OpenAirinterface Large-Scale Wireless Emulation Platform
and Methodology ~

Ben Romdhanne Bilel; Nikaein Navid; Knopp Raymond; Bonnet Christian
Eurecom
2229, route des Cretes
06904 Sophia Antipolis, France
{nikaeinn,romdhan,knopp,bonnet}@eurecom.fr

ABSTRACT

The OpenAirInterface emulation platform is an integrated
tool allowing large-scale networking experimentation appli-
cable to both evolving cellular and adhoc/mesh topologies.
The platform in built to represent a realistic system in a
controlled and real-time environment, which interacts with
the external elements. The platform has a dual objective of
performance evaluation of application and protocols as well
as their testing and validation.

Categories and Subject Descriptors

H.4 [Techniques for network measurement, simula-
tion, and emulation]:

General Terms

LTE, LTE-A, WMN, Emulation, methodology, experimen-
tation

Keywords

Large Scale, Emulation, LTE, Evaluation

1. INTRODUCTION

The next generation wireless systems, protocols, and ap-
plications applicable to evolving cellular and adhoc/mesh
networks are becoming complex and hence their performance
evaluation is difficult and in some cases unreliable. This
makes the experimental approach necessary in order to val-
idate and compare such systems and protocols. The ques-
tion that arises in this regard is that how such an experi-
mental approach could be applied to a large scale systems.
Furthermore, wireless systems are subjected to stochastic
factors from environment and mobility, which need to be
controlled or assessed in order to obtain conclusive results.
To achieve a meaningful experiment the following properties

*This work has been presented at ACM MSWIM 2011 demo

session

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyooiberwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PM?HW?N'11, October 31, 2011, Miami, Florida, USA.

Copyright 2011 ACM 978-1-4503-0902-8/11/11 ...$10.00.

are required (i) reproducibility: repeat the experiment in a
controlled environment, (ii) scalability: run large scale net-
working experimentations, and (iii) applicability: represent
a set of realistic systems, protocols, and scenarios [3] [6].

There exist three main approaches when evaluating the
performance: simulation, emulation, and real testbed. Sim-
ulation is typically done in controlled environment, where
some or all part of the system and network stack are mod-
eled. Thus, the execution environment is not that of the real
system and the interactions with external entities are limited
(e.g. real application). This makes simulation reproducible
and scalable but not applicable as the use of models may
deviate results and system behavior, and can hide impor-
tant issues when the software is implemented and deployed
on a large scale in a real environment. At the other end,
real testbed provides a semi-controlled environment, where
almost all the elements of the system are real. The execu-
tion environment is also real and open to external entities
with their IO stream making this approach applicable. Nev-
ertheless, real testbed is expensive and not scalable and the
measurements produced on them are hard to predict and
reproduce. The best approach would be that of a real sys-
tem and network stack (e.g. Linux or BSD) in a controlled
environment, where a given experiment could be reproduced
to verify the true difference between two different solutions.
However, the decision on which element of the protocol stack
is real or modeled depends on the use case and purpose of
the experiments. The OpenAirlnterface (OAI) emulation
platform described here intends exactly to provide such an
environment [4]. Furthermore, the main difference between
the methodology used with respect to existing open-source
simulation/emulation tools such as NS [2], is firstly that it
is built with a real-time framework in mind, using the open-
source real-time application interface (RTAI) extension to
Linux [5], and secondly that it is part of a validation chain
for a real protocol implementation.

This paper is organized as follows. Section 2 provides an
overview of OAI emulation platform, its workflow and archi-
tecture. Section 3 presents a concrete example scenario and
some result. Finally some conclusion and future directions
are given.

2. OAlI EMULATION PLATFORM

The OAI emulation platform is an open-source software
modem and layer 2/3 protocol stack solutions for wireless
network experimentation written in C targeting both real-
time and non real-time operations. The current development
targets generic Linux-based hardware environment ranging

from a simple PC to sophisticated PC cluster or even a GPU
workstation.

The software platform currently aligns its air-interface de-
velopment with the evolving LTE standard but provides
extensions for adhoc/mesh networking, particularly in the
MAC and Layer 3 protocol stack. This emulator allows pro-
tocol and application performance evaluation and validation
as well as system testing. OAI provides a complete wireless
protocol stack and radio hardware and implements the PHY,
MAC, RLC(Radio Link Control), RRC(Radio Resource
Control) layers as well as providing a IPv4/IPv6 network
device interface under Linux[1]. It can be seen as a mock
standard which retains the salient features of a real radio
system, without all the required mechanisms one would find
in a standard used in deployment of commercial networks.
The aim is to study innovative techniques such as coopera-
tive protocols, relaying scheme, interference management in
a set of conventional (e.g. VoIP) and emerging applications
(e.g. machine-to-machine and multiplayer gaming).

2.1 Experiment Design Workflow

A sequential experiment workflow, where the output of
each step will be the input of the next, is employed to al-
low an experiment to be reproduced. Five consecutive steps
are defined: scenario description, configuration, execution,
monitoring, analysis, where each step is split into several
sub-steps as explained in the following subsections (see Fig-
ure 1.

Scenario Description

Environment/System Network Topology Application EMU IO Parameters

Configuration

Network Interface Traffic/Mobility Protocol Stack PHY/RF Abstraction
Execution
Debug Mode Soft Realtime Mode Hard Realtime Mode Realtime RF
Monitoring
Execution Logs Packet Traces
Analysis

Performance Evaluation Protocol Validation System Testing

Figure 1: Experiment Design Workflow

2.1.1 Scenario Description

This step builds a complete xml layout of an experiment.
This step is splitted into four sub-steps: (i) system/envirnment,
where system (e.g. bandwidth, frequency, antenna) and
environement (e.g. pathloss and channel models) param-
eters are defined; (ii) network topology, where network area,
network topology (i.e. cellular, mesh), nodes’ type, initial
distribution, and mobility model (e.g. static, random way
point, grid) are set; (iii) application, where real application
and/or emulated traffic pattern in terms of packet size and
inter-departure time are defined; (iv) EMU IO Parameters,
where supervised parameters (e.g. emulation time, seed,
performance metrics) and analysis method (e.g. protocol
PDUs and operation) are set.

2.1.2 Configuration

This step defines a sequence of components’ initialization
based on the scenario description. It includes four sub-steps:
(i) network interface, where the OAI IP interface is config-
ured, (ii) ¢raffic and mobility, where traffic pattern and mo-
bility model parameters are set, (iii) protocol stack, where
protocols are configured given the network topology and
PHY abstraction, where a channel model prediciting the mo-
dem performance is configure.

2.1.3 Execution

This step defines the execution environment for the em-
ulator in order to synchronize the emulated nodes and run
the experimentation. It includes four execution modes: (i)
debug mode, where the emulation is executed in user space
without any Linux IP connectivity, (ii) soft real-time mode,
where the debug mode is interconnected with the Linux IP
protocol stack and calibrated to respect the layer 2 frame
timing on average, (iii) hard real-time mode, where the em-
ulation is executed in RTAI kernel with Linux IP protocol
stack respecting layer 2 frame timing strictly, and (iv) real-
time RF mode, where hard real-time mode is extended with
the RF equipment interconnected with an attenuator.

2.1.4 Monitoring

This step defines how the experiment is monitored (pas-
sive and/or active). It includes: (i)ezecution logs, where ex-
periment traces and logs are collected, labeled and archived,
(ii) packet traces, where protocol signaling is captured and
stored during the experiment.

2.1.5 Analysis

This step processes raw data and produces results and
statistics. It includes three -non exclusive- analysis objec-
tives: (i)performances evaluation, where the key performance
indicators are measured and evaluated, (ii) protocol valida-
tion, where the protocol control- and user-plane signaling
are validated versus protocol specification, and (iii)system
testing, where the system as a whole is analyzed and tested.

2.2 Architectural Design Choices

To increase both scalability and applicability of an em-
ulation, OAI applies five architectural design choices: (i)
real protocol stack, where protocols are implemented as in a
real system (not modeled), (ii) protocol virtualization, where
the emulated network nodes share the same operating sys-
tem instance and Linux IP protocol stack within the same
physical machine, (iii) transparent emulated data flow, where
emulated data are exchanged either via a direct memory
transfer when they are part of the same physical machine
or via multicast IP over Ethernet when they are in different
machines, (iii) parallel processing, where virtualized protocol
instances and CPU expensive functions are executed in sep-
arate threads (iv) end-to-end validation, where real applica-
tion client/server are attached on the top of some emulated
nodes and the remaining traffic pattern and mobility model
will be generated automatically as would be the behavior of
the real application at the client and server sides.

2.2.1 Real Protocol Stack

OALI provides a complete protocol stack for cellular and
mesh network topologies applicable to both emulation and
real-time RF platforms as shown in Figure 2. At the ac-
cess layer, it implements the full or abstracted PHY, MAC,

RLC (radio link control); RRC (radio resource control) lay-
ers and provides an IPv4/IPv6 network device interface un-
der Linux. The abstracted PHY is used to enable fast em-
ulation of complex network by predicting the modem per-
formance in terms of BLER (block error rate). It injects
error patterns for each transport channel at the receiver of
each emulated node based on the wideband SINR, network
topology, and propagation model or real channel traces. At
the network layer, OAI implements RRM (radio resource
management), routing, multicasting, topology control, and
proxy mobile IP.

The software implements the standard network socket in-
terface for IP layer and a generic request/indicate interface
among other layers making the design highly modular. The
generic interface also provides a loopback interface at each
(sub-)layer for testing and validation purpose.

User Data

| Topolggy & Connectivity Management Mobile IP

Local Routing Routing /Multicasting

User
Space

‘ P Kernel
A Space

!
| 3
!

| Radio Resource Management | ‘ Network Interface Driver |

mmemtmeees ,—-1——————, ——————— i B S
RTAI/

| Radio Resource Control |7_>| Packet Data Convergence Protocol | User

Space

—>| Radio Link Control |
)
| MAC Procedures }<——>|

MAC Scheduling Unit |
J

| Full PHY / PHY Abstraction |

Figure 2: Protocol Stack

2.2.2 Protocol Virtualization

OALI provides virtualization of the network nodes within
the same physical machine to increase the scalability of the
emulation platform (see Figure 3). Protocol virtualization
consists of sharing the same operating system instance and
Linux IP protocol stack for independent emulated node in-
stances. It allows networks nodes to coexist in the same
execution environment. In some cases, the use of OS virtu-
alization tools such as UML may be needed for the devel-
opment and performance evaluation of sophisticated layer
3 protocols. Note that, protocol virtualization offers the
same functional properties (i.e. services) and the same non
functional properties (i.e. performances) than that of a real
protocol.

2.2.3 Transparent Emulated Data Flow

To increase scalability and allow experimentation of a
complex network topology and architecture, two emulated
data flows may coexist between emulated nodes as shown
in Figure 3. Either nodes communicate via direct memory
transfer or via IP multicast (over Ethernet) depending on
whether they are part of the same physical machine or not.
From the point of view of the protocol stack, the data flow
is transparent and that the network connectivity is indepen-
dent from the node distribution on a physical machine.

2.2.4 Parallel Processing

To achieve scalability and exploit the current multi-core
hardware architecture, OAI implements two types of paral-
lelisms: logical and useful. Logical parallelism applied to
the virtualized protocol stack in order to separate emulated
nodes from each other as in a real network, while useful par-
allelism is applied to PHY abstraction and channel modeling
to isolate the CPU expensive functions. Indeed, paralleliza-
tion feature need to redesign the software which present an
important development overhead.

2.2.5 Flexible End-to-End Validation

Real applications can be attached on the top of some em-
ulated nodes via the OAI network interface, which provides
Linux IP interconnection with QoS classification on layer 2
resources. Such an application may interact with an external
application through an emulated or true core network (e.g.
WANEM [7]). The remaining traffic pattern and mobility
model will be automatically generated as would be the be-
havior of the real application at the client and server sides.

Real Application Server

(Emulated or True Core Network 0
i I
Physical Machine 0 Inst0 J\,L == | Physical Machine k Inst0 {L

Network Interface Network Interface

Protocol Stack Protocol Stack

Channel real
o m == = = = PHY Abstraction

[Tl [Emulation Medium|

Channel
fm = == PHY Abstraction |= =

) Sesddabutany ., Emulation Medium]— — —

L
[] 1
: I 1 : 1 1
| : Inst1 Inst K 1 : |1 st Inst K 1
1 | | Traffic/Mobility Traffic/Mobility : 1 I : Traffic/Mobility Traffic/Mobility : !
1y [Protocol stack Protocol Stack || | I [[Protocol stack Protocol stack | | :
Ly J PAvAbstraction | — — J PHYAbstraction |u 1 '_|_ PHY Abstraction | — — | PHY Abstraction | |
i ion Medi Emulation Medium Jomdem fm —| = ion Medium je == = Emulation Medium jm —
I

Figure 3: E2E Validation Architecture

3. DEMONSTRATION SCENARIO

The demonstration setup is composed of a simple laptop
equipped with a quad-core CPU running OATI emulator and
protocol stack using Linux on Ubuntu 10.04. This config-
uration allows soft real-time execution mode. We consider
a simple cellular network composing of one eNB (enhanced
NodeB) and up to three UEs (User Equipment). We make
use OAI HMI (Human Machine Interface) to describe ex-
periment scenario and analyze the output XML file. At this
step, we present the traffic mobility operation. All exper-
imentation will be run using OAI network driver and each
emulated node will have its own network interface. We plan
to run 2 experimentations classified as follows:

e In the first experiment, we make use of PHY abstrac-
tion module (upper path in figure 5) and increase the
number of UEs from 1 to 3.

e In the second, we make use of the full PHY layer im-
plementation (lower path in figure 5) and keep only 1
UE.

The traffic pattern will be based on a combination of simple
video streaming (VLC) in the first experiment and a traffic
generator in the second one. The traffic generator emulates
a sensory data characterized by a small packets size and
inter-departure time.

—_—
Emulation Platform

Figure 4: Scenario Design

Network Interface
Protocol Stack

Uncoded msg

PHY Abstraction
(SNR, MCS)=P(BLER)

Propagation Model]

-

BT T Ch |
‘ Mobility Gen ?nn‘e

EMOS Channel Trace ENB2UE
T UE2ENB

Channel Model

n:

Network Interface
Protocol Stack

Uncoded msg

Signal

Figure 5: PHY abstraction models

3.1 Results

We will make use of Wireshark to demonstrate protocols
performances under different conditions. In the following
tgble we only present results related to the performance of
the platform itself related to the two above-mentioned exper-
iments. For this purpose, we use Gprof -a profiling software
used to collect and arranges statistics - to evaluate the per-
formance of each software block of the emulation platform
and measure the scalability.

In the first experiment where we use PHY abstraction, we

Table 1: OAI Profiling results
Experiment 1

Time(s) | Channel | PHY abst | L2 Proto | OS | Total
lue 3.09 0.4 0.3 0.8 | 4.58
2ue 6.38 0.49 0.52 1.34 | 8.73
3ue 9.03 0.4 0.78 1.85 | 12.03
Experiment 2
Time(s) | Channel | PHY | L2 Proto | OS Total
lue 230 39.35 8.86 0.16 278.27
2ue 4675.13 | 792.15 119.07 0.3 | 5587.59
3ue 8690.38 | 1134.90 | 300.59 | 0.47 | 10126.29

note that emulation time increases linearly as a function of
emulated nodes of number(ascertainment validated until 9
UEs). In particular, channel modeling represents up to 80%
of total CPU load, while protocol stack does not exceed 20%
of total CPU load.

In the second experiment, we make use of full PHY im-
plementation, and we notice that the execution time did not
increase linearly. Moreover, channel modeling function rep-
resents again 80% of the execution time followed by PHY
functions with 12%, and Protocol stack with 8%.

These results show that the main performance bottleneck
of the emulation resides in channel modeling block specially
when full PHY is used. Then, the trivial optimization ap-
proach may be applying useful parallelism technique in this
software bloc.

4. CONCLUSION

In this paper, we present the OpenAirInterface emulation
platform and methodology. The methodology aims at pro-
viding a repeatable and realistic wireless network experiment
for a large scale network. The platform implements a se-
quential workflow allowing experiment reproducibility. Fur-
ther, OAI propose a user-friendly workspace which simplifies
its utilization. Furthermore, OAI applies four architectural
design features in order to increase scalability and applicabil-
ity: real protocol stack, protocol virtualization, transparent
emulated data flow and parallel processing.

In the proposed scenario, we demonstrate the importance
of the sequential workflow and the impact of suggested de-
sign features. Our profiling results show that the emulation
bottleneck resides in channel modeling bloc.

In futures works we aims to resolve two challenges: first
the applicability challenge using real channels trace and sec-
ond the scalability challenge by applying useful parallelism
based on GPGPU techniques.

5. ACKNOWLEDGMENT

This paper describes work undertaken in the context of
the LOLA and CONECT project. The research leading to
these results has received funding from the European Com-
munity’s Seventh Framework Programme under grant agree-
ment nAf 248993 and nAi257616.

6. REFERENCES

[1] D. C. F. F. R. K. Hicham Anouar, Christian Bonnet.
An overview of openairinterface wireless network
emulation methodology. SIGMETRICS, 2008.

[2] D. Mahrenholz and S. Ivanov. Real-time network
emulation with ns-2. In 8th IEEE International
Symposium on Distributed Simulation and Real-Time
Applications, 2004.

[3] B. B. R. Navid NIKAEIN. Wireless network
experimentation and validation: A survey.
RR-11-256:1-25, JUN 2011.

[4] OpenAirlnterface. www.openairinterface.org.

[5] Real Time Application Interface. www.rtai.org.

[6] R. G. T Staub. Virtualmesh: an emulation framework
for wireless mesh networks in omnet++.
SIMULATION, 2010.

[7] The Wide Area Network emulator.
wanem.sourceforge.net.

