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Abstract

In the setting of computer vision, algorithmic searches
often aim to identify an object of interest inside large sets of
images or videos. Towards reducing the often astronomical
complexity of this search, one can use pruning to filter out
objects that are sufficiently distinct from the object of inter-
est, thus resulting in a pruning gain of an overall reduced
search space.

Motivated by practical computer vision based scenarios
such as time-constrained human identification in biometric-
based video surveillance systems, we analyze the stochastic
behavior of time-restricted search pruning, over large and
unstructured data sets which are furthermore random and
varying, and where in addition, pruning itself is not fully
reliable but is instead prone to errors. In this stochastic
setting we apply the information theoretic method of types
as well as information divergence techniques to explore the
natural tradeoff that appears between pruning gain and re-
liability, and proceed to study the typical and atypical gain-
reliability behavior, giving insight on how often pruning
might fail to substantially reduce the search space. The re-
sult, as is, applies to a plethora of computer vision based
applications where efficiency and reliability are intertwined
bottlenecks in the overall system performance, and the sim-
plicity of the obtained expressions allows for rigorous and
insightful assessment of the pruning gain-reliability behav-
ior in such applications, as well as for intuition into design-
ing general object recognition systems.

1. Introduction

In recent years we have experienced an increasing need
to structure and organize an exponentially expanding vol-
ume of data that may take the form of, among other things,
images and videos. Crucial to this effort is the often com-
putationally expensive task of algorithmic search for spe-
cific elements placed at unknown locations inside large data
sets. To limit computational cost, pre-filtering such as prun-
ing can be used, to quickly eliminate a portion of the initial
data, an action which is then followed by a more precise and
complex search within the smaller subset of the remaining
data. Such pruning methods can substantially speed up the

search, at the risk though of missing the target, thus reduc-
ing the overall reliability. Common pre-filtering methods
include video indexing and image classification with respect
to color [1], patterns, objects [2], or feature vectors [3].

1.1. Categorization-based pruning of time-
constrained searches over error-inducing
stochastic environments

Our interest in analyzing the efficiency vs. reliability
tradeoff, focuses on the realistic setting where the search is
time-constrained and where, as we will see later on, the en-
vironment in which the search takes place is stochastic, dy-
namically changing, and can cause search errors. We note
here that there is a fundamental difference between search
in unstructured versus structured data, where the latter can
be handled with very efficient algorithms, such as different
search and bound algorithms (cf. [12]). One widely known
practical scenario that adheres to the above stochastic set-
ting, is the scenario of biometric-based video surveillance.
In this setting it is of interest to locate/retrieve a target sub-
ject at a specific time and location out of all subjects present
in the specific setting. In this scenario, a set of subjects can
be pruned by means of categorization that is based on dif-
ferent combinations of soft biometric traits such as gender,
height or hair color. The need for such biometrically-based
search pruning is often brought to the fore in cases such as
in the 2005 London bombing where a sizeable fraction of
the police force worked for days to screen a subset of the
available surveillance videos relating to the event.

1.2. On the adopted approach

The analysis here, despite being often presented in the
language of video surveillance, can be generally applied to
all domains of computer vision that naturally adhere to the
setting of categorization-based pruning in time-constrained
searches over error-prone stochastic environments. In such
general settings, pruning of large datasets, be they images
or video, involves a corresponding natural tradeoff between
pruning efficiency' and reliability. We here concisely de-
scribe this tradeoff, for a very general setting of statistics
and algorithmic capabilities.

We clearly note that the work here is not meant to model

'We note that the terms efficiency and gain are used interchangeably.



the population statistics or the algorithmic properties. In-
stead the presented analysis holds for a general class of
statistics and classification algorithms. This analysis takes
as input the aforementioned models, and provides as output
the (average and tail behavior of the) different efficiency and
reliability capabilities.

Towards concisely and meaningfully handling the of-
ten intractable complexity of the problem, we employ the
powerful mathematical machinery of the method of types
(cf. [10]) underlying information theory, which has played
a pivotal role in resolving similar efficiency vs. reliability
problems in several other domains such as in network com-
munications [11]. In conjunction with information diver-
gence techniques, the above machinery is applied here to
also provide a concise representation of the efficiency-vs-
reliability problem in search pruning of random and large
databases, which is one of the main problems encountered
in several computer vision applications.

We note that the application of this machinery assumes
the presence of large databases. We argue that this assump-
tion is not only acceptable but is in fact necessary, given the
massive data volumes (resp. the massive populations) that
pruning applications (resp. surveillance systems) must effi-
ciently handle. As the size increases, the presented asymp-
totic results not only become more precise but they also be-
come more useful, mainly because simulating the behav-
ior of massive systems can often be computationally pro-
hibitive.

Finally this same approach allows us to cover a broad
spectrum of system behavior, spanning the entire range be-
tween average-case and worst-case behaviors. This ap-
proach is particularly suited for scenarios where system fail-
ure, even when rare, carries a non-negligible cost. This
same approach is necessary also because it is often the case
that, in the presence of sizeable databases, average-case
analysis may be too optimistic and may fail to capture the
core of the problem, and on the other hand worst-case anal-
ysis is often overly pessimistic and thus may again fail to
give proper insight.

1.3. Categorization based pruning

We consider the scenario where we search for a specific
object® of interest, denoted as v’, belonging to a large and
randomly drawn authentication group v of n objects, where
each object belongs to one of p categories. The elements of
the set (authentication group) v are derived randomly from
a larger population, which adheres to a set of population
statistics. A category corresponds to objects that adhere to
a specific combination of characteristics, so for example in
the setting of surveillance systems, one may consider a cat-
egory consisting of blond, tall, females.

With n being potentially large, we seek to simplify the
search for object v’ within v by algorithmic pruning based
on categorization, i.e., by first identifying the objects that
potentially belong to the same category as v’, and by then
pruning out all other objects that have not been estimated

2The terms object and subject are here used interchangeably.

to share the same traits as v’. Pruning is then expected to
be followed by careful search of the remaining unpruned
set. Such categorization-based pruning allows for a search
speedup through a reduction in the search space, from v to
some smaller and easier to handle set S which is the subset
of v that remains after pruning, cf. Fig. 1. This reduction
though happens in the presence of a set of categorization
error probabilities {¢}, also referred to as confusion prob-
abilities® (cf. [16, 15]), that essentially describe how easy it
is for categories to be confused, hence also describing the
probability that the estimation algorithm erroneously prunes
out the object of interest, by falsely categorizing it. This
confusion set, together with the set of population statistics
{p f}lf):l which describes how common a certain category
is inside the large population, jointly define the statistical
behavior of search pruning, which we will explore. The
above aspects will be precisely described later on.

Example 1 Pruning for video surveillance

a) Categorization pruning with soft biometrics In the
setting of surveillance systems, categorization based prun-
ing is achieved using soft biometric identifiers which are hu-
man physical, behavioral or adhered characteristics, which
carry information about the individual, are computationally
efficient, easy to acquire, but which are generally not suffi-
cient to fully authenticate an individual (cf. [4, 5, 14, 13]).
Scientific work on using soft biometrics for pruning the
search can be found in [6, 7], where a multitude of at-
tributes, like age, gender, hair and skin color were used for
classification of a face database, as well as in [8, 9] where
the impact of pruning traits like age, gender and race was
identified in enhancing the performance of regular biomet-
ric systems. We henceforth refer to a system which extracts
features and classifies them in pre-defined categories, as a
soft biometric system (SBS).

b) Pruning the search in surveillance systems An ex-
ample of a sufficiently large population includes the inhabi-
tants of a certain city, and an example of a randomly chosen
authentication group (n-tuple) v includes the set of people
captured by a video surveillance system in the aforemen-
tioned city between 11:00 and 11:05 yesterday. An exam-
ple SBS could be able to classify 5 instances of hair color,
6 instances of height and 2 of gender, thus being able to
differentiate between p = 5 -6 -2 = 60 distinct cate-
gories. An example search could seek for a subject that
was described to belong to the first category of say, blond
and tall females. The subject and the rest of the authen-
tication group of n = 10000 people, were captured by a
video-surveillance system at approximately the same time
at a specific part of the city. In this city, each SBS-based cat-
egory appears with probability py, - - - , peo, and each such
category can be confused for the first category with proba-
bility €3, -+ ,€g0. The SBS makes an error whenever v’ is
pruned out, thus it allows for reliability of €1. To clarify,
having p1 = 0.1 implies that approximately one in ten city

3 A formal definition of these probabilities will follow, where this defi-
nition will clarify the special role assigned to €7.
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Figure 1. System overview. We clarify that this image is simply
meant as a visual aid to the reader rather than a faithful represen-
tation of the image quality encountered in surveillance systems.

inhabitants are blond-tall-females, and having e; = 0.05
means that the system (its feature estimation algorithms)
tends to confuse the second category for the first category
with probability equal to 0.05 (cf. Fig. 4).

What becomes apparent is that a more aggressive prun-
ing of subjects in v results in a smaller S and a higher
pruning gain, but as categorization entails estimation errors,
such a gain could come at the risk of erroneously pruning
out the subject v’ that we are searching for, thus reducing
the system reliability.

Stochastic system behavior Reliability and pruning gain
are naturally affected by, among other things, the distinc-
tiveness and differentiability of the subject v’ from the rest
of the subjects in the specific authentication group v over
which pruning will take place at a particular instance. In
several scenarios though, this distinctiveness changes ran-
domly because v itself changes randomly, as well as be-
cause the detection medium fluctuates. These introduce a
stochastic environment. Consequently depending on the in-
stance during which v’ and its surroundings v — v/ were
captured by the system, v may consist of neighboring sub-
jects that look similar to the subject of interest v’, or v may
consist of subjects that look sufficiently different from the
subject of interest. Naturally the first case is generally ex-
pected to allow for a lower pruning gain than the second
case.

The pruning gain and reliability behavior can also be af-
fected by the system design. At one extreme we find a very
conservative system that prunes out a member of v only if
it is highly confident about its estimation and categoriza-
tion, in which case the system yields maximal reliability
(near-zero error probability) but with a much reduced prun-
ing gain. At the other extreme, we find an effective but
unreliable system which aggressively prunes out subjects in
v without much regard for erroneous pruning, resulting in
a potentially much reduced search space (|S| << n), at a
high risk though of an error. In the above, |S| denotes the
cardinality of set S, i.e., the number of subjects that were
not pruned out.

1.4. Contributions

In the next section we elaborate on the concept of prun-
ing gain, which describes, as a function of pruning reliabil-
ity, the reduction of the set size after pruning: for example
a pruning gain of 2 implies that pruning managed to halve
the size of the original set. Section 3 applies the method
of types and information divergence techniques to provide
statistical analysis of the pruning gain as a function of re-
liability, offering insight on how often pruning fails to be
sufficiently helpful, given a set of system resources. In the
process we try to provide some intuition through examples
on topics such as, how the system gain-reliability perfor-
mance suffers with increasing confusability of categories, or
on whether searching for a rare looking subject renders the
search performance more sensitive to increases in confus-
ability, than searching for common looking subjects. Sub-
section 3.1 draws from the asymptotic results and provides
average case analysis of the gain, suggests the measure of
average goodput as a measure that jointly maps the effi-
ciency and reliability capabilities of a system, as well as
provides several clarifying examples.
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Figure 2. Asymptotic rate of decay of P(|S| > 7n), for p = 3,
reliability 0.8, population statistics p1 = 0.4,p2 = 0.25,p3 =
0.35 and confusability parameters ex = 0.2, e3 = 0.3.

Before proceeding with the analysis we hasten to give
some insight, again in the language of video surveillance,
as to what is to come. In the setting of large n, the results
of Section 3 are better illustrated here with an example. In
this we ask what the probability is that a CV-based prun-
ing system that can identify p = 3 categories, that searches
for a subject of the first category, that has 80 percent reli-
ability (e; = 0.8), that introduces confusability parameters
€2 = 0.2,e3 = 0.3 (cf. Fig 4) and that operates over a pop-
ulation with statistics p; = 0.4, po = 0.25, ps = 0.35, will
in fact prune the search to only a fraction of 7 = |S|/n. We
note that here 7 is the inverse of the instantaneous pruning
gain. We plot in Fig. 2 the asymptotic rate of decay for this
probability,

J(r) = — lim 28 p(|S| > ) 0

for different values of 7. From the J(7) in Fig. 2 we can
draw different conclusions, such as:

e Focusing on 7 = 0.475 where J(0.475) = 0, we see
that the size of the (after pruning) set S is typically
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Figure 3. Average pruning gain G = n/|S|, as a function of the
confusability probability e (for all categories), and for p; = 0.1.
Plotted for p = 3 and p = 8.

(most commonly - with probability that does not
vanish with n) 47.5% of the original size n. In the
absence of errors, this would have been equal to
p1 = 40% (rather than 47.5%), but the errors cause a
reduction of the average gain (from 47.5% to 40%).

e Focusing on 7 = 0.72, we note that the probability
that pruning removes less than 1 — 0.72 = 28% of the
original set, is approximately given by e~ " = ¢ 3"
(J(0.72) = 1, p = 3), whereas focusing on 7 = 0.62,
we note that the probability that pruning removes less
than 1 — 0.62 = 38% of the original set, is approxi-
mately given by e~ /2 = ¢=3"/2 (J(0.62) ~ 1/2).
The probability that pruning removes less than half the
elements is approximately P(r > 0.5) ~ e~ 37/10
(J(0.5) =~ 1/10).

To clarify, the rate function J(7) approximates P(|S| >
7n) by describing its asymptotic rate of decay as n in-
creases, in the sense that the plot of —log P(|S| > 7n)
vs. n/p, after a sufficiently large n, would be a straight line
with slope J (7). Equivalently the plot of log P(|S| > mn)
vs. n would approximate a straight line with rate function
—pJ(7), so in the above last example, the plot log P(7 >
0.5) vs. n would, for sufficiently large n, be a straight line
with slope —3/10. We finally note that as the population
statistics change, so does J.

Moving to the special case of the average-case analy-
sis, Subsection 3.1 directly tells us that the average pruning
gain takes the form* of the inverse of Z’f’zl pyey. This is
illustrated in an example in Fig. 3 for varying confusability
probability, for the case where the search is for an individ-
ual that belongs to the first category which occurs once ev-
ery ten people (p; = 0.1), and for the case of two different
systems that can respectively distinguish p = 3 or p = 8
categories. The expressions from the above graphs will be
derived in detail later on.

4As a small sanity check we quickly note that applying the values of
the p;, €; from the example of Fig. 2 gives Z?zl ppey = 0.475, which
agrees with the above statement that the typical system behavior corre-
sponds to 7 = 0.475 where J(0.475) = 0.

2. Gain v.s. reliability

As an intermediate measure of efficiency we consider the
(instantaneous) pruning gain, defined here as

G(v) :=

l
S|’

which simply describes’ the size reduction, namely from v
to S, and which can vary from 1 (no pruning gain) to n. In
terms of system design, one could also consider the relative
gain, S|

S
T('U) =1- 7 € [Oa 1]3 (3)

2

describing the fraction of v that was pruned out.

It is noted here that G(v), and by extension r(v), are
random variables and randomly fluctuate as a function of,
among other things, the relationship between v and v’, the
current estimation conditions as well as the error capabili-
ties of the system. For example, as already implied before,
we note that if v and v’ are such that v’ belongs in a cate-
gory in which very few other members of v belong to, then
pruning is expected to produce a very small § and a high
gain. If though, at the same time, the estimation capabil-
ities (algorithms and hardware) of the system result in the
characteristics of v being easily confusable with the char-
acteristics of another populous category in v, then S will be
generally larger, and the gain smaller.

As aresult, any reasonable analysis of the gain-reliability
behavior must be of a statistical nature and must naturally
reflect the categorization refinement, the corresponding es-
timation error capabilities of the system, as well as the
statistics of the larger population. We proceed to clearly
define these parameters.

2.1. Categorization, estimation capabilities and
population statistics

2.1.1 Categorization and population statistics

In the setting of interest, we consider that v is chosen at
random from a large population, and that everyone in v be-

longs to one specific category C'y C v, f =1,---,p with
probability equal to
C
Dy ::Ev%v leavp (4)
Hence the set of py, f = 1,---,p describes the

categorization-based population statistics, i.e., the statistics
of the population from where v is randomly picked.
Without loss of generality it is assumed that the subject
of interest belongs to the first category, i.e., that v’ € C4.
The fact that v/ € () is also assumed to be known to
the system - in other words, the system knows what it
is looking for®. In this setting, pruning employs a cate-
gorization/estimation algorithm which, correctly or incor-
rectly, assigns each subject v € v to a specific category

SWe here assume that the pruning system is asked to leave at least one
subject in S, i.e., that |S| > 1.

®We here clarify that asking for v/ € C; simply means that, prior to
applying the presented results, the category of v' must be relabeled to C1.
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Figure 4. Confusion parameters {e }.

C (v) € [1, p]. Errors may originate from say, algorithmic
failures or reduced image quality. A subject v € v is pruned

out if and only if C (v) # 1, i.e., when it is estimated that v

is not a member of Cy, whereas if C (v) = 1 then the subject
v is not pruned out and is instead added into the selected set
S of remaining candidates.

2.1.2 Error performance and confusion parameters

In concisely characterizing the error performance capabil-
ities of the CV-based pruning system, we here adopt the
simplifying common assumption that the confusion proba-
bility is defined by the categories, i.e., that for any subject
v € Cf, the probability that the categorization algorithm
does not prune v, is a constant denoted as

ef:=P(Cv)=1), veCy. (5)

It becomes clear that €; describes the system reliability (1
minus the probability of error), and also that for f > 2, e
describes the probability (cf. Fig. 4) that any member of C'y
is misidentified to share the same characteristics as v’, and is
thus incorrectly not pruned out. We note that the adopted er-
ror measure, albeit an approximation, successfully reflects
the fact that different categories may be easier to confuse
than others’. Specifically having €; > €, means that sub-
jects in category C'y can be more easily confused to belong
to category C of v/, than subjects in category C/y:.

3. Statistical analysis using the method of types
and information divergence

Let us consider a scenario where a search for a subject
v’ turned out to be extremely ineffective, and fell below the
expectations, due to a very unfortunate matching of the sub-
ject with its surroundings v. This unfortunate scenario mo-
tivates the natural question of how often will a system that
was designed to achieve a certain average gain-reliability
behavior, fall short of the expectations, providing an atypi-
cally small pruning gain and leaving its users with an atyp-
ically large and unmanageable S. It consequently brings to
the fore related questions such as for example, how will this
probability be altered if we change the hardware and algo-
rithmic resources of the system (change the ¢; and p), or
change the setting in which the system operates (change the

Di)-

7We note that the set {e 7} is simply the first row of what is commonly
known as a confusion matrix.

We proceed to analyze these issues and first recall that
for a given authentication group v, the categorization algo-
rithm identifies set S of all unpruned subjects, defined as
S={vewv : C(v) =1}. We are here interested in the
size of the search after pruning, specifically in the parameter

T::ﬂ,OgTSp, (6)
n/p

which represents® a relative deviation of | S| from a baseline
n/p. It can be seen that the typical, i.e., common, value of
7 is (cf. also Section 3.1)

ro:=Bugs =0 prer ™

We are now interested in the entire tail behavior (not just
the typical part of it), i.e., we are interested in understand-
ing the probability of having an authentication group v that
results in atypically unhelpful pruning (7 > 7¢), or atypi-
cally helpful pruning (7 < 79).

Towards this let

_ Gl

, 8
~F 8)

ap, r(v) :
let ag(v) = {ao,f(v)}}_, describe the instantaneous nor-
malized distribution (histogram) of {|C¢[}%_, for the spe-

cific, randomly chosen and fixed authentication group v,
and let

C
p= o=y, o

denote the normalized statistical population distribution of
P
{ICs1}p=1:
Furthermore, for a given v, let

_1¢rn S|

) 0 S al, S P, (10)
n/p !

aq,7(v) :

letai (v) == {a1,¢(v)}_, and a(v) := {a (v), a1 (v)},
and let’

P
V() :={0< oy <min(r,a0f), Y a1y =7}, (11)
=1

denote the set of valid « for a given 7, i.e., describe the
set of all possible authentication groups and categorization
errors that can result in |S| = TS

Given the information that a¢; has on oy, given that 7 is
implied by o, and given that the algorithms here categorize

$Note the small change in notation compared to Section 1.4. This
change is meant to make the derivations more concise.

9For  simplicity of notation we will henceforth use
o, a1, o, p, oo, ¢ and let the association to v be implied



a subject independently of other subjects, it can be seen that
for any a € V(7), it is the case that

P(a,7) = P(ag,a1) =P(ag)P(ai|ag) (12)

p p
H P(ao,r) H P(ay flag,p).  (13)
= =1

The following lemma describes the asymptotic behavior
of P(a, 1), for any o« € V(7). To clarify, the lemma de-
scribes the asymptotic rate of decay of the joint probability
of an authentication group with histogram oy and an esti-
mation/categorization process corresponding to o, given
that the group and categorization process result in an un-
pruned set of size

S| =72 (14)
P

for some 0 < 7 < p. This behavior will be described below
as a concise function of the binomial rate-function (cf.[10])

Ih(x) = zlog(£) + (1 - z)log(1 mf) fz2
f B xlog(lfel)—i—(l—x)log( o ) f=1
(15)

The lemma follows.
Lemma 1

log
— lim —P(a 7) = pD(a||p) +Zao 15 ( j)

n—>oonp fl

where

Zaoflog—

is the informational dlvergence between oy and p (cf.

[10]).

The proof follows soon after. We now proceed with the
main result, which averages the outcome in Lemma 1, over
all possible authentication groups.

D(ewllp) =

Theorem 1 In SBS-based pruning, the size of the remain-
, satisfies the following:

log n
J(1) = —nh_)ngo n—/pP(|S| ~ T;)
P
—1npraoflog +2040ij f . (16)

Furthermore we have the followmg.

Theorem 2 The probability that after pruning, the search
space is bigger (resp. smaller) than T%, is given for T > 1

by

log n
— lim —=P(|S|>717—)=J(7 a7
Jim 22 P(S| > 7)< g(r)
and for T < 19
log
— lim —P(|S| < = J(1). (18)
Jm 2 p(s| < 7%) = J(r)

The above describe how often we encounter authentication
groups v and feature estimation behavior that jointly cause
the gain to deviate, by a specific degree, from the common
behavior described in (7), i.e., how often the pruning is atyp-
ically ineffective or atypically effective. We offer the intu-
ition that the atypical behavior of the pruning gain is domi-
nated by a small set of authentication groups, that minimize
the expression in Theorem 1. Such minimization was pre-
sented in Fig. 2, and in examples that will follow after the
proofs.

We now proceed with the proofs.

Proof of Lemma 1:

We first note that

—nD(cwo/pllp) — =5 D(eollpp) (19)

P((Xo) =e
where as previously stated D(cvl|p) = > ao,slog apL}f
is the information divergence (also called the Kullback-
Leibler distance) between oy and p. We use = to denote
exponential equality, i.e., we write f(n) = e~"¢ to denote

i 108 /(1)

n—00 n
tablishing P(a|ag), we focus on a specific category f,
and look to calculate

= d and é, 2 are similarly defined. In es-

n
<|3ﬁcf| ;alf | |Of|—;040.,f>7 (20)

i.e., to calculate the probability that pruning introduces
%al_’ ¢ elements, from C to S, given that there are %040, I

elements of C'y. Towards this we note that there is a total of
|Cy| = ;Oto N (1)

possible elements in C'y which may be categorized, each
with probability €y, to belong to C; by the categorization
algorithm. The fraction of such elements that are asked to
be categorized to belong to 1, is defined by « to be

[SNCyl _ 50 _ auy
e ICl oy’

Tf 1= (22)

an event which happens with probability

Play) = (|Sﬂ0f| ;Oélf | G| = ;040 f)
= e ICsls(zs)  (23)
where in the above, Iy(zy) = wylog(ZL) + (1 —

x5) 1og( — ) is the rate function of the binomial distri-
bution w1th parameter €y (cf. [10]). Now given that

p

(11|Oé0 = H

n n
SNC¢| = —ag. Crl = —ap.
(l 7l P | [Cfl 5 0,f>

(24)



we conclude that
Z Q, fIf f .

Finally given that P(e,7) = P(a)P(au|ay), we con-
clude that — limy, o 12 log P(a,7) = D(avl|pp) +

> g o0, Ir (5HE).
O
Proof of Theorem 1: The proof is direct from the method

of types (cf. [10]), which applies after noting that |V (7)| <
n? < ™ Y5 > 0, and that SUPgey(r) Pla) < P(1) <

[V(7)|supaey(r) Plar). .

Proof of Theorem 2: The proof is direct by noting that
for any 0 > 0, then for 7 > 7y we have

log
— lim —1ogP (ai|ag) = (25)

n—oo N p

~tim 2% p(iS] > (r40)"

n—s 00 n/

log
)>—nlm ” =8 p(|s| > Tp)

—oo N
(26)
and similarly for 7 < 79 we have

log n
— lim 7P(|S| < (1=0)— ) > — hm —P(|S| < T;)

n—oo n, n/p
27)
(]
The following examples are meant to provide insight on
the statistical behavior of pruning.

Example 2 (How often will the gain be very small?)

We recall the discussion in Section 1.4 where a pruning
(surveillance) system can identify p = 3 categories,
operates with reliability e, = 0.8 over a population
with statistics p1 = 0.4,p2 = 0.25,p3 = 0.35 and has
confusability parameters e¢o = 0.2,es = 0.3. In the
context of the above theorems we note that the result
already shown in Fig. 2 applies by substituting T with
7/p = 7/3. Consequently from Fig. 2 we recall the
following. The size of the (after pruning) set S is typically
47.5% of the original size n. The probability that pruning
removes less than 1 — 0.72 = 28% of the original set, is
approximately given by e " = e~ 3" because, as Fig. 2
shows, J(0.72) ~ 1 (recall p = 3). Similarly the same
figure tells us that the probability that pruning removes less
than 1 — 0.62 = 38% of the original set, is approximately
given by e=P"/2 = ¢=3"/2 pecause J(0.62) ~ 1/2.

In the following example we are interested in under-
standing the behavior of the search pruning in the case of
rare authentication groups.

Example 3 (Which groups cause specific problems?)

Consider the case where a (soft biometrics based) pruning
system has p = 2 identifiable categories, population
probabilities p = [p, 1 — p|, and confusion probabilities
€ = [1 — €, €| (this means that the probability that the first
category is confused for the second, is equal to making
the reverse error). We want to understand what types of

authentication groups will cause our pruning system to
prune out only, for example, a fourth of the population
(IS| ~ 3n/4). The answer will turn out to be that the
typical groups that cause such reduced pruning, have 43%
of the subjects in the first category, and the rest in the other
category.

To see this we recall that (see Theorem 1) |S| ~ 7% |S| =
3n/4 which implies that T = 3 /2. For « denoting the frac-
tion of the subjects (in v) that belong in the first category,
and after some algebra that we ignore here, it can be shown
that o = 3=T which yields oo = 3/7 ~ 43%.

A further clarifying example focuses on the case of a
statistically symmetric, i.e., maximally diverse population.

Example 4 (Male or female?) Consider a city with 50%
male and 50% female population (p = 2,p1 = pa = 0.5).
Let the confusion probabilities as before to be equal, in the
sense that (e = [1 — €, €]). We are interested in the follow-
ing questions. For a system that searches for a male (first
category), how often will the system prune out only a third
of the population (as opposed to the expected one half)?
How often will we run across an authentication group with
as a1 = 20% males, and then have the system prune out
only 45% of the overall size (as opposed to the expected
80%)? As it turns out, the first answer reveals a probability
of about e="/*, and the second answer reveals a probability
of about e/, Forn =~ 50, the two probabilities are about
five in a million and forty-five in a million respectively.

To see this, first note that 11 = 1. Then we have that

= lim log —=P(|S] =

Ioaya0,1,7) A s

T a,00,1),
ir(}f[(a,al)l, T) = I(Oé,T,Oél)l =ar)=
2alog 2a+2(1—a)log2(1—a)+7log 74+(2—7) log(2—7).

To see the above, just calculate the derivative of I with
respect to v 1. For the behavior of T we see that I(T) =
infy info, | I, 00,1,7) = I(o = p1,0110 = p17,7)
= 71logT + (2 — 7)log(2 — 7), which can be seen by cal-
culating the derivative of infs I (v, a1 1, ) with respect to
a.

3.1. Typical behavior: average gain and goodput

We here provide expressions for the average pruning
gain as well as the goodput which jointly considers gain and
reliability. This is followed by several clarifying examples.

In terms of the average pruning gain, it is a simple ex-
ercise to see that this takes the form G := E, ,,G(v) =
(Xhoip fEf)_l, and similarly the average relative gain
takes the form Ey, ,7(v) = 227, pr(1 — €5). We recall
that reliability is given by ;.

In combining the above average gain measure with re-
liability, we consider the (average) goodput, denoted as U,

which for the sake of simplicity is here offered a concise
form of a weighted product between reliability and gain,

U:=el'g” (28)



for some chosen positive 71, 2 that describe the importance
paid to reliability and to pruning gain respectively.
We proceed with clarifying examples.

Example 5 (Average gain with error uniformity) /n the
uniform error setting where the probability of erroneous
categorization of subjects is assumed to be equal to € for all
categories, i.e., where ey = € = 1;%11, Vf=2,---,pitis
the case that .
G=(p1+e—piep) . (29)

This was already illustrated in Fig. 3. We quickly note that
for p1 = 1/p, the gain remains equal to 1/p; irrespective
of € and irrespective of the rest of the population statistics
pg [ =2

Example 6 (Average gain with uniform error scaling)
Now consider the case where the uniform error increases

with p as € = M)\, B > 1. Then for any set of
population statistics, it is the case that

60 = (mi+ -+ 200 L oo

which approaches G(A) = (p1[1+ (p — BN +N) " asp
increases. We briefly note that, as expected, in the regime of
very high reliability (A — 0), and irrespective of {pf}’;:?
the pruning gain approaches p%' In the other extreme of low

reliability (A — 1), the gain approaches efl.

We proceed with an example on the average goodput.

Example 7 (Average goodput with error uniformity)
Under error uniformity where erroneous categorization
happens with probability €, and for v1 = 72 = 1, the
goodput takes the form
1—
U(E) — € + ( Gp)

. 31
e+pi(l —ep) GD

To offer insight we note that the goodput starts at a max-
imum of U = p% for a near zero value of €, and then de-

creases with a slope of
ou pP1 — 1

% erp=poP’ G2

which as expected'’ is negative for all p; < 1. We here see
that %5%“%0 — 2;3”1 which is positive and decreas-

ing in py. Within the context of the example, the intuition
that we can draw is that, for the same increase in el a
search for a rare looking subject (p1 small) can be much
more sensitive, in terms of goodput, to outside perturbations
(fluctuations in €) than searches for more common looking

individuals (py large).

10We note that asking for |[S| > 1, implies that € 4+ p1(1 — pe) > %
(cf.(29)) which guarantees that %—Z: is finite.

AR example of such a deterioration that causes an increase in €, can be
a reduction in the luminosity around the subjects.

4. Conclusions

The work provided statistical analysis of the gain and
reliability in pruning the search over large data sets, where
these sets are random and where there is a possibility that
the pruning may entail errors. In this setting, pruning plays
the role of pre-filtering, similar to techniques such as video
indexing. The analysis may offer insight on better designing
pre-filtering algorithms for different search settings.
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