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Abstract. Traditional Content Based Multimedia Retrieval (CBMR)
systems measure the relevance of visual samples using a binary scale
(Relevant/Non Relevant). However, a picture can be relevant to a se-
mantic category with different degrees, depending on the way such con-
cept is represented in the image. In this paper, we build a CBMR frame-
work that supports graded relevance judgments. In order to quickly build
graded ground truths, we propose a measure to reassess binary-labeled
databases without involving manual effort: we automatically assign a re-
liable relevance degree (Non, Weakly, Average, Very Relevant) to each
sample, based on its position with respect to the hyperplane drawn by
support vector machines in the feature space. We test the effectiveness of
our system on two large-scale databases, and we show that our approach
outperforms the traditional binary relevance-based frameworks in both
scene recognition and video retrieval.

1 Introduction

(a)

(b)
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Fig. 1. Relevance is a 4 notion: images labeled as positive for (a) “telephone” (b)
“chair” (c) “cup” (d) “beach” actually have different visual evidences.

CBMR systems aim to categorize and search for visual content in large collec-
tion of visual data, by exploiting statistical models that predict the presence
of semantic concepts in images or videos. Such frameworks generally rely on
supervised learning techniques, that require manually-assessed ground truth an-
notations associated with the samples in the dataset. When labeling a dataset,
real assessors are asked to categorize an image or a shot according to its topical
relevance with respect to a given concept. In most cases (e.g. the TrecVid collab-
orative annotation [1]), the notion of relevance is measured using a binary scale:
a visual input is either “positive” or “negative” for the concept considered. This
type of assessment assumes therefore that all the relevant elements are identi-
cally relevant and that all the irrelevant samples are equally non-relevant.
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However,“as all human notions, relevance is messy and not necessarily perfectly
rational”[17]. Each group in Fig. 1 shows a set of images that would be anno-
tated as positive for the same corresponding concept: even if we can acknowledge
that all the images are relevant with respect to the group label (e.g. images in
group a contain the concept “Telephones”), the global semantic content of each
image differs. Intuitively, we would say that each image is relevant for the as-
sociated concept with a different degree (for example, similar to web search
engines, labels or grades such as “weakly relevant” or “very relevant” could be
assigned). A distribution of relevance inferences over a graded scale would re-
flect better the human way of understanding concepts. From a learning system
point of view, binary judgments imply that both marginally-relevant samples
and very representative samples are treated equally when modeling the concept
feature space: this might cause inconsistencies in the classification process. In a
multimedia retrieval framework, concept models might be therefore less effective
due to the contrast between the intra-class diversity and the binary relevance
judgment. While graded relevance is widely used in web information retrieval
(see [4], [24]), its use was rarely explored in CBMR: an attempt is represented
by the graded-relevance system of Elleuch et Al. [5], that in the TrecVid 2010
edition outperformed the traditional binary-relevance frameworks proposed by
the other participants at the Semantic Indexing Task.
When building a graded-relevance framework for information retrieval, the first
step is to reassess the training samples, labeled as positive/negative, by assigning
a “degree” of relevance. Generally [20] [5], the level of relevance of each sample
is labeled manually. However, when dealing with large collections of visual data,
e.g. the 400 hours of training videos for TrecVid [18] 2011, such re-assessment
becomes time-consuming and practically unfeasible.
In this paper we propose an effective automatic graded-relevance based frame-
work for image recognition and video retrieval. With our system, we can treat
noisy and marginally relevant samples with less importance, achieving a better
usage of our training set, thus improving the performances of traditional binary-
relevance systems. Moreover, the key aspect of our framework is that, unlikely
[5], the relevance degree of a training sample is assessed automatically: we assign
to each sample a reliable and realistic relevance judgment, without involving any
manual effort. To auto-reannotate each training sample in the database accord-
ing to a non-binary relevance scale, we find a measure that first assigns a fuzzy
membership judgment (i.e. how much a sample is representative/positive for a
given concept), based on the position of the sample with respect to the hyper-
plane drawn by a Support Vector Machine (SVM) [2] in the feature space. Then,
based on such relevance score, we re-categorize the training dataset into 4 groups
for every concept: Very Relevant, Average Relevant, Weakly Relevant and Non
Relevant samples. By training the system on such multiple repartitions, we then
build a multi-level model for each semantic concept considered. When assigning
labels to a new sample, the system outputs a set of concept prediction scores
(one for each relevance-based layer of the model), that we weigh and combine to
obtain a final label.
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We test the effectiveness of our system by comparing it with traditional binary-
relevance frameworks in two different tasks, namely scene categorization and
video retrieval. For the first task we consider a large scale, noisy, database of
tourism-related images, and we show that traditional categorization systems and
features benefit from our automatic graded relevance-based multi-layer model
when classifying this kind of biased data. We also consider the non-trivial Se-
mantic Indexing Task of TrecVid 2010 [18] and we show that our non-binary
reassessment combined with a multi-level prediction improves the recognition
performances of a binary-scale video retrieval system by about 13%.
The remainder of this paper is structured as follows: in Sec. 2 we present an
overview of the related work; in Sec. 3 we outline some background knowledge
on traditional SVM-based retrieval systems; in Sec. 4 we show how to build an
automatic relevance degree assignment scheme in a video retrieval framework.
Finally, in Sec. 5 we compare our proposed framework with traditional image
recognition and video retrieval systems and evaluate the results.

2 Related Work

Relevance is a fundamental notion for information retrieval: as pointed out
in [17], while traditional bibliographic and classification frameworks aim to
describe/categorize samples, retrieving information involves, besides descrip-
tion and categorization, the need for searching, and “searching is about rele-
vance”. Graded relevance-based learning methods first appeared for real Web
search engines, where pages cannot be simply categorized as relative/non rela-
tive, but they need a multi-level relevance assignment. Several algorithms have
been proposed to learn ranking functions from relative relevance judgments, like
RankNet[22], based on neural networks, RankBoost[4], or the regression-based
learning proposed in [24] by Zheng et al. How are these “grades” assigned? Gen-
erally, in traditional information retrieval such reassessment is done manually,
either using real expert assessors [20], or using Amazon MechanicalTurk [19].
For web-based searches, the relevance judgment can be inferred in an automatic
way, using the users’ clickthroughs (see [8] for an overview of implicit relevance
feedback method). In the image analysis and video retrieval field, graded rele-
vance has been rarely explored. Traditional multimedia retrieval systems (see,
for example, [15]) generally rely on binary-labeled keyframes or images. How-
ever, it was recently shown [5] that a video retrieval framework benefits from a
graded-relevance annotated training set: in [5] the development set is reassessed
by assigning, for each generally “relevant” frame, a degree of relevance from
Somehow Relevant to Highly relevant. Three new training sets are then created
based on different combinations of the relevance-based partitions.
Our work is somehow similar to the framework presented in [5]; however, in
their work, the manual database re-assessment involves a lot of human effort
and might increase the labeling noise. In this paper we automatize this process
by automatically assigning a class membership degree to each sample. The idea
is to exploit the learning methods traditionally used in video retrieval frame-
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works: the SVMs. Few works have indeed been presented in machine learning
literature that reassess the samples in a binary-labeled training set based on the
learnt feature space. Generally, they assign to the samples automatically a fuzzy
membership score, namely a value representing their relevance for a given class.
For example [10] defines an automatic membership measure as a function of the
mean and radius of each class; this work is then extended by Lin et al in [9],
that uses an heuristic strategy based on a confidence factor and a trashy factor
in training data to automatically assign a score to each sample. An example of
using automatic relevance assignment for image recognition is represented by
the work of Ji et al. [6], where, to solve a face gender classification problem,
the distance to the SVM hyperplane is used to measure the importance of each
sample in a dataset for a given class. Another example can be found in [13],
where the confidence of an image region label is again derived from the sample
distance from the hyperplane. Similar to the work in [6], we use a SVM-based
measure to identify a fuzzy relevance score for each class, that we then discretize,
in order to label our training sets with three relevance degrees. However, instead
of using the raw distance value, we prefer to use a calibrated, thresholded value,
that still depends on the distance to the hyperplane, but it is expressed with the
probability of a given sample to be positive with respect to a concept.

3 Binary Relevance Based Retrieval Systems

Traditional multimedia categorization systems associate a set of images or videos
with a semantic label given a low-dimensional description of the input, namely
a feature vector. Multimedia retrieval systems use categorization frameworks to
build lists of pictures/shots ranked according to their pertinence with respect
to a semantic concept or query. In both cases, the problem can be reduced to a
multiclass classification problem, where each class represents the query/concept
to be found in a visual sample. Generally, concept-specific SVMs are used to
build models able to predict the presence of a given concept in a visual sample.
In order to build such system, a set of training samples (xi, yil), i = 1 . . . n is
required, where x1, x2, . . . , xn are the feature vectors extracted from the visual
input data, and yil the associated labels. For a set of concepts or categories
{c1, c2, . . . .cp} (e.g. “Telephones”), each sample is labeled either as “positive”,
yil = +1, l = 1, . . . , p, (the concept is present in the visual input represented
by xi) or “negative”, yil = −1 (no visual trace of the concept is found in xi).
A set of SVM-based classifiers, one for each concept/category, is used to learn
the feature space and then to label new samples according to the same scheme.
The idea behind the SVM is to find a hyperplane that optimally separates the
two classes (yil = ±1) in the problem feature space, given the distribution of the
positive and negative samples with respect to a given concept. Such hyperplane
satisfies the equation

∑
i(αilyilxi)Tx − bl = 0.1 When a new sample z needs

1 where wl =
∑

i αilyilxi has been proved in [3] to be the linear combination of
the support vectors (i.e. the samples xi for which the corresponding Lagrangian
multiplier αi is non zero).
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to be categorized, the system assigns the corresponding label yzl based on the
sign of the dot product-based decision function fl(z) = wT

l z+ bl. For a retrieval
framework (see, for example [15]), a confidence score p(yzl = 1|z) is obtained for
sample z based on decision function values. Generally, a set of v visual features
are extracted from each sample. v scores are obtained given such features, and
then combined into one single confidence score. The results are then ranked
according to such final score.

4 A Graded Relevance Based Retrieval System

As showed in Sec. 3, a SVM separates the feature space so that we are able
to distinguish between positive and negative new samples for each given con-
cept. This boundary is found based on a binary relevance judgment, yil, that, as
discussed before, might be too restrictive compared to the range of possible in-
stances of a semantic concept in the visual input. In order to allow a better usage
of our data, we go beyond the Relevant/Irrelevant subdivision, by reassessing
our binary-relevance based training set with graded relevance judgments: in the
new training set, a frame can be either Irrelevant (negative), Weak/Marginally
Relevant, Average Relevant or Very Relevant. We then integrate the inferred rel-
evance degree in a multi-layer concept classifier. The proposed framework works
as follows (see Fig. 2):
(1)The features extracted from the training samples are processed by a set of
binary p SVM-based classifiers (one for each concept). According to such models,
we analyze the position of each training sample xk with respect to the hyper-
plane, using a calibrated decision value, and extract, for each concept cl, a fuzzy
membership score σkl. This is a continuous value representing how much a given
sample is representative for a semantic concept (see Sec 4.1 for more details).
(2) As shown in Section 4.2, for each concept, we sort the positive training sam-
ples according to their fuzzy relevance scores and we set two thresholds so that
we are able to re-categorize the samples using discrete relevance degrees. We ob-
tain three subsets of Strongly, Average and Weakly Relevant training samples.
All the negatives are equally labeled as Non Relevant samples.
(3) Similar to [5], we then build a multi-layer model by training the system on
three different, relevance-based training sets. Then, as presented in Sec 4.3, given
a new test image, for all cl we obtain from the multi-layer model three different
concept prediction scores, that we then combine with weighted linear fusion to
obtain one single output score. Such output score is then used for ranking and
thresholded to determine the image label.

4.1 Decision Values as Relevance Indicators

As any traditional retrieval system, we start from an annotated training set of
images/keyframes represented using low level features, namely our labeled sam-
ples. Given a set of non-negative samples, how to automatically define the fuzzy
degree of relevance σkl of each sample with respect to a semantic concept? We
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Fig. 2. Visual representation of our Relevance Based Framework

tackle this problem by exploiting the SVM decision values of the training set.
The idea is that if, for a concept cl, we are able to define how “positive” the
sample is, given its position with respect to the hyperplane, we can have a good
estimation of its relevance degree for that given concept. As a matter of fact,
various works [6, 10, 13] showed that there is a correlation between the distance
to the hyperplane (or the distance to the class center) and how much each sam-
ple is representative for a given class (the bigger its distance from the boundary,
the higher its relevance with respect to the positive/negative category).
In our approach, we use as a fuzzy membership measure for a training sam-
ple a thresholded version of the decision function, according to the solution
proposed in [14] to translate the uncalibrated decision value into a probabilis-
tic output. First, we calculate fl(xk), namely the decision value for concept cl,
∀xk, k = 1, . . . , n in the training set samples. We then estimate the membership
assignment as the positive class posterior probability σkl = p(ykl = 1|fl(xk))
with a parametric model based on fitting a sigmoid function:

σkl =
1

1 + exp(Afl(xk) +B)
, (1)

Where A and B are parameters adapted in the training phase to give the best
probability estimates.

4.2 A Multi-Layer Training Set with Different Relevance Levels

Once the continuous value σkl is computed for each training sample xk, the
next step is to build a graded relevance retrieval framework. In order to achieve
this goal, we need to have a discrete relevance degree for each training sample,
so that we are able to perform a relevance-based split of the training set into
smaller, consistent subsets with different degrees of relevance with respect to a
concept cl. As pointed out in [7], there is no universal rule to define such number
of relevance degrees in a graded system. However, as shown in Sec 5.2, our ex-
perimental results suggest to set to 4 the number of relevance levels considered.
We therefore separate, for each concept, the positive/relevant training samples
into three groups: Very Relevant Samples, that represent the most representa-
tive images/keyframes for a given class, Average Relevant Samples, and Weakly
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Relevant Samples; all the negatives are equally labeled as Non Relevant samples.
We then generate three repartitions of our training database, based on which
a multi-layer model will be learnt (see Sec. 4.3). Having the fuzzy membership
score σkl for each relevant sample, the discretization procedure is very simple:
(i) For each cl, we take the positive (xk : ykl = 1) training samples and sort
them according to their corresponding σkl, in decreasing order.
(ii) We now want to find a partition of the positive samples in three classes,
according to the relevance scale selected. Based on the shape of the curve drawn
by the sorted fuzzy relevance scores, we identify two thresholds, θV

l and θA
l . We

use and test three different approaches to choose such thresholds: (ii.a) we split
the curve into equally spaced intervals, (ii.b) we choose the thresholds manually
such that, intuitively, the intra-partition variance of the scores value is mini-
mized (ii.c) we choose the values corresponding to 1/3 and 2/3 of the maximum
membership score for the concept considered . For each concept cl, the Very
Relevant samples are then defined as the positive xk : 1 < σkl < θV

l |ykl = 1; the
Average Relevant samples as xk : θV

l < σkl < θA
l |ykl = 1; the Weakly Relevant

as xk : θA
l < σkl < 0|ykl = 1.

(iii) Finally, similar to [5] we create three new training sets: (a) merges the Very
Relevant Samples with all the Non Relevant (i.e. our negatives, xk : ykl = −1),
(b) merges (a) with the Average Relevant Samples, and (c) considers all positives
and negatives samples.

4.3 Multi-Layer Prediction and Fusion

Once we have created the three concept-specific training subsets, for each con-
cept we build our multi-layer model: it consists of three different SVM-based
models, each of them learning a partition (a), (b), (c). Each level of the model
separates the feature space in a different way, according to the annotations
of the subset considered. When a new test sample z needs to be classified,
we compute, using probabilistic SVM, three prediction scores for each concept
(each of them is generated by a layer of the model). We therefore obtain , ∀l,
pa(yzl = 1|z), pb(yzl = 1|z), pc(yzl = 1|z).
Each of these predictions is generated by a different relevance-based partition,
which gives a different, complementary type of information regarding the rele-
vance degree of the new sample to be classified. In order to exploit such different
cues and obtain a single output, we then merge the three outputs using weighted
linear fusion, as follows:

pzl = p(yzl = 1|z) =
∑

t

wtpt(yzl = 1|z), (2)

t = a, b, c, ∀l, where wt is a concept-specific weight learnt with development data.
For retrieval purposes, we then rank, for each query l the test samples according
to pzl in decreasing score, while for image categorization, the final label yzl is
assigned according to the following scheme:

yzl =
{
−1 if pzl < 0.5
+1 otherwise
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5 Experimental Validation

In this section, we use our proposed framework for both scene recognition and
video retrieval: we compare the graded relevance framework with the classical
binary-relevance systems (our baselines) for both tasks. First, in Sec. 5.1 we
briefly summarize the composition of the large-scale databases considered and
the experimental setup of the binary-relevance systems we use as baselines. We
then explain in Sec 5.2 some details about our graded relevance framework setup
and present some visual results that validate our automatic membership mea-
sure, presented in Sec 4.1. Finally, in Sec 5.3 we present the results obtained by
comparing binary and graded relevance systems, for both the considered tasks.

5.1 Binary Relevance Framework Setup: Databases and Baselines

Scene Recognition For this task, an automatic annotation system is required
to assign a semantic category/concept to each image in the database. We choose
for this task a large-scale database composed of around of 100,000 images coming
from 100,000 touristic properties2. The database spans 16 between outdoor and
indoor scene categories. For our binary-relevance baseline, we extract from such
database the most widely used global features for content based image retrieval,
namely Color Moments [21] , Wavelet Feature [12], Edge Histogram [23] and
Saliency Moments [16] (respectively “CM”, “WF”, Edge” and “Saliency” in
Fig. 3(d)). For every considered feature, a one-versus-all polynomial SVM-based
model is built to separate each class from the others. Finally, the label confidence
score of all the features are combined with linear fusion to obtain one single
output.( “all” in Fig. 3(d)).
Video Retrieval Here, we focus on the Light Semantic Indexing Task (SIN), of
TrecVid [18] 2010 where the retrieval system is required to produce a ranked list
of relevant shots for a set of semantic concepts proposed. We use as a database the
TrecVid 2010 IACC.1.tv10.dev set, which is composed of 3200 Internet Archive
videos (a total of around 100,000 shots), that have been annotated with binary
assignments. For our baseline, similar to our system in TrecVid 2010 [15], from
each keyframe/shot, we extract a pool of visual features (Sift [11], Color Moments
[21], a Wavelet Feature [12], and the MPEG7 edge histogram [23]). We then use
them as input for a set of concept-specific classifiers, to build models that will
predict the presence of a concept in each keyframe, and output a label and a
concept score (the label confidence). All the concept scores coming from the
different features are linearly combined to obtain the final concept score for each
shot, that we will use to build the ranked list of shots.

2 This is a randomly sampled subsed of 1 million images describing hotels amenities
and surroundings, that have been manually labeled on the property owner’s side
before uploading them into a Hotel Management Platform
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Fig. 3. We compare our system with a traditional binary-relevance CBMR system.
Video Retrieval task (a) Mean Average Precision values with different numbers of
relevance-based categories (b) per-concept Average Precision on the TrecVid Database
given the complete set of features (c) per-feature results. Image Categorization task (d)
per-feature results and (e) Average Precision Accuracy on the test set for the combined
set of features

5.2 Graded Relevance Framework Setup: Scale Selection and
Relevance Visual Results

Our Graded Relevance frameworks are built on top of the baselines outlined in
the previous section. As we already have binary annotated datasets, we need
to (1) add a fuzzy membership score to each frame, (2) find proper thresholds
to obtain a discrete relevance category assignment, and (3) build a multi-layer
model as described in Sec 4.1-4.2-4.3.
(1)For each feature f , we can re-use the model built in the baseline to estimate
the fuzzy membership score σf

kl of a keyframe/image in the training set xk for a
concept/category cl. Instead of using directly feature-based membership scores,
that might supply incomplete information (e.g. the most relevant samples given
the color or the edge distribution only), we combine them to obtain one single
σkl for each sample.
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Fig. 4. Automatic relevance-based reassessment: for given semantic concepts, ex-
amples from the three relevance-based categories are shown (a)Map (b)Nighttime
(c)Restaurant (d)Classroom (e)Hotel Lobby (f)Boat.

(2)Now that we have a fuzzy score, how to select the number of discrete levels
that we will use to re-categorize the training set? As shown in Fig. 3, we experi-
mented with different subdivisions of the relevant samples of the training set and
tested their respective performances on the video retrieval task. Results shown
in Mean Average Precision (MAP) yield to the selection of a 4-level graded
scale (namely Highly, Average and Weakly Relevant, and the Non Relevant la-
bel assigned to all the negatives) to reassess the training set. Is this subdivision
reliable? Fig. 4 shows examples from the three relevance-based classes: as we
can see, our proposed method actually separates samples according to their rele-
vance with respect to the given category or query, and in some cases, among the
“Weakly Relevant” samples we can even find wrongly annotated images. Given
the trend of the fuzzy membership score curve, we select the thresholds θV and
θA, according to methods (ii.a), (ii.b), (ii.c) mentioned in Sec. 4.2 (respectively
“4lv Equal”, “4lv Manual”, “4 lv Max” in Fig. 3 b and c).
(3) Finally, for every feature and every concept, given the new training set repar-
titions, three models are created and then used to predict the presence of the
concept, combining the three outputs as shown in Sec. 4.3. At the end of this
step we will have, for a new sample z, a concept score pf

zl for each feature. Such
feature-specific concept scores are then fused with linear fusion, similar to the
binary baseline.

5.3 Results

Scene Recognition The scene recognition results in Fig. 3 (d-e) show the
improvement obtained on a traditional binary relevance categorization system
by introducing our graded-relevance reassessment, evaluated with the standard
average classification accuracy on the test set. If we consider the whole set of
descriptors combined together (“all” vs “all graded”), we can see that with our
system we improve the overall categorization performances of about 8%. In par-
ticular, we can see that, when switching to graded relevance, we improve the dis-
criminative power for some particular categories (e.g. Spa, +214%, Bar/Lounge,
+197% and Beach, +24%) : analyzing such categories, we saw that those are the
classes that are more affected by labeling noise, because they are often confused
by the manual assessor with semantically similar classes (e.g. Bar-Restaurant,
Spa-Health Club, Beach-Exterior View).
Video Retrieval For the Video Retrieval Task, we present the results of both
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systems in terms of Mean Average Precision, the standard evaluation measure
used for TrecVid assessments. We can see from Fig. 3 that the weaker features
(e.g. Edge Histogram, +20% and Wavelet Feature, + 15%) benefit from our
graded system. Moreover, we can see that the overall MAP increases of about
13%, when considering the ensemble of features combined together, with some
peaks for those concepts for which the binary system was less performing, e.g.
Classroom +53%, Telephones +420%, Bus +356% and BoatShip +60%.

6 Conclusions and Future Work

We presented a Multimedia Categorization and Retrieval Framework based on
automatic graded relevance annotations. We automatically reassessed binary-
labeled databases by assigning a degree of relevance to each sample based on
its position with respect to the SVM hyperplane, and build an effective graded-
relevance based CBMR system. We showed that our system, by allowing differ-
ent degrees of relevance, outperforms the traditional binary-based frameworks
for both image recognition and video retrieval.
Our simple approach can be improved in various ways. First, the automatic rel-
evance fuzzy score assignment can be refined by using more complex machine
learning-based measures, or by considering the combination of the relevance
scores of a sample with respect to different concepts. Moreover, we can autom-
atize the discretization procedure (from fuzzy to discrete relevance degrees) by
designing a measure that infers the best thresholds from the shape of the positive
membership scores curve. Finally, while in our framework, similar to traditional
CBMR systems, we use simple SVM classifiers for ranking, we could explore
the learning methods used for web page ranking (e.g. [24]), that are designed to
support graded-relevance, achieving a higher discriminative power.
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