the input to the algorithm is explained.

B. Algebraic Detection Based on Compressive Sampling

The algebraic detection (AD) is a new approach based on

advanced differential algebra and operational calculus. In this

method, the primary user’s presence is rather casted as a

change point detection in its transmission spectrum [21]. In

this approach, the mathematical representation of the spectrum

of the compressed measurements, i.e., the observed signal

Yn in frequency domain, is assumed to be a piecewise P th

polynomial signal expressed as following:

Yn =
K

∑

k=1

Yk[nk−1, nk](f)pk(n− nk−1) + En (24)

where Yk[nk−1, nk] is the characteristic function, pk is a

polynomial series of order P , En is the additive corrupting

noise, K is the number of subbands defined in the frequency

range of observation interest, and n = f
fs

is the normalized

frequency, where fs is the sampling frequency and f is the

signal frequency.

Let us define the clean version of the received signal Sn as:

Sn =
K

∑

k=1

Yk[nk−1, nk](f)pk(n− nk−1) (25)

And let b, the frequency band, is such that one and only one

change point occurs in the interval Ib = [nk−1, nk] = [ν, ν+b],
ν ≥ 0. Denoting Sν(n) = S(n+ν), n ∈ [0, b] as the restriction

of the signal in the interval Ib and redefine the change point

nν relatively to Ib such as:
{

nν = 0 if Sν is continuous

0 < nν ≤ b otherwise
(26)



Then, the primary user presence on a sensed sub-band is

equivalent to find 0 < nν ≤ b on that band. The AD gives

the opportunity to build a whole family of spectrum sensing

detectors, depending on a given model order P . Depending on

this model order, we can show that performance of the AD is

increasing as the order P increases.

The proposed algorithm is implemented as a filter bank which

composed of P filters mounted in a parallel way. The impulse

response of each filter is:

hk+1,n =

{

(nl(b−n)P+k)(k)

(l−1)! , 0 < n < b

0, otherwise
(27)

where k ∈ [0 · · ·P − 1] and l is chosen such that l >
2 × P . The proposed expression of hk+1,n, k ∈ [0 · · ·P − 1]
is determined by modeling the spectrum with a piecewise

regular signal in frequency domain and casting the problem

of spectrum sensing as a change point detection in the pri-

mary user transmission [21]. Finally, in each detected interval

[nνi
, nνi+1 ], we compute the following equation:

λk+1 =

nνi+1
∑

m=nνi

Wmhk+1,mXm (28)

where M is the number of samples of the observed signal,

Wm is the weight for numeric integration defined by:
{

W0 = WM = 0.5
Wm = 1 otherwise

(29)

In order to infer whether the primary user is present in its

interval, a decision function is computed as following:

Df = ‖
P

∏

k=0

λk+1(nν)‖ (30)

The decision is made by comparing the threshold Th to the

mean value of the decision function over the detected intervals.

IV. SIMULATIONS

In this section we investigate the performance of the

proposed algorithm in comparison with the energy de-

tector (ED). First we consider a frequency band in the

range of [50, 250]MHz, in order to compare the compres-

sive sensing using the algebraic method and the wavelet

approach introduced in [22]. The signal is fully described

in [22]. During the observed burst of transmissions in

the network, there 6 bands, with frequency boundaries at

nν
6
n=0 = [50, 120, 170, 200, 220, 224, 250]MHz.

Comparing with the wavelet approach, in the algebraic detec-

tion technique change points are detected only in one shot,

while in the wavelets approach, many detections have to be

conducted and fused to make a final decision.

Figure 2 shows the algebraic detection performance on this

signal. Now, comparing the proposed compressed sensing

algorithm to the reference algorithm, let us give some key

notes on the ED. ED is the most common method for spectrum

sensing because of its non-coherency and low complexity. The

energy detector measures the received energy during a finite

time interval and compares it to a predetermined threshold.

That is, the test statistic of the energy detector is:

M
∑

m=1

‖ ym ‖2 (31)

where M is the number of samples of the received signal y.

Traditional ED can be simply implemented as a spectrum

analyzer. A threshold used for primary user detection is highly

susceptible to unknown or changing noise levels. Even if the

threshold would be set adaptively, presence of any in-band

interference would confuse the energy detector.

Since the complexity of sensing algorithms is a major concern

in implementation and ED is well known for its simplicity,

we choose ED as the comparison reference. Denoting N the

number of Nyquist samples of the observed signal y and P the

model order of AD, we show that the complexity of AD is PN
and the complexity of ED is N . From these results, we clearly

see that the exploited sensing algorithm has a comparable

complexity to the energy detector. For the proposed AD based

compressed sensing algorithm, the complexity is equal to:

P M
N N = PM , where M is the number of compressed

measurements of the received signal and M ≪ N .

Table I summarizes the complexity of each detector.

Sensing technique Complexity

Energy detector N
Algebraic detector PN
Combined compressive sampling and PM
distribution discontinuities detection

TABLE I
COMPLEXITY COMPARISON OF THE THREE SENSING TECHNIQUES; M ≪ N .

In order to achieve realistic and well founded simulations,

DVB-T signals based on DVB-T 2K recommendations are

used as the signals to be sensed. This choice can be justified by

the fact that almost all licensed primary networks are DVB-

T and secondary users are CR deployed in these networks.

The signal parameters are given in Table II. Figure 3 shows

the performance of the following simulated detectors: energy
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Fig. 2. Edge detection using the algebraic technique. The signal in red is
the original signal, the one in blue is the noisy observation with SNR=-8dB.
The black signal is the computed decision function and the green stars are
the detected change points.



Bandwidth 8MHz

Mode 2K

Guard interval 1/4

Channel models AWGN

Frequency-flat Single path

Sensing time 1.25ms

TABLE II
THE TRANSMITTED DVB-T PRIMARY USER SIGNAL PARAMETERS

detector (ED), first order algebraic detector (AD1), AD1 with

compression rate of M/N = 20%, 30%, 40% and 50% and a

second order algebraic detector (AD2) with M/N = 50%. We

note that ED, AD1 and AD50%
2 all have the same complexity

and the figure 3 shows that AL50%
2 have a much better

performance than ED and at low SNRs it is outperforming

AD1.

Another key metric in the sensing problems is the receiver

operating characteristics (ROC) curve which helps giving

an idea about the reliability of the proposed technique. For

instance we plot the ROC curve at SNR = −25dB for ED,

AD1 and AL50%
2 .

Figure 4 shows how reliable the compressed sensing technique

is, as the detector operates at high probability of detection

under a low false alarm rate.
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V. CONCLUSION

We present in this work a new sensing technique which

combines compressive sampling and algebraic method to de-

tect spectrum holes. In a first step, we designed a compressed

sensing matrix which keeps the linear properties of the sam-

pled primary signal. Then, we applied the compressed mea-

surements to algebraic detector to localize spectrum distribu-

tion discontinuities and identify spectrum holes. The analysis

of the complexity of the proposed technique shows that it can

be dramatically reduced when the model order of the algebraic

detector increases. The performance comparison at different

sampling rates shows that the new designed scheme achieves
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Fig. 4. ROC curve at SNR=−25dB; ADP :Algebraic detection of order P ;
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better performance than energy detector while preserving a

low computational complexity.
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