
Evolving Security Requirements in
Multi-Layered Service-Oriented-Architectures

Muhammad Sabir Idrees1, Gabriel Serme2, Yves Roudier1,
Anderson Santana De Oliveira2, Herve Grall3, and Mario Südholt3

1 Eurecom,
Sophia Antipolis, France

{idrees,roudier}@eurecom.fr
2 SAP Research,

Sophia Antipolis, France
{gabriel.serme,anderson.santana.de.oliveira}@sap.com

3 Departement Informatique,
Ecole des Mines de Nantes, France

{herve.grall,mario.sudholt}@emn.fr

Abstract. Due to today’s rapidly changing corporate environments,
business processes are increasingly subject to dynamic configuration and
evolution. The evolution of new deployment architectures, as illustrated
by the move towards mobile platforms and the Internet Of Services, and
the introduction of new security regulations (imposed by national and
international regulatory bodies, such as SOX4 or BASEL5) are an im-
portant constraint in the design and development of business processes.
In such a context, it is not sufficient to apply the corresponding adapta-
tions only at the service orchestration or at the choreography level; there
is also the need for controlling the impact of new security requirements
to several architectural layers, specially in cloud computing, where the
notion of Platforms as Services and Infrastructure as Services are fun-
damental. In this paper we survey several research questions related to
security cross-domain and cross-layer security functionality in Service
Oriented Architectures, from an original point of view. We provide the
first insights on how a general service model empowered with aspect
oriented programming capabilities can provide clean modularization to
such cross-cutting security concerns.

Keywords: SOA, Evolution, AOP, REST, Security

1 Motivation and Outline

Service-oriented architectures (SOAs) constitute a major architectural style for
large-scale heterogeneous infrastructures and applications that are built from
loosely-coupled, well-separated services and are subject to dynamic configura-
tion, manipulation, and evolution. Applications in service-oriented computing

4 Sarbanes-Oxley Act of 2002 (Pub.L. 107-204, 116 Stat. 745, enacted July 30, 2002)
5 http://bis.org/publ/bcbsca.htm

2 M.S. Idrees, G. Serme, et.al

have traditionally been developed using composition in homogeneous and sim-
ple frameworks. However, service-oriented architectures do not only rely on the
simple composition of services but on compositions involving multiple architec-
tural layers, especially when the underlying platforms and infrastructures are
also seen as services themselves, like in cloud computing. The rapidly increasing
need to integrate business applications deployed across distinct administrative
domains reflects the reality of how software is being consumed nowadays. Such
applications must also be compliant with security requirements and regulations,
which can change and/or evolve according to the business context. For instance,
access control and monitoring for intrusion detection are prime examples of func-
tionalities that are subject to this problem: they cannot be properly modularized,
that is, defined in well-separated modules, especially if they cross administrative
or technological boundaries.

Problem Statement: The problem we expose in this paper is to understand how
an evolution can modify the existing service-oriented architecture with respect
to the new functional and more specifically non-functional (security, trust, QoS)
requirements. These requirements have to be applied consistently on the system
architecture, thus involving complex service orchestrations and choreographies.
They often involve invasive modifications, e.g., to enable new security function-
alities that depend on and require modifications to low-level infrastructure func-
tionalities. Hence, SOAs are also subject to evolution using vertical composition,
that is, the coordination of multiple architectural layers over which the SOA
is deployed, including operating systems, application servers, enterprise service
buses, orchestration engines, etc. In contrast, horizontal composition consists
in high level service compositions towards the achievement of business goals,
typically expressed as orchestrations or choreographies.

Security analysts also need to consider threats to the underlying infrastruc-
ture and middleware for a particular SOA implementation. While it is easier to
analyze the protection level at each separate layer in the SOA stack, the security
properties expected from the software span across those layers. The assets to be
protected originate both from the horizontal and vertical compositions. The se-
curity that may mitigate potential threats to these assets have to be deployed
at different parts of that stack, and in a coordinated manner.

Aspect-Oriented Software Development (AOSD)[8,1] has emerged as the do-
main investigating and providing solutions for the systematic treatment of such
cross-cutting functionalities. Here, we aim at exploring the combination of inva-
sive aspects and black-box aspect compositions to secure service-oriented archi-
tectures.

The current state of the art does not propose a full fledged solution to man-
age, in a modular way, different security requirements affecting different archi-
tectural levels in SOAs. We propose an integrated approach, relying on AOSD,
that will allow for eliciting security requirements, to formally reason about the
interactions among requirements and the target service compositions, to imple-
ment security functionality as aspects, and to evolve these requirements in a
controlled manner. We are building an aspect based service model, enabling the

Evolution of Security Requirements in SOA with AOP 3

conception of service compositions within cross administrative domains and al-
lowing security functionalities to be modularized. In the current paper we report
on the challenges we are facing in these research directions.

The remainder of this paper is organized as follows: Section 2 describes our
view of multi-layered SOA architecture with related security concerns and se-
curity requirements discussed in Section 3. Section 4 presents the aspect based
service model that we propose through a use case. Section 5 reviews the capabil-
ities of the existing approaches in terms of aspects for security and adaptation
of SOA in a distributed context. Finally, a conclusion summarizes the attained
results and briefly presents future work in Section 6.

2 Multi-Layered Service-Oriented Architectures

Service-oriented architectures (SOAs) are considered as advanced component-
based architectures for the construction of distributed systems. SOA can be
seen as a continuum of different components at different levels of system ab-
straction, like the infrastructure, platform/middleware, and software viewpoints
(cf. Figure 1). The fundamental assumption of SOA, where the service consumer
needs not to worry about service implementation details and the underlying in-
frastructure: the availability of a software view (cf. Section 2.1 enumeration 1)
to the application designer makes it possible to hide the unnecessary complexity
in the implementation of business services originating from the underlying lay-
ers. Lower layers enforce different business logics, security policies, or functional
constraints and have to be coordinated together with the execution of the ap-
plication in order to give access to services and resources of the infrastructure.
Nevertheless, as stated in [2], apart from the notion of service orientation that
eases the design through loosely coupled interfaces, the service oriented archi-
tecture itself does not provide direct solutions to many of the available intricate
requirements that arise while evolving such architectures.

2.1 Layering in Service-Oriented Architectures

We distinguish the following three different layers that entail three corresponding
architectural views:

1. Software View: this layer is the most important one for the application
designer. This is the place where he implements services using other ser-
vices and mechanisms from lower layers. This is also the place where the
application designer specifies how processes should be coordinated through
the expression of orchestrations. Such a specification is generally done using
a dedicated workflow languages (e.g., BPMN2.0, BPEL). In the process of
orchestration the designer associates a software functionality (the services)
in a non-hierarchical arrangement using a software tool (i.e., SAP Business
ByDesign) that contains a complete list of all available services, their char-
acteristics and resources, and the means to build an application utilizing

4 M.S. Idrees, G. Serme, et.al

Fig. 1. A synthetic overview of Multi-layered Service-Oriented-Architecture

these sources. This specification defines how the platform layer should be
configured.

Many platforms nowadays proposes Software on-demand, also known as Soft-
ware as a Service (SaaS). SaaS vendors provide applications (i.e., SAP On-
Demand Apps, Intalio BPM, etc.) to end users on demand. These solutions
heavily rely on SOA, by abstracting every lower layer as sets of services that
need to be correctly orchestrated and ”consumed” by customers.

2. Platform/Middleware View: Service-oriented architecture middleware
provides all of the facilities required to support the complete lifecycle of
services. For services to operate, a middleware layer provides a collection
of components (i.e., web server, application engine, or resource engine) for
supporting the deployment of virtually any application. The coordination of
services and the handling of the fine-grained logic of services are enforced at
this layer. For instance, the definition of business rules and non functional
constraints that apply to a process can be enforced by the rule engine and
by the security engine components.

In order to facilitate the deployment of business applications without con-
sidering functional and non-functional constraints (i.e., cost and complexity
of buying and managing the underlying hardware and software and provi-
sioning hosting capabilities), many platforms nowadays offer the Platform
as a Service (PaaS) abstraction, like Google’s AppEngine, or SAP’s OnDe-
mand Platform, for application deployment and testing. PaaS provides an
additional level of abstraction emulating a virtual platform on top of the in-
frastructure. PaaS generally features a form of mediation to the underlying
services akin to middleware in traditional communication stacks.

Evolution of Security Requirements in SOA with AOP 5

3. Infrastructure View: From the infrastructure perspective, one can distin-
guish between the computing architecture (software framework, hardware
architecture, network, etc.) and resource repository (local or distributed)
components. Any of the operations related to such low-level components
must be done at this layer. For instance, the secure generation/computa-
tion/storage of cryptographic keys used to secure network communication
heavily depends on the software or hardware support. The use of firewalls to
control communication between two organizations is also not to be handled
at the service nor platform levels.
This point of view has been conceptualized as the Infrastructure as a Service
(IaaS) approach, much touted in cloud computing, and which aims at shar-
ing the infrastructure in order to reduce the cost of operating it. Services
in that case relate to the management and customization of infrastructure
mechanisms. Virtualized execution environments for the deployment of appli-
cations and distributed data storage are common examples of such services.
They are being supported by an increasing range of companies (Amazon,
Google, SAP, etc.) and brought to the programmer through an increasing
number of service oriented APIs, notably REST ones, like for instance Ama-
zon’s services EC2 for execution environments, and S3 for distributed data
storage.

The research topics we expose in this paper bring to light the need to uni-
formly represent, to reason about, and to deploy security (but similarly other
crosscutting concerns) at the different layers of the architecture. Although these
software solutions are increasingly widespread, there is no support for the mod-
ular design and evolution of the corresponding security concerns.

3 SOA Security Concerns

The preoccupation in anticipating possible security flaws in the SOAs infras-
tructures is fundamental for increasing the reliability of e-business applications,
such that it can be widely adopted, enabling the future Internet of Services. The
security analysis of SOA based business process has been extensively reviewed in
the literature [14,12,11,10,16]. However, it has previously been addressed mainly
from an application perspective only. In comparison, not much has been done to
analyze the application level impact of attacks and vulnerabilities (also exten-
sively analyzed but in isolation of any application) at lower layers in the SOA
stack.

3.1 Attacker Model

Despite the multitude of proposed attack analysis that have hitherto been de-
scribed in the literature, we take the view that existing attacker models are es-
sentially based on vulnerabilities expressed at a single layer (more frequently low-
level). We have adopted a set of practices from fundamental works in attacks on

6 M.S. Idrees, G. Serme, et.al

SOA and vulnerability analysis in a new combined methodology (Multi-Layered
Attacker Model - MLAM) that seems to be well-adapted to SOAs layered archi-
tectures (cf. Figure 1). The perspective we have adopted for the identification
of security flaws is to have a unified approach where we consider attacks/vulner-
abilities at different layers of the SOA system. The essential means that we use
consist in an approach for categorizing attacks and their relationships and de-
pendencies at different levels of abstraction, and a means for specifying a range
of modalities. In order to do so, we consider a layered attack view comprising
the Software attack View (SaV), the Platform attack View (PaV) and the In-
frastructure attack View (IaV). Due to lack of space, we only give an abstract
overview of MLAM with respect to attack(s) on multilayered service-oriented
architectures. However, more detailed attack analysis and threat categorization
can be found in [15,7] .
At the SaV level, security flaws are mostly related to vulnerabilities in soft-
ware/application/services. These attacks rely on programming mistakes (weak-
nesses in the application), sometimes exploiting inadequacies between the design
flaw or an implementation [14]. This is the case for injections attacks, like SQL
injections, which can make it possible to read and disclose confidential data to an
attacker. Similarly in WSDL scanning attacks, the access information revealed
about some web sites may result in more specific and more targeted attacks.
At the PaV level, attacks rely on protocol design mistakes, on weaknesses of cryp-
tographic primitives, on weaknesses in information processing, or sometimes on
the exploitation of communication and computation implicit and harmful as-
sumptions. Furthermore, a poor configuration and the improper use of external
resources (i.e., external reference attacks) may allow an attacker to perform dif-
ferent denial of service attacks or information theft.
At the IaV level, an attacker might target the infrastructure by abusing resources
in unforeseen ways. For instance, attacks on the power consumption, computing
time, or electromagnetic emissions may lead to find out what operations are per-
formed or what is the value of some sensitive (in particular cryptographic) data.
Furthermore, the possibility of a resource compromise (injecting/altering data)
significantly increases in infrastructures based on decentralization (e.g., P2P,
Cloud computing), due to the architecture and to the complexity or weakness
of the system with respect to operations like access controls, which may require
anonymous accesses, or which may be too inflexible to configure efficiently; or
authentication, in particular, when the actual deployment relies on reusable to-
kens/passwords, or even worse on cleartext authentication and/or transmission
of content.
Merging the results of these three viewpoints: SaV, PaV and IaV helps to both
identify and classify attacks on different assets as well as to highlight their rela-
tionships at different layer of the service composition.

3.2 Security Requirements

The deployment of an application requires the definition of the security proper-
ties that it should meet. This is typically performed on the basis of a security

Evolution of Security Requirements in SOA with AOP 7

policy, which aims at providing a high-level abstraction to the application devel-
oper. In the following we present the inherent complex implications of seemingly
simple security properties in a multi-layered SOA system.

– Integrity applies to a quantum of information between two observations
(defined, e.g., by a time and a location in the system). The property is satis-
fied when the quantum of information has not been modified between the two
observations. This property should be monitored of course to check whether
a message sent between services has not been altered, but also with respect
to guarantee that the content of a storage facility has not been modified
between two given read operations, or even to ensure that the execution of
the software implementing a service is not being attacked through a modifi-
cation to the execution environment or the code it runs.

– Confidentiality applies to a quantum of information and a set of autho-
rized entities. The property is satisfied when the authorized entities are the
only ones that can know the quantum of information. Thus, confidentiality
properties defined at a high level should be translated at the resource level
and will result in defensive security requirements with respect to data en-
cryption, access control policies to data, and data placement.

– Availability applies to a service, platform, or a physical device providing
a service. The property is satisfied when some service is operational. The
property can be further detailed with the specification of a period during
which the availability is required and of a set of client entities requesting the
availability. Availability properties may impose requirements on the security
mechanisms that can be implemented on a particular application, platform
(like, availability of the specific process engine i.e., SAP Netweaver), or exe-
cution environment depending on the CPU, memory, networking capabilities
of the considered environment or the availability of specific cryptographic
functions (accelerated or not).

Other security properties that may be attached to services have a similar impact
at the different levels of the SOA stack. In addition, due to their high level
of abstraction, SOA applications often introduce new security properties that
are themselves composing several primitive security properties: for instance, the
concept of separation of duty may rely on the sequencing of two authentications.

4 Towards an Aspect-Based SOA Model

In the previous section, we introduced our concept of multi-layered SOA and
briefly outlined how security concerns may have implications at different levels
of a layered SOA stack. Evolution of services and notably their security require-
ments are hard to implement existing infrastructures, such as generic libraries.
We claim that invasive modifications are needed to obtain an overall and con-
sistent security across the system. In the following, we are discussing an Aspect-
Oriented approach to ensure a systematic and consistent handling of security

8 M.S. Idrees, G. Serme, et.al

concerns. We articulate this section with an integrity-related use-case that deals
with certifying the validity of different components as shown in Figure 1.

4.1 Implications of the Integrity property on the SOA stack

While designing one application, an architect identifies sensitive information
he wants to protect from non-authorized modifications. In the following, we
assume this sensitive information is a Customer object. He wants to introduce
integrity mechanisms throughout the architecture to prevent attacks whenever a
Customer object is used. Introduction of integrity involves different components,
that depends on several layers. Modifications to enable such property are invasive
and affect several modules.

To achieve the overall integrity, we envision modifications at the three views
represented in Figure 1. Software view is impacted to ensure correct handling of
data when the Customer object is part of a collaboration. For example, if a busi-
ness process has a step that transmits Customer data over the network through
a Web Service invocation. Protecting integrity at this stage can be realized with
WS-Security standards that provides message integrity. Albeit the application
layer is protected against alteration over communication, the Customer object
can still suffer from local modifications - that occur at the Platform View. At
this layer, an attacker can modify a process execution flow to extract information
from the process engine, by adding one step that leaks Customer information.
The Platform view is then impacted to ensure a valid execution flow that cannot
be modified by external entities. The bottom layer, or the Infrastructure view
is the place where we can certify the validity of the upper components. In our
example, this bottom layer is used to ensure integrity of the process engine with
a mechanism similar to a Trusted Platform Module.

Achieving these modifications from the bottom layer ensures that all compo-
nents involved in integrity protection at higher layers cannot be further replaced
and modified by unauthorized parties. We start from the infrastructure view to
build trust on all layers. But the application designer who wants to implement
its security property faces the complexity of modifying and configuring a huge
amount of components and source code which he did not even author. Also, each
layer has security concerns that differ from the other layers.

4.2 A solution to achieve Integrity with Aspects

A traditional approach to achieving integrity for such Customer objects requires
the application designer to gather its developer team, security architects, busi-
ness owners, and whoever is involved in application development, to configure
and extend applications, modify programs, etc.. In this section, we provide some
snippets of code that can, under certain conditions, make it possible to change
the behavior of existing security services and components as well as business
services, and also specialize services written in advance without the knowledge
of a specific application through a separation of concerns between security and
business requirements. This approach, which is more broadly discussed in the

Evolution of Security Requirements in SOA with AOP 9

next section, allows a fine-grained control of the implementation of requirements
of an application that relies on a multi-layer SOA.

In the following, we illustrate with different code snippets how to address in-
tegrity in the impacted views. The snippets are independent from one another,
that is they represent enforcement code to achieve a higher-level purpose. This
purpose is driven by the architects and security experts that specify means guar-
anteeing properties at different levels. This entails the instantiation of invasive
modifications as discussed in the previous section. The software layer provides a
signature when receiving a Customer object from a collaboration. The platform
layer provides process engine integrity, such that it guarantees the execution flow
of a business process and prevents anybody from injecting a new step in the pro-
cess that may leak a Customer object. Finally, the infrastructure layer provides
means to guarantee trusted components at the platform level, by verifying that
running components are those intended.

The aspects have to obey a precise lifecycle from specification via implemen-
tation to execution. We now consider the different roles involved in the correct
application of aspects at the different levels. First of all, security aspects are
created to respect specifications, given by a policy or by various requirements.
We expect business owners to come with requirements that are refined by se-
curity experts. The aspect development per-se is done once with a high control
on the code produce, thus the correctness. The development has to be han-
dled by trusted developers, understanding security implication of their code in
base-application. The deployment can be done prior execution by owners of the
application, and execution is launched by platform administrator. The platform
shall prevent consumers from modifying binaries and processes.

The first snippet in Listing 1.1 represents an aspect module that can be used
to track message signature upon reception. It relates to standards such as WS-
Security but with adaptation: our aspect code does not look for the systematic
presence of signature tokens, but rather adds this specific mechanism when a
Customer object is involved. It means that the client, prior to sending, adds a
signature token when involving such an object. This behavior can be represented
as a policy that clients understand and apply. The code shown is executed on
the server side. Line 4 shows an annotation indicating the usage of this advice
code for software view integrity. The pointcut at Line 5 uses a custom token
from-message, which binds a message received by the application to the advice
code to further investigate it. Lines 6 to 8 express the advice signature, which
gets a Message and Customer object. Lines 10 to 22 contain the identification
extraction from the message to verify the message signature. A valid signature
indicates that the message has not been tampered with and can then be pro-
cessed normally by the application.

1 @Aspect ("perProcess", SecurityProperty.INTEGRITY)

2 class CustomerIntegrity {

3 /* (i) Retrieve and validate sign info */

4 @Coverage(Level.SOFTWARE)

10 M.S. Idrees, G. Serme, et.al

5 @Around("execution (* *(Customer)) && args(c) && from -

message(m)")

6 public Object validateCustomerSignature (JointPoint jp

7 , Customer c

8 , Message m) throws CustomerIntegrityException{

9 //get public key of issuer

10 Identity issuer = m.getIssuer (); // retrieve identity

from msg if present

11 X509EncodedKeySpec pubKeySpec = new X509EncodedKeySpec

(Security.getPubKey(issuer));

12 KeyFactory keyFactory = KeyFactory.getInstance("DSA",

"SUN");

13 PublicKey pubKey = keyFactory.generatePublic(

pubKeySpec);

14 //get message signature

15 Signature sig = Signature.getInstance("SHA1withDSA", "

SUN");

16 sig.initVerify(pubKey);

17 sig.update(m.getData ());

18 // verify

19 boolean verifies = sig.verify(m.getInlineSignature ());

20 if (! verifies)

21 throw new CustomerIntegrityException (c);

22 return jp.proceed ();

23 }

24 }

Listing 1.1. Introducing Integrity at the Software Level

The second snippet in Listing 1.2 provides process engine integrity for busi-
ness processes involving Customer manipulation. The underlying engine is an
orchestration engine (BPMN 2.0 or BPEL engine) that should not be modified
by unauthorized parties. More precisely, we allow activity and task execution
only if the issuer is authorized to do so at a given stage in a business process.
Lines 4 to 8 are a specific pointcut that respects AspectJ syntax - whenever an
Activity execution is detected, a check is made to know if the process definition
use a Customer object, thanks to a helper class. Then, at joinpoints, the advice
described in Lines 10 to 20 is triggered. The behavior introduced is to check the
prior execution of the activity and whether the action is authorized or not. The
overall aspect allows a cross-cutting verification that business processes manip-
ulating Customer objects are safe with regards to the planned behavior. It does
not replace the engine enforcement but add an additional layer of confidence.

1 @Aspect ("perProcess", SecurityProperty.INTEGRITY)

2 class ProcessEngineFlowIntegrity {

3

4 @Pointcut("call(* *.*(Activity)) && args(a) && if()")

5 public static boolean processWithCustomer(Activity a) {

Evolution of Security Requirements in SOA with AOP 11

6 ProcessDefinition pd = a.getProcessDefinition ();

7 return Helper.processUses(pd, Customer.class);

8 }

9

10 @Coverage(Level.PLATFORM)

11 @Around("processWithCustomer(Activity)")

12 public Object validateCustomerSignature (JointPoint jp

13 , Activity a) throws ProcessIntegrityException{

14 ProcessDefinition pd = a.getProcessDefinition ();

15 for (User authorizedid : pd.getAuthorizedId(a){

16 if (a.getIssuer ().equals(authorizedid))

17 return jp.proceed ();

18 }

19 throws new ProcessIntegrityException(a);

20 }

21 }

Listing 1.2. Platform Level Integrity to control business process execution

The Listing 1.3 represents the behavior to be launched once per process exe-
cution. Prior to its execution, a process performs a check to verify the integrity
of all involved components running in the infrastructure. Line 4 depicts an an-
notation that expresses the level related to views expressed in Figure 1. It means
that the given code to be executed allows integrity coverage for the infrastruc-
ture level. Line 5 contains a custom pointcut element. The start expresses that
whenever a Platform is used, the given advice has to be executed. Lines 6 to
8 represent the advice signature. We assume that we get an object called Se-
curityPlatform representing a security instance for the running process. Then,
this object is used in Lines 9 and following to verify the integrity of the given
platform being started. Deploying such code assumes that a valid Trusted Plat-
form Module is present in the infrastructure view of our application, and that
all components are correctly registered. The advice code ensures then that the
process engine, among other platform components, has not been tampered with.

1 @Aspect ("perProcess", SecurityProperty.INTEGRITY)

2 class PlatformComponentsIntegrity {

3 @Coverage(Level.INFRASTRUCTURE)

4 @Before("start(Platform) && args(p)")

5 public void testPlatformIntegrity (JointPoint jp

6 , SecurityPlatform sp

7 , Platform p) throws PlatformIntegrityException{

8 sp.getTPM ().verify(p.getTPMKeys ());

9

10 if (sp & SecurityPlatform.CORRUPTED)

11 throw new PlatformIntegrityException(p);

12 if (sp & (SecurityPlatform.LOADING

13 | SecurityPlatform.CHECKING))

14 p.log ("Still waiting validation");

12 M.S. Idrees, G. Serme, et.al

15 else

16 sp.validate(p);

17 }

18 }

Listing 1.3. Introducing Integrity at the Infrastructure Level

We have highlighted how the evolution of a security requirement impacts
overall the different views involved in SOA execution. The snippets presented
use AspectJ-like syntax enhanced with custom elements indicate how they are to
be implemented in our framework. The pointcut language enrichment is one key
to provide an easier mapping between the application execution and the over-
all security wanted, this is also under study. With the case of integrity, where
one can request to protect integrity of specific data, we have shown it imply
invasive modifications that pervade applications and components. Furthermore,
components between them have no specific relation, due to the representation
at the programming level. Nevertheless, aspect definition and application re-
spect a global vision controlled by architects and business owners. We propose
to develop a solution based on aspects that target not only software view of
an application, but also platform and infrastructure view to achieve an overall
application of integrity. Therefore a major research question relies on how the
service model and the aspect model need to be designed to facilitate the re-
lationship of non-functional concerns to the architectural components at each
layer. Another constraint is the impact on the performance of the system. One
research direction is to evaluate how load-time weaving or static weaving can
help to reduce the overhead.

4.3 Aspect Model Design Criteria

In order to apply AOP to the evolution of security requirements defined ac-
cording to the different views we have, aspects have to meet basic properties.
Generally, aspect models come in very different forms, concerning their basic
concepts but also implementation strategies, suitability for the application of
formal methods, etc. The proposed aspect model that is used in the previous
section has different characteristics. We presented some in snippets code (List-
ings 1.1,1.2,1.3) but try to formalize our contribution in this section - a work
which is currently in progress.

The aspect model we envision is based on the pointcut-advice model for as-
pects, with some important extensions to be applied. The pointcut-advice model
is characterized by three main abstractions: aspects, pointcuts and advice that
together provide means for the concise definition and efficient implementation
of so-called crosscutting functionalities of a base application, such as security,
that cannot typically be modularized with existing structuring and encapsula-
tion mechanisms, such as services or components. We address these requirements
by the following set of major characteristics that the aspect model has to fulfill.
These characteristics are for most of them general in the sense that they apply

Evolution of Security Requirements in SOA with AOP 13

to all three basic aspect abstractions (aspects, pointcuts and advice) - except if
stated otherwise in the following:

– Basic abstractions and relations: The pointcut language should enable
referencing all relevant abstractions of the service model and the concrete
infrastructures; the advice language allows to manipulate these entities. Con-
crete examples for such abstractions include collaborations, processes, ser-
vices and resources. Relevant relationships between them include relations
between adjacent abstraction levels or the ability to protect some of them
using certain security mechanisms, such as access control, while others may
not be modified by that security mechanism.

– Composition model : The aspect model should provide a gray-box com-
position model, i.e., aspects may access parts of service implementations.
However, such access can be restricted by explicit fine-grained conditions on
the structure and behavior of the underlying base system. The aspect model
will therefore provide strong control over invasive composition. Correspond-
ing conditions will be defined as part of evolution tasks through the aspects
that realize them. The conditions may then be integrated before execution
in the runtime representations of aspects or the underlying infrastructure,
or enforced, possibly at execution time, on service implementations.

– Dynamic application : Aspects should be applicable dynamically even
though static application strategies may also be used, especially for the intro-
duction of security mechanisms that would suffer from an excessive overhead.
Many current aspect models only support a static or load-time application of
aspects, which severely limits their applicability for many composition tasks.
Our model therefore significantly broadens the use of aspects to many real-
world scenarios that involve highly dynamic service applications. Another
general characteristic of our model is that the model enables the aspect-based
definition of service evolutions whose (security) properties can be formally
analyzed.

– Formal properties: The aspect model should include explicit means to
restrict aspects, pointcuts and advice, such that relevant formal properties
of service evolutions defined using aspects can be specified precisely, formally
analyzed and enforced on corresponding implementations.

– Protocol support : The pointcut language should include direct support for
matching (parts of) protocols that govern the collaboration (choreography
etc.) between entities of the service model. The advice language permits the
manipulation of protocols.

– Local state : Aspects may contain local state that can be used to modify
state of the base application. Aspect definitions may, however, restrict the
kind of state that can be defined and used.

Even though our solution is not fully developed yet, we highlighted the need
for a new approach to secure not only classical layers (software view) but the en-
tire chain of components supporting service processing and coordination. Aspect-
based techniques meet our requirements to express and apply concerns that are

14 M.S. Idrees, G. Serme, et.al

normally difficult to address as their impact is scattered in a multi-layer SOA
stack.

5 Related Work

Service-oriented systems are characterized by complex interactions among func-
tional, management and infrastructure interfaces. Aspect-oriented approaches
have been proposed to address such issues, although only in the context of ex-
isting orchestration services for SOAs.

Aspect-Oriented Software Development (AOSD) [8,1] has emerged over the
previous decade as the domain of systematic exploration of crosscutting concerns
and corresponding support throughout the software development process. AOSD
has been applied to service-oriented systems (mainly based on web services) and
also to the modularization of crosscutting security policies for sequential and
distributed systems (including few work on services). However, current AOSD
approaches typically target a single virtual machine or platform and the process
of coordinating aspects through points of execution is centralized. Some recent
approaches, such as AWED [3] and DyMac [9] support the modularization of
the crosscutting functionalities of distributed applications. These systems extend
basic concepts of AOSD such as pointcuts and advices to remote pointcuts and
remote advices that allow concerns to be composed across different locations.

The specific case of security in service-oriented architectures has also been
addressed through aspect-oriented approaches. For instance, Courbis and Finkel-
stein [6] proposed to weave aspects into web service orchestrations. Service or-
chestrations, in particular using the language BPEL, have also been extended
with aspect support by Charfi and Mezini [4]. Still, not much has been done to
date to provide support for multilevel horizontal and vertical service composi-
tions or for enforcing security mechanisms at multilevel service composition in
the presence of aspects. Furthermore, in a distributed context, and specifically
in service-oriented computing, there are currently still very few results on the
enforcement and preservation of security properties in the presence of aspects.
Svirskas et al. [16] have proposed a mechanism of structured compliance proof
that guarantees that these protocols are enacted in compliance with the effective
policies and regulations. However, these approaches are only considering service
compositions at one level.

As to the evolution of SOAs, Chen et al. [5] have proposed an extensible
SOA-based platform and provided a roadmap for SOA evolution. Mingyan and
Yanzhang [13] presented a service-oriented dynamic evolution model named
SOEM model and gave a formal description of a series of concept in service-
oriented software evolution process. Several research challenges in maintenance
and evolution of SOA are also discussed in [10], like for instance multilanguage
system analysis and maintenance, the reengineering of processes for migration
to SOA environments and evolution patterns of Service-Oriented Systems. How-
ever, these development methods and techniques for SOA lack means to analyze

Evolution of Security Requirements in SOA with AOP 15

and preserve properties in the presence of evolution, especially regarding security
properties.

6 Conclusion and Future Work

Applications in service-oriented computing have traditionally been developed
using composition in homogeneous and simple frameworks. However, the trend
towards increasingly complex infrastructures indicates a need for a general ser-
vice model that would make it possible to achieve a uniform approach yet to sep-
arate business process concerns from their diverse security requirements (which
are even more subject to evolution over time). SOA cannot rely on the only
composition of services and disregard the security of other software layers on
top of which services are implemented.

We have exposed in this paper in what respect the complexity of service-
oriented architectures and their evolution involve challenging research problems,
in particular with respect to the understanding of security threats and even more
so to the specification of security properties and mechanisms.

Research Challenges: We can summarize the major challenges we will address
in the near future in the following questions:

– How to create appropriate abstractions for the different architectural layers
in SOA’s as to understand the impact of evolutions to the overall system
security?

– How to provide support for threat analysis in cross-domain multi-layered
SOAs, when moving towards to deployment models based on clouds and
integration of mobile devices?

– How security concerns can be modularized and uniformly deployed in cross-
domain service orchestrations using vertical and horizontal aspect orienta-
tion capabilities? We also discussed in this paper a new approach to the
description of the service model relying on invasive aspects introduced at
multiple levels of abstraction. This model will make it possible to develop
and evolve service-oriented applications in dynamic business contexts, while
keeping the complexity of managing their security manageable.

– How to manage possibly conflicting security requirements, specifically when
composing distinct security aspects at a given level? We have started defining
a formal model for secure services in order to deal with possibly conflicting
security requirements. This specification will play a central role in the design
of a flexible aspect model appropriate for dealing with multi-layer security
concerns. We shall investigate how to provide security requirements specifi-
cations such that these conflicts can be detected and solved.

Acknowledgment

This work was supported by the ANR, the French National Research Organi-
zation through the project CESSA (Compositional Evolution of Secure Services
with Aspects, ID.: 09-SEGI-002-01).

16 M.S. Idrees, G. Serme, et.al

References

1. M. Akşit, S. Clarke, T. Elrad, and R. E. Filman, editors. Aspect-Oriented Software
Development. Addison-Wesley Professional, Sept. 2004.

2. E. Bagheri and A. Ghorbani. A service oriented approach to critical infrastruc-
ture modeling. In Workshop on Service Oriented Techniques. National Research
Council, Canada, 2006.

3. L. D. Benavides Navarro, M. Südholt, W. Vanderperren, and B. Verheecke. Mod-
ularization of distributed web services using awed. In Proc. of the th Int. Conf.
on Distributed Objects and Applications (DOA’06, volume 4276 of LNCS, pages
1449–1466. Springer Verlag, Oct. 2006.

4. A. Charfi and M. Mezini. Ao4bpel: An aspect-oriented extension to bpel. World
Wide Web, 10(3):309–344, 2007.

5. Q. Chen, J. Shen, Y. Dong, J. Dai, and W. Xu. Building a collaborative man-
ufacturing system on an extensible soa-based platform. In Computer Supported
Cooperative Work in Design, 2006. CSCWD ’06. 10th International Conference
on, pages 1 –6, may. 2006.

6. C. Courbis and A. Finkelstein. Weaving aspects into web service orchestrations.
In ICWS ’05: Proceedings of the IEEE International Conference on Web Services,
pages 219–226, Washington, DC, USA, 2005. IEEE Computer Society.

7. M. S. Idrees, G. Serme, Y. Roudier, et al. State of the art and require-
ment analysis of security functionalities for soas. Deliverable D2.1, The CESSA
project, July 2010. http://cessa.gforge.inria.fr/lib/exe/fetch.php?media=

publications:d2-1.pdf.
8. G. Kiczales. Aspect-oriented programming. ACM Comput. Surv., 28(4es):154,

1996.
9. B. Lagaisse and W. Joosen. True and transparent distributed composition of

aspect-components. In In Proc. Middleware’06, pages 42–61. Springer, 2006.
10. G. Lewis and D. Smith. Service-oriented architecture and its implications for

software maintenance and evolution. In Frontiers of Software Maintenance, 2008.
FoSM 2008., pages 1 –10, sep. 2008.

11. L. Lowis and R. Accorsi. On a classification approach for soa vulnerabilities.
In International Computer Software and Applications Conference, pages 439–444,
2009.

12. L. Lowis and R. Accorsi. Vulnerability analysis in soa-based business processes.
IEEE Transactions on Services Computing, 99(PrePrints), 2010.

13. Z. Mingyan, W. Yanzhang, C. Xiaodong, and X. Kai. Service-oriented dynamic
evolution model. In Computational Intelligence and Design, 2008. ISCID ’08.
International Symposium on, volume 1, pages 322 –326, oct. 2008.

14. OWASP. Open web application security project
https://www.owasp.org/index.php/category:attack.

15. G. Serme, M. S. Idrees, Y. Roudier, et al. Compositional evolution of secure
services using aspects. Deliverable D3.1, The CESSA project, July 2011. http:

//cessa.gforge.inria.fr/lib/exe/fetch.php?media=publications:d3-1.pdf.
16. A. Svirskas, J. Isacenkova, and R. Molva. Towards secure and trusted collaboration

environment for European public sector. In TrustCol 2007, 2nd International
Workshop on Trusted Collaboration, November 12th-15th, 2007, New York, USA,
11 2007.

http://cessa.gforge.inria.fr/lib/exe/fetch.php?media=publications:d2-1.pdf
http://cessa.gforge.inria.fr/lib/exe/fetch.php?media=publications:d2-1.pdf
http://cessa.gforge.inria.fr/lib/exe/fetch.php?media=publications:d3-1.pdf
http://cessa.gforge.inria.fr/lib/exe/fetch.php?media=publications:d3-1.pdf

	Evolving security requirements in Multi-layered Service-Oriented-Architectures
	Motivation and Outline
	Multi-Layered Service-Oriented Architectures
	Layering in Service-Oriented Architectures

	 SOA Security Concerns
	Attacker Model
	Security Requirements

	Towards an Aspect-Based SOA Model
	Implications of the Integrity property on the SOA stack
	A solution to achieve Integrity with Aspects
	Aspect Model Design Criteria

	Related Work
	Conclusion and Future Work

