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Abstract— In this paper, we will derive closed-form expressions
of false alarm probabilities for a given threshold for the Kullback-

Leibler distance-based spectrum sensing detector. This detector
is based on the distribution analysis of the primary user received
signal. A theoretical probability of false alarm will be derived for
a fixed threshold using the Meijer G-function of the product of p

independent Rayleigh random variables. The derived analytical
decision threshold will be verified with Monte-Carlo simulations
and a comparison between simulation and analytical results to
confirm the theoretical results. These results confirm the very
good match between simulation and theoretic results.
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I. INTRODUCTION

The discrepancy between current-day spectrum allocation

and spectrum use suggests that radio spectrum shortage could

be overcome by allowing a more flexible usage of the spec-

trum. Flexibility would mean that radios could find and adapt

to any immediate local spectrum availability. A new class of

radios that is able to reliably sense the spectral environment

over a wide bandwidth detects the presence/absence of legacy

users (primary users) and uses the spectrum only if the com-

munication does not interfere with primary users (PUs). It is

defined by the term cognitive radio [1]. Cognitive Radio (CR)

technology has attracted worldwide interest and is believed to

be a promising candidate for future wireless communications

in heterogeneous wideband environments.

CR has been proposed as the means to promote efficient

utilization of the spectrum by exploiting the existence of

spectrum holes. The spectrum use is concentrated on certain

portions of the spectrum while a significant amount of the

spectrum remains unused. It is thus key for the development

of CR to invent fast and highly robust ways of determining

whether a frequency band is available or occupied. This is

the area of spectrum sensing which will be considered in

this paper. There are several spectrum sensing strategies that

were proposed for CR. These strategies are categorized in

two families: feature detection strategies and blind detection

strategies. The feature detection approaches assume that a

PU is transmitting information to a primary receiver when

a secondary user (SU) is sensing the primary channel band.

The elaboration of sensing techniques that use some prior

information about the transmitted signal is interesting in terms

of performance. In fact, feature detection algorithms employ

knowledge of structural and statistical properties of PU signals

when making the decision. The most known feature sensing

technique is the cyclostationarity based detector (CD) [2].

Completely blind spectrum sensing techniques that do not

consider any prior knowledge about the PU transmitted signal

are more convenient to CR. A few methods that belong to this

category have been proposed, but all of them suffer from the

noise uncertainty and fading channels variations. One of the

most popular blind detectors is the energy detector (ED) [3].

This detector is the most common method for spectrum

sensing because of its non-coherency and low complexity.

The CD and ED will serve as references when evaluating the

performance of the dimension estimation-based detectors.

It is stated that current spectrum sensing techniques suffer

from challenges in the low signal to noise range. The reasons

for this have to be analyzed. It is suggested that Kullback-

Leibler distance is possible area to look for a solution to

overcome the problem. It is apparent that the problem at hand

is wide and challenging [4] [5]. The initial attempt to apply

Kullback-Leibler distance for spectrum sensing was presented

in [4]. This work suggested to use Kullback-Leibler distance

to conclude on the nature of the sensed band in a blind

way. The proposed detector analysis the Kullback-Leibler

distance between signal and noise distributions. Specifically,

it compares the distribution of the received signal with the

Gaussian distribution. The idea is to decide if the distribution

of the observed signal fits the Gaussian model. The proposed

algorithm, called the distribution analysis detector (DAD),

exploits Akaike weights information derived using Akaike

information criterion (AIC) as a reliability index in order to

decide if the distribution of the received signal fits the noise

distribution or not [6].

The work presented in [4] was a preliminary step for this

idea. Indeed, no threshold expression was given. For this

purpose, we will present in this paper the DAD detector as a

binary hypothesis test and we will give then the exact threshold

expressions of this detector for a given false alarm probability.

We will use in this derivation the Meijer G-function of the

product of p independent Rayleigh random variables [7]. The

analytical results will be compared with simulation results.
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The rest of this paper is organized as follows. In Section II

we will present Kullback-Leibler distance formulation and in

Section III we will analyze the Akaike weight information.

The DAD algorithm will be presented in Section IV. We will

derive in Section V closed-form expressions of false alarm

probability for a given threshold. Performance evaluation and

advantages will be described in Section VI and a comparison

of the proposed detector with reference detectors will be given.

The performance will be assessed under different conditions,

using three simulation scenarios. Finally, Section VII presents

the conclusions of this paper.

II. KULLBACK-LEIBLER DISTANCE

It is assumed that the samples of the received signal

are distributed according to an original probability density

function f , called the operating model. The operating model

is usually unknown, since only a finite number of observations

is available. Therefore, approximating probability model must

be specified using the observed data, in order to estimate the

operating model. The approximating model is denoted as gθ,

where the subscript θ indicates the U -dimensional parameter

vector, which in turn specifies the probability density function.

In information theory, the Kullback-Leibler distance describes

the discrepancy between the two probability functions f and

gθ and is given by [6]:

D(f‖gθ) = −h(X)−

∫

fX(x) log gθ(x)dx (1)

where the random variable X is distributed according to

the original but unknown probability density function f , and

h(.) denotes differential entropy. This distance measure is

not directly applicable, since the original probability density

function f is not known. It is known, however, that the

Kullback-Leibler distance is nonnegative, i.e., D(f‖gθ) ≥ 0.

This implies that the Kullback-Leibler discrepancy,

−

∫

fX(x) log gθ(x)dx = h(X) + D(f‖gθ) (2)

approaches the differential entropy of X from above for

increasing quality of the model gθ. The differential entropy

of X is reached if and only if f = gθ. Applying the weak law

of large numbers, the second term in (1) can be approximated

by averaging the log-likelihood values given the model over

N independent observations x1, x2, ..., xN according to:

−

∫

fX(x) log gθ(x)dx ≈ −
1

N

N
∑

n=1

log gθ(xn) (3)

The log-likelihood depends on the estimated vector θ, which

itself is a function of the actual observations x1, x2, ..., xN .

If another set of observations x̃1, x̃2, ..., x̃N is used, a dif-

ferent Kullback-Leibler discrepancy would be obtained. The

expected Kullback-Leibler discrepancy is given by:

−Eθ

{∫

fX(x) log gθ(x)dx

}

(4)

where the expectation is taken with respect to the distribution

of the estimated parameter vector θ. This expression (4) cannot

be computed, but estimated.

The information theoretic criteria was first introduced by

Akaike in [6] for model selection. Assuming a candidate

model, the idea is to decide if the distribution of the observed

signal fits the candidate model. The AIC criterion is an

approximately unbiased estimator for (4) and is given by:

AIC = −2

N
∑

n=1

log g
θ̂
(xn) + 2U (5)

The parameter vector θ for each family should be estimated

using the minimum discrepancy estimator θ̂, which minimizes

the empirical discrepancy. This is the discrepancy between the

approximating model and the model obtained by regarding

the observations as the whole population. The maximum

likelihood estimator is the minimum discrepancy estimator for

the Kullback-Leibler discrepancy.

III. MODEL SELECTION USING AKAIKE WEIGHT

In this section, we analyze the Akaike weight information

introduced by Akaike in [6] in order to decide if the dis-

tribution of the received signal fits the suitable distribution

or not. Consider a probability distribution parameterized by

an unknown parameter θ, associated with either a known

probability density function or a known probability mass

function, denoted as fθ. As a function of θ with x1, x2, ..., xN

fixed, the likelihood function is:

L(θ) = fθ(x1, x2, ..., xN )

=
N
∏

n=1

fθ(xn) (6)

Commonly, one assumes that the data drawn from a par-

ticular distribution are i.i.d. with unknown parameters. This

considerably simplifies the problem because the log-likelihood

can then be written as follows:

L(θ) =

N
∑

n=1

log fθ(xn) (7)

The maximum of this expression can then be found numer-

ically using various optimization algorithms. The method of

maximum likelihood estimates θ by finding the value of θ that

maximizes L(θ). Maximum likelihood estimator (MLE) is one

of the most used methods to estimate functions parameters.

This contrasts with seeking an unbiased estimator of θ, which

may not necessarily yield the MLE but which will yield a

value that (on average) will neither tend to over-estimate nor

under-estimate the true value of θ. The maximum likelihood

estimator may not be unique, or indeed may not even exist.

The MLE of the parameters of θ is computed over a set

of samples of length N . We assume that the samples are

independent identically distributed (i.i.d.). The log-likelihood

function L∗(θ) is given by:

L∗(θ) =

N
∑

n=1

log gθ(xn) (8)

Consequently, the MLE expression of θ in our case is:

θ̂ = argθ max
1

N

N
∑

n=1

log gθ(xn) (9)
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The AIC is hence described by the following form:

AIC = −2L∗(θ̂) + 2U (10)

where U indicates the dimension of the parameter vector θ.

We consider here that the envelop of a Gaussian noise can be

modeled using Rayleigh distribution and the one of signal data

can be modeled using Rician distribution [8]. In fact, recall

that the distribution of a sum of independent random variables

is the convolution of their distributions [8]. Hence, when

the SNR is low, the noise distribution will dominate in the

convolution and the resulting distribution will tend to become

close to Gaussian even if the signal has an arbitrary non

Gaussian distribution, and the envelope (norm) distribution of

the signal is close to Rayleigh distribution [8]. Another impor-

tant property is the contribution of the dominant propagation

paths on the distribution of the communication signal. The

envelope distribution of the received communication signal

tend to become close to Rician even if the input has a non

Rician distribution [8]. Hence, for the proposed DAD detector,

we assume that the norm of the Gaussian noise can be modeled

using Rayleigh distribution and the signal data can be modeled

as a Rician distribution.

Therefore, Akaike weights can be interpreted as estimate of

the probabilities that the corresponding candidate distribution

show the best modeling fit. It provides another measure of the

strength of evidence for this model, and is given by:

Wj =
e−

1

2
Φj

∑N
i=1

e−
1

2
Φi

(11)

for a given distribution j, where Φj denotes the AIC difference

defined by:

Φj = AICj − mini AICi (12)

where mini AICi denotes the minimum AIC value over all

PU signals observations. In order to show the results of com-

parison between distributions in a clear manner, we introduce

the Akaike weights WRice and WRayleigh derived from AIC

values. Akaike weights for Rice and Rayleigh can be expressed

as:

WRice =
exp

(

− 1

2
ΦRice

)

exp
(

− 1

2
ΦRice

)

+ exp
(

− 1

2
ΦRayleigh

) (13)

WRayleigh =
exp

(

− 1

2
ΦRayleigh

)

exp
(

− 1

2
ΦRayleigh

)

+ exp
(

− 1

2
ΦRice

) (14)

where

ΦRice = AICRice − min (AICRice, AICRayleigh) (15)

ΦRayleigh =AICRayleigh − min (AICRayleigh, AICRice)(16)

and

AICRice = −2LRice + 2URice (17)

AICRayleigh = −2LRayleigh + 2URayleigh (18)

where URayleigh = 1 and URice = 2.

IV. DISTRIBUTION ANALYSIS DETECTOR

The goal of spectrum sensing is to decide between the

following two hypothesizes [1]:

x =

{

n H0

As + n H1

(19)

We decide that a spectrum band is unoccupied if there is only

noise, as defined in H0. On the other hand, once there exists a

PU signal besides noise in a specific band, as defined in H1,

we say that the band is occupied. Thus the probability of false

alarm can be expressed as

PFA = Pr(H1 | H0) = Pr(x is present | H0) (20)

The decision threshold is determined by using the required

probability of false alarm PFA given by (20). The threshold

γ for a given false alarm probability is determined by solving

the equation

PFA = Pr(Υ(x) > γ|H0) (21)

where Υ(x) denotes the test statistic for the given detector.

The DAD detector can be formulated as a binary hypothesis

test. If PU is present, the Akaike weight of Rician distribution

is higher than Akaike weight of Rayleigh distribution, and if

PU is absent, we have the opposite. Therefore, the generalized

blind DAD algorithm is given by:

ΥDAD(x) =

{

WRice − WRayleigh < γ noise
WRice − WRayleigh > γ signal

(22)

According to the system requirement on PFA,DAD, we calcu-

late a proper threshold γ. If AICRice − AICRayleigh > γ, we

declare that the PU is present, otherwise, we declare the PU is

absent. The threshold expression depends only on PFA,DAD

and is given in the following section.

V. THRESHOLD DERIVATION

A theoretical probability of false alarm will be derived in

this section. The analytical results will be compared with

simulation results to confirm the theoretical expression of

thresholds and probabilities of false alarm.

Since spectrum sensing is actually a binary hypothesis test,

the performance we focus on is the probability for identifying

the signal when the PU is absent. We will derive in this

section a closed-form expression of PFA,DAD. According to

the sensing steps in (22), the false alarm occurs when the

estimated decision ΥDAD(x) is smaller than γ given that the

PU is absent.

According to the presented sensing scheme, the false alarm

probability for DAD detector can be expressed as

PFA,DAD =Pr (WRice − WRayleigh > γ|H0) (23)

According to AIC values for Rice and Rayleigh given in (17)

and (18), we have

PFA,DAD=Pr

(

exp (LRice) − e exp (LRayleigh)

exp (LRice) + e exp (LRayleigh)
> γ

∣

∣

∣

∣

H0

)

(24)

where e = exp(1).
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PFA,DAD = Pr





(

p
∏

i=1

xi

)
1

2

<
1 + γ

e(1 − γ)

exp
(

p
2
− pv2

σ2 − pv2

2σ2

)

(

2πv
σ2

)
p

2

∣

∣

∣

∣

H0





= Pr

(

p
∏

i=1

xi <

(

1 + γ

1 − γ

)2(

2πv

σ2

)

−p

exp

(

p −
3pv2

σ2
− 2

) ∣

∣

∣

∣

H0

)

(26)

Using the probability density function for the Rayleigh

distribution and Rician distribution, we obtain

PFA,DAD=Pr





e − exp
(

− pv2

2σ2

)

∏p

i=1
I0

(

xiv
σ2

)

e + exp
(

− pv2

2σ2

)

∏p

i=1
I0

(

xiv
σ2

)

> γ

∣

∣

∣

∣

H0





(25)

Using now I0 expression

(

I0

(

xiv
σ2

)

=
exp( xiv

σ2 )
√

2π
xiv

σ2

)

, we ob-

tain (26).

At hypothesis H0, the distribution of the received signal is

assumed as a Gaussian distribution. Therefore, the distribution

of the envelope of this signal is Rayleigh. Therefore, we can

find that pv2

σ2 → 0. If we introduce the Rician K-factor

defined as the ratio of signal power in dominant component

σ2 over the (local-mean) scattered power v, the false alarm

probability of the DAD detector can be approximated as

PFA,DAD=Pr

(

p
∏

i=1

xi <

(

1 + γ

1 − γ

)2

(4πK)
−p
exp (p − 2)

∣

∣

∣

∣

H0

)

(27)

Applying now the distribution of the product of p independent

Rayleigh random variables [7], the product
∏p

i=1
xi satisfies

the distribution of p independent Rayleigh random variables

represented by its CDF [7] given by:

F (t) =
(

2pσ2p
)

−
1

2 tG
p,1
1,p+1

(

(

2pσ2p
)

−1
t2
∣

∣

1

2

1

2
,..., 1

2
,− 1

2

)

(28)

where G denotes the Meijer G-function [7] defined by:

G
p,1
1,p+1

(

u
∣

∣

1

2

1

2
,..., 1

2
,− 1

2

)

=
1

j2π

∫

L

(

Γ
(

1

2
− s
))p−1

Γ
(

1

2
+ s
)

Γ
(

3

2
+ s
) u−sds

(29)

The contour L is chosen so that it separates the poles of the

gamma products in the numerator. The Meijer G-function has

been implemented in some commercial mathematical software

packages. Finally, the probability of false alarm of the DAD

algorithm can be approximated as

PFA,DAD =F

(

(

1 + γ

1 − γ

)2

(4πK)−p exp (p − 2)

)

(30)

or, alternatively, the threshold can be expressed as

γ =

√

(4πK)p F−1 (PFA,DAD) exp (2 − p) − 1
√

(4πK)
p
F−1 (PFA,DAD) exp (2 − p) + 1

(31)

Note that Meijer’s G-function is a standard built-in function

in most of the well known mathematical software packages,

such as Matlab which used in this work.

From (30), it is clear that the probability of false alarm is

independent of noise variances σ2. Therefore, the proposed

sensing algorithm based on distribution analysis is robust in

practical applications. This remark will be verified in the

following section.

Now, we will present a comparison between simulation and

analytical results to confirm the theoretical results given in

previously. For the proposed detector the threshold is com-

puted based on p (the length of PU received signal in samples)

and PFA,DAD value. Table I shows the comparison results

for the thresholds γ for the DAD detector with PFA = 0.05
and for PFA,DAD using different p values. In the presented

results SNR = −7dB. One can find that, the simulation results

are slightly lower than the analytical results. This is due

to the approximation we have used during the derivation of

PFA,DAD and γ for the presented detector. The presented

table confirms the very good match between simulation and

theoretic results.

p = 100 p = 150 p = 200

Simulation results
PF A,DAD 0.0571 0.0544 0.0502

γ 0.9948 0.9814 0.9561

Analytical results
PF A,DAD 0.0582 0.0563 0.0529

γ 0.9965 0.9907 0.9614

TABLE I

SIMULATION AND ANALYTICAL RESULTS COMPARISON.

VI. PERFORMANCES EVALUATION

Actual sensing results and performance studies will be

provided in this section. The evaluation framework for all

simulations has been implemented in Matlab and all results

are obtained as the average of a number of Monte Carlo

simulations. For the Monte Carlo simulation, each signal block

consists of one symbol which contains 2048 samples. 500

iterations are performed in the simulation. The primary system

used is a Digital Television Broadcast-Terrestrial (DVB-T)

system. The choice of the DVB-T PU system is justified by the

fact that most of the PU systems utilize the OFDM modulation

format. The channel models implemented are AWGN, Rician

and Rayleigh channels. The latter two correspond to the

two different types of propagation that have to be handled

in practice, namely line-of-sight (LOS) and non-line-of-sight

(NLOS). Slow fading is simulated by adding log-normal

shadowing.

Three different scenarios with different properties have been

chosen to evaluate the spectral detection performance, subject

to provide different attributes so that the performance can be

assessed under different conditions, aiming to provide fair con-

ditions before making conclusions. OFDM is the modulation

of choice for the three simulation scenarios to be used as
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evaluation tools in this report. In OFDM, a wideband channel

is divided into a set of narrowband orthogonal subchannels.

OFDM modulation is implemented through digital signal

processing via to the FFT algorithm. In scenario 1, we use

a DVB-T OFDM signal in an AWGN channel. It is assumed

that the detection performance in AWGN will provide a good

impression of the performance, but it is necessary to extend

the simulations to include signal distortion due to multipath

and shadow fading. Scenario 2 utilizes the same DVB-T

OFDM signal as scenario 1, but to make the simulations

more realistic, the signal is subjected to Rayleigh multipath

fading and shadowing following a log normal distribution in

addition to the AWGN. The maximum Doppler shift of the

channel is 100Hz and the standard deviation for the log normal

shadowing is 10dB. Since the fading causes the channel to be

time variant, it is necessary to apply longer averaging than in

scenario 1 to obtain good simulation results. Thus the number

of iterations in the Monte Carlo simulation is increased from

500 to 1000. The third simulation scenario utilizes also a DVB-

T OFDM signal in Rician multipath fading with shadowing.

The K-factor for the Rician fading is 10, which represents a

very strong line of sight component. The maximum Doppler

shift of the channel and the standard deviation for the log

normal shadowing are the same as in the second scenario.

Now we will assess the performance of the proposed detec-

tor in terms of PU signal detection using the binary hypothesis

test expressed in (22). The results from these simulations

can be seen in the batch Fig. 1. The best performance is

obtained from the CD detector. Subsequent to the CD detec-

tor is the proposed DAD detector, with approximately 2dB

reduced performance compared to the CD, and ED detector,

approximately 3dB behind CD. It is expected that if knowledge

of signal parameters is provided, feature detectors are the

optimal schemes for detecting the PU signal. From Fig. 1,

we remark also that relative detection results for scenario 2

and scenario 3 are to a large extent aligned with the results

for scenario 1. This is expected as the underlying used signals

are the same. The main difference is in absolute performance

which is caused by the addition of multipath and shadow

fading.

VII. CONCLUSION

In this paper, we derived the exact threshold expressions

of the distribution analysis based spectrum sensing using

Kullback-Leibler distance. This is based on the Meijer G-

function of the product of p independent Rayleigh random

variables. Simulations using three different scenarios with

different properties DVB-T PU systems were presented in

order to verify the derived threshold value based on the

probability of detection performance. It has been shown that

analytical and empirical results are coincide with each other.
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−30 −25 −20 −15 −10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

SNR [dB]
P

D

 

 

CD

DAD

ED

(c) Scenario 3
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Fig. 1. Performance evaluation of the DAD detector in terms of PU signal
detection using an DVB-T OFDM PU system: Probability of detection versus
SNR curves with PF A = 0.05, sensing time = 1.12ms and p = 2048.
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