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Abstract— In this paper we address the problem of Weighted
Sum Rate (WSR) maximization for a K-user Multiple-Input
Single-Output (MISO) cognitive Interference Channel (IFC) with
linear transmit beamforming (BF) vectors in an underlay cogni-
tive radio setting. We consider a set of L single-antenna Primary
receivers to which the cognitive system can causes a limited
amount of interference. We thus propose an iterative algorithm
to determine the BF vectors for the secondary transmission.
The optimization of the Lagrange multipliers involved in the
optimization problem is based on the subgradient method. The
expression of the BF vector can be interpreted as dual Uplink
(UL) MMSE receiver that takes into account the interference
caused by a fictitious link between the primary user and
secondary base station. Finally Deterministic Annealing is applied
to make the convergence of the algorithm easier.

I. INTRODUCTION

In the last decades wireless communications have experi-

enced an outstanding success worldwide, consequently, de-

vices that exploit the radio channel to communicate are always

more widespread. Since the 1920s, national regulatory entities

allocate spectrum portions to licensed users, with the purpose

of preventing mutual interference. This rigid frequency alloca-

tion has not changed significantly since then, as a result, some

licensed band are underutilized, while others, like the cellular

telephony ones, are getting more and more crowded. Cognitive

Radio (CR) is a set of techniques that is being developed in

order to allow an opportunistic access to the radio spectrum

and a smarter utilization of the transmission resources.

There are three CR paradigms: Interweave, Overlay and

Underlay [1]. Interweave exploits the white spaces in time, fre-

quency or space [2] of the concurrent transmissions; Overlay

is a cooperative technique, in which the secondary transmitted

signals are generated to improve the primary communication,

requiring thus a shared knowledge of the codebooks and

modulation schemes. The Underlay CR allows the coexistence

of a Primary (usually licensed) network and a Secondary (cog-

nitive) one, constraining the interference caused by secondary

transmitters on primary receivers under a certain threshold:

this is the paradigm we are focusing on in this paper.

Beamforming techniques for the WSR maximization have

been studied in a non-cognitive scenario for the MISO inter-

ference channel (IFC) in [3], where a distributed algorithm

is presented. In [4] the authors propose optimal solutions

for beamforming design for weighted sum rate (WSR) max-

imization for the Multiple-Input Multiple-Output (MIMO)

Broadcast channel (BC) and in [5] and [6] for the MIMO IFC.

The underlay CR MIMO BC is then considered in [7], where

a solution is derived in case of one single-antenna Primary

Receiver.

In this paper we study the WSR maximization problem

in an underlay CR scenario, where a secondary system is

represented by a MISO IFC that coexists with a set of single

antenna primary receivers. In addition the interference that

each secondary users receives is treated as additional Gaussian

noise contribution. The optimization problem is known to be

non convex. To overcome this difficulty we propose an iterative

algorithm based on alternating minimization where the BF

vectors can be interpreted as virtual dual MMSE receiver

filters. The Lagrange multipliers are updated at every step

according to the subgradient method.

During the preparation of the camera ready version of this

paper the authors came across [8] where a similar problem has

been studied. In our paper a different approach has been used

to determine the beamformers and in addition we introduce

Deterministic Annealing to make the convergence easier.

II. CHANNEL AND SIGNAL MODEL

We study a CR MISO IFC as in figure 1, with K pairs BS-

receiver (Secondary Users - SUs) and an additional set of L

single-antenna Primary Users (PUs). This setting is relevant in

the case of a network of two or more cognitive femtocells base

stations (BS), that represent the secondary system, where each

femtocell BS is serving a single user in the time-frequency

unit of interest. The femto cells are deployed in the same

area of a macro cell and they want to coexist with L mobile

users that belong to the macro cell. The k-th secondary base

station BSk is equipped with a Nk− antennas, onto which the

information symbol sk, drawn from a Gaussian distribution

with zero mean and unit variance, is mapped by the BF vector

gk ∈ C
Nk×1, where ‖gk‖

2
2 is equal to the transmission power.

In real systems symbols are transmitted using more practical

constellations. This causes a shaping loss, compare to the

Gaussian signaling, for the useful signal part that determines

an effect similar to a modest SNR offset in the sum rate

curve. On the other hand the Gaussian interference is the



Fig. 1: System Model (dashed lines are interference links)

worst interference contribution for a given power. In addition

this assumption matches with the assumption of treating the

interference at each receiver as an additional Gaussian noise

contribution. We denote with hjk ∈ C
1×Nk the channel vector

between BSk and SUj and, without loss of generality, with

hK+l,k ∈ C
1×Nk the channel vector between BSk and PUl.

In the latter case, a comma is inserted between the indexes

to make the notation clearer. Channel entries are circular

symmetric Gaussian distributed, according to the Rayleigh flat

fading model. Moreover, we assume that all the secondary BSs

have full CSIT about the channels of the secondary network.

In addition for the BF design, as will be clear later on, they

only need the knowledge of the cross channels that link the

secondary BSs to the primary receiver. This information can be

acquired without cooperation or additional overhead in TDD

transmission strategies.

The scalar signal received by SUk, indicated as yk, is given

by:

yk = hkkgksk
︸ ︷︷ ︸

desired signal

+

K∑

j 6=k

hkjgjsj

︸ ︷︷ ︸

interference term

+ nk
︸︷︷︸

noise term

(1)

where nk is a temporarily white noise term, complex Gaussian

distributed with zero mean and variance equal to σ2
k.

Similarly, the signal received by PUl, indicated with yK+l,

is given by the following expression:

yK+l =
K∑

k=1

hK+l,kgksk (2)

where all the power transmitted by the K base stations

received by a primary receiver is accounted as interference.

III. WEIGHTED SUM RATE MAXIMIZATION

A. Problem statement

Our objective is to find the set of BF vectors {gi} that

maximizes the WSR of the Secondary Network (SN) imposing

the following two sets of constraints. Each base station BSk

has a limited maximum transmission power equal to Ptx
max,k

and the total maximum interference power at each PUl from

the SN BSs is constrained to be at maximum equal to Pint
max,l

In mathematical terms:

max
g1,...,g

K

K∑

k=1

uk log2

(

1 +
hkkgkg

H
k hH

kk
∑K

j 6=k hkjgjg
H
j hH

kj + σ2
k

)

s.t: gH
k gk ≤ P

tx
max,k; ∀k

K∑

k=1

hK+l,kgkg
H
k hH

K+l,k ≤ P
int
max,l; ∀l (3)

where uk is the weight factor associated to the rate of k-th

secondary link.

Unfortunately, problem (3) is non-convex, so it is not

possible to find the global maximum in a direct way by using

the common convex optimization tools. By the way, we can

study the KKT optimality conditions (for more details refer to

[9]). The Lagrangian of the optimization problem is:

L(gk, λk, µk) =

K∑

k=1

uk log2

(

1 +
hkkgkg

H
k hH

kk
∑K

j 6=k hkjgjg
H
j hH

kj + σ2
k

)

−

K∑

k=1

λk

(

gH
k gk

Ptx
max,k

− 1

)

−

L∑

l=1

µl

P int
max,l

(
K∑

k=1

h
K+l,k

gkg
H

k
hH

K+l,k
−1

)

(4)

where λk is the Lagrange multiplier associated to the k-th BS

transmission power, and µl is the Lagrange multiplier of the

l-th PU received interference.

To find the optimal BF vector gk we compute the derivative

of the Lagrangian (4) w.r.t. the k-th BF and equating it to zero.

After some calculations we obtain

∂L(g
k
, λk, µl)

∂g∗
k

= uk

f∗
khH

kk

loge 2
−

K∑

j 6=k

uj

fjwjf
∗
j hH

jkhjkgk

loge 2

−
λkgk

Ptx
max,k

−

L∑

l=1

µl

P int
max,l

hH
K+l,k

h
K+l,k

g
k
=0N

k
(5)

where the following quantities are defined as:

fk = ekd−1
k gH

k hH
kk; (6)

ek =
(
1 + hkkgkg

H
k hH

kkd−1
k

)−1
; (7)

wk = e−1
k ; (8)

dk =
∑K

j 6=k hkjgjg
H
j hH

kj + σ2
k. (9)

Looking at the the definitions (6)-(9) it is possible to observe

how every single term of (5) depends on the optimization

variables gk∀k. Hence it is not possible to find an explicit

solution for gk directly using that formula. To solve the given

optimization problem, as will be explained in the next section,

we use alternating minimization. We consider all the scalar

quantities in (6)-(9) to be fixed when we optimize w.r.t. the

BF vector gk, with this assumption it is possible to solve



(5) w.r.t the BF vector obtaining expression (10). We can

observe that the scalar fk in (6) has an expression of a scalar

MMSE receiver that is applied at the k-th SU receiver while

(7) represents the minimum mean squared error of the Rx

signal at the k-th SU Rx after the MMSE receiver.

B. Iterative Algorithm

To obtain the solution of the optimization problem (3)

we propose an iterative algorithm based on alternating op-

timization. In this optimization framework the complete set

of optimization variables is split in two or more sets. In

the optimization procedure a set of variables is determined

assuming fixed the others. In our optimization procedure we

consider the values of gk which are explicit in (5) to be those at

current step, while the values of {gi} within the definitions of

wk and fk∀k are assumed to be those at the previous iteration

step.

The strategy we propose to update the Lagrange multipliers

λk and µl is based on subgradient method, as described in

[10] and [11]:

λ
(n+1)
k =

[

λ
(n)
k + tλ,k

(

‖g
(n+1)
k ‖22 − P

tx
max,k

)]+

(13)

µ
(n+1)

l =
[
µ

(n)

l + tµ,l

(∑

k |hK+l,k
g

(n+1)

k |2 − P int

max,l

)]+
(14)

where the notation [·]
+

denotes max {·, 0}. The parameters

tλ,k and tµ,l are the subgradients’ stepsizes, whose values are

to be chosen: the convergence of the algorithm is ensured as

long as they are set sufficiently small [11].

The final algorithm proposed for WSR maximization is

summarized in Table Algorithm 1.

Algorithm 1 CR-MWSR

Initialize g
(0)
k , λ

(0)
k , t

(0)
λ,k ∀k ∈ 1, . . . ,K

µ
(0)
l , t

(0)
µ,l ∀l ∈ 1, . . . , L

n = 0
repeat

n← n + 1
compute the BF vectors g

(n)
k ∀k ∈ 1, . . . ,K as in (11)

update λ
(n)
k ∀k ∈ 1, . . . ,K as in (13)

update µ
(n)
l ∀l ∈ 1, . . . , L as in (14)

until convergence

Please note that no specific initial values are suggested

for any of the optimization parameters, as there is not a

binding rule: the initial BF vectors, could be drawn randomly

with norm equal to
√

Ptx
max,k. The stepsizes values must be

chosen possibly small, as a compromise between ensuring

convergence and reducing the time needed to converge: a

larger value will require less iterations, but may lead to

oscillating behaviors. To best of our knowledge, there is no

rule to decide a proper value for tλ,k and tµ,l: moreover, these

values appear depending on the noise powers and maximum

interference constraints, so choosing a proper set of initializers

might be a difficult task.

C. Duality in the MISO CR channel

From the optimal expression of the BF vector in (10) we

can see that it has an MMSE like expression and, in addition,

it can be interpreted as receiver filter of a virtual dual uplink

(UL) Single-Input Multi-Output (SIMO) cognitive IFC where

the DL and UL channel are the reciprocal of each other. In

this dual system the scalar Rx filter fk terms act like virtual

scalar complex precoding filters. The first sum, in the squared

brackets in (10) can be seen as the virtual dual SU cross-

talk term, that accounts for the interference caused by SUj

to secondary BSk, with j 6= k. The second sum can be

interpreted as the virtual dual PU interference, i.e. it depends

on the amount of interference power received by the secondary

BSk generated from a virtual PU transmission. The Lagrange

multiplier associated to the interference power constraint plays

the role of the virtual power transmitted by the PU. Finally the

Lagrange multiplier associated to the per-user power constraint

represents the virtual dual noise. The value of the virtual PU

transmitted power and dual noise should be optimized. For

further considerations on duality for IFC in CR setting refer

to [12].

IV. CONVERGENCE ANALYSIS AND DETERMINISTIC

ANNEALING

A. Observations on convergence

The subgradient method is commonly considered an attrac-

tive technique in optimization thanks to the low computational

effort required for a single step. However, to achieve conver-

gence, relatively small values of the stepsizes must be chosen

furthermore, to solve our objective problem this technique

is jointly applied to a set of K + L Lagrange multipliers,

for these reasons the number of iterations required to get to

convergence is large, even for small values of K and L. The

beamforming design is based on WSR maximization, this cost

function defines a very non convex optimization problem. This

means that the optimality conditions (5), that we used to derive

the optimal expression of the BF, can represent only a local

extrema. Hence convergence to global optimum can not be

shown. In addition converging to a local optimum in High

SNR regime seems to be more probable than the Low SNR.

B. Deterministic Annealing

To overcome the convergence difficulties in non-convex

optimization problem several heuristic approaches have been

proposed. Among them we have Simulated Annealing (SA)

[13]. This method takes its name from the physical annealing

process in which a system is first “melted” and then slowly

cooled down in order to allow the atoms in the system to find

a state with lower energy until the system is “frozen” in a

globally optimum state. In our objective problem, the role of

temperature is played by the noise power σ2
k, which starting

from now we assume, without losing generality, equal to σ2∀k.

Starting from the same principle of SA Deterministic Anneal-

ing (DA) has been proposed (refer to [6] for the application

of DA to MIMO IFC). The main difference between the two

methods is that in DA does not involve any randomness. The



gk =





K∑

j 6=k

uj

fjwjfj
∗

loge 2
hH

jkhjk +

L∑

l=1

µl

Pint
max,l

hH
K+l,khK+l,k +

λk

Ptx
max,k

I





−1

hH
kkfk

∗

loge 2
uk (10)

basic principle behind these techniques is that the optimum of

the problem in the next value of temperature is in the region

of attraction of the solution of the problem in the previous

temperature.

The convexity properties of the optimization problem make

the convergence to the optimum BF values more probable and

in high temperature case (Low SNR), i.e. with larger values

of σ2. To increase even more the probability of converging to

the global optimum, it is possible to initialize the algorithm in

Algorithm 1 with different random BF vectors g
(0)
k and finally

select the one that ensures the best WSR in low SNR. Once the

optimal BF vector has been found reduce the noise power σ2

by a relatively small quantity ∆σ2 and run again Algorithm

1 using as initial BF vectors the optimal ones found at the

previous SNR point. Iterating this process until the desired

noise power level is reached, it is possible to reliably approach

the optimal BF values in high-SNR.

If we denote with the superscript (·)opt,σ2

the optimum

value obtained after performing Algorithm 1 with noise power

equal to σ2, the resulting algorithm is as in Algorithm 2.

Algorithm 2 Deterministic Annealing

Initialize σ2

for n = 1 to N do

Initialize g
(0)
k randomly, with ‖g

(0)
k ‖

2
2 = Ptx

max,k

Perform Algorithm 1 → obtain g
opt,σ2

k ∀k
n← n + 1

end for

Choose the new set of g
(0)
k as the set of BF vectors

that brings to the maximum WSR, among the previously

obtained g
opt,σ2

k

repeat

σ2 ← σ2 −∆σ2

Perform Algorithm 1 → obtain g
opt,σ2

k ∀k

g
(0)
k ← g

opt,σ2

k

Decrease the values of tλ,k∀k and tµ,l∀l
until σ2 is the desired noise power value

V. SIMULATION RESULTS

In this section we show the average performances achieved

by the proposed algorithm, via Montecarlo simulations. All

the results shown in this section have been obtained imposing

uk = 1∀k, i.e. Sum Rate (SR) Maximization.

A. Sum Rate Performances varying Pint
max,l

We compare the SR achieved by the presented algorithm, in

a CR MISO IFC, with the maximum SR that can be obtained

by the same channel, described in section II, excluding the PUs

(traditional MISO IFC). Unfortunately, the capacity region of

a general IFC is still an open problem: the only case in which

it is possible to analytically find the maximum SR is in fact

the K = 2 users MISO IFC. In this scenario, we know by

the theory in [14] and references therein that the maximum

SR point belongs to the Pareto Boundary and can be obtained

using BF vectors computed as a weighted sum of a matched

transmission filter and a zero forcing BF. We will then refer

to this specific maximum SR as MISO IFC SR.

In figure 2 is plotted the average ratio between the MISO

IFC SR and the SR obtained with the proposed algorithm,

in table Algorithm 1 in the CR setting, expressed in per-

centage, for different values of the maximum interference

power constraint Pint
max,1. The simulation parameters are the

following: K = 2, L = 1 PU, Nk = 2 antennas per BS ∀k,

σ2 = −10 dBW , Ptx
max,k = 0 dBW∀k, tλ,k = 5 · 10−4∀k

and tλ,l = 5 · 10−4∀l kept fixed all along the iterations.

125 Montecarlo repetition were performed, each time drawing

the channel signatures’ entries from a complex Gaussian

distribution. For each Montecarlo repetition, Algorithm 1 has
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Fig. 2: Sum Rate Performances varying Pint
max,l

been initialized with different random BF vectors, then only

the one that provides the best result in terms on SR has been

chosen.

In the case of Nk = 2 antennas for every BS, figure 2,

the SR value is shown tending to a fixed value as long as

the value of the maximum interference power tolerated at the

PU decreases. For very weak interference power constraint to

the PU the SR obtained for the CR system seems to approach

the SR of a traditional MISO IFC. For stronger interference

power constraint , on the other hand, the algorithm tends to

maximize the rate of only one of the two links, shutting down

the other one.

B. Sum Rate Performances varying σ2

We consider now a scenario in which the interference power

constraint, Pint
max,l, is fixed, and we study the behavior of



the proposed algorithm in table Algorithm 2 for decreasing

values of σ2. In figure 3, we compare the SR obtained using

our algorithm for the sum-rate maximization in a CR setting

against the performance of an equivalent traditional MISO

interference channel. In particular we consider a CR MISO

IFC with Nk = 3 transmitting antennas at each BS and we

impose two different interference power constraints to the PU:

Pint
max,l = −10 dBW and Pint

max,l = −20 dBW . The noise

power, σ2, ranges from 5 dBW to −30 dBW , with ∆σ2 = 2
dBW . As we can see imposing a stronger interference power

constraint determines a reduction in term of SR. In high SNR

the SR obtained with our algorithm has a loss in term of

slope in comparison to the traditional MISO IFC without

interference constraint. This is due to the fact that for some

channel realizations the algorithm converges to a solution in

which only one user transmits switching off the remaining

user. This has an effect on the average SR curve determining

the loss in slope. The reason of this behaviour is related to the

non convexity of the cost function, weighted sun rate, so for

some channel realizations the proposed algorithm converges

to a local optimum where only one user is transmitting. In

addition in DA the solution at a given temperature value

is used as initialization of the following noise power level.

This implies that if the optimal solution in one SNR point

requires only one user transmitting then this solution is used

as initialization for the following SNR point. This can be a

bad initialization for that SNR because probably a second

transmitter must be activated . The algorithm proposed here

should be modified to account that possibility similarly to what

has been proposed in [6] for a multistream MIMO IFC.
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VI. CONCLUSION

In this paper we addressed the problem of WSR maximiza-

tion for a K-users MISO IFC in presence of L Underlay CR

PUs. We showed that the KKT conditions of our optimization

problem cannot be solved via direct analytical computation

and thus we proposed an iterative algorithm for the BF

optimization. The optimal expression of the BF vector is

similar to MMSE BF vectors and subgradient method is used

to update the values of the Lagrange multipliers involved in the

optimization problem. In addition the optimization problem

is studied as a dual UL problem where the BF vector can

be interpreted as MMSE receiver. The Lagrange multipliers

associated to the interference constraint play the role of virtual

Tx power in a fictitious link between the PU and the secondary

BS. At the same time the Lagrange multipliers associated to

the per-user power constraints represent the dual noise powers

that still need to be optimized. Finally Deterministic Annealing

is applied to ease the convergence of the proposed iterative

algorithm.
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