
An empirical study of availability in friend-to-friend
storage systems

Rajesh Sharma and Anwitaman Datta
Nanyang Technological University, Singapore

raje0014@e.ntu.edu.sg, anwitaman@ntu.edu.sg

Matteo Dell’Amico and Pietro Michiardi
Eurecom, Sophia-Antipolis, France

{matteo.dell-amico,pietro.michiardi}@eurecom.fr

Abstract—Friend-to-friend networks, i.e. peer-to-peer networks
where data are exchanged and stored solely through nodes
owned by trusted users, can guarantee dependability, privacy and
uncensorability by exploiting social trust. However, the limitation
of storing data only on friends can come to the detriment of
data availability: if no friends are online, then data stored in the
system will not be accessible. In this work, we explore the trade-
offs between redundancy (i.e., how many copies of data are stored
on friends), data placement (the choice of which friend nodes to
store data on) and data availability (the probability of finding
data online). We show that the problem of obtaining maximal
availability while minimizing redundancy is NP-complete; in
addition, we perform an exploratory study on data placement
strategies, and we investigate their performance in terms of
redundancy needed and availability obtained. By performing a
trace-based evaluation, we show that nodes with as few as 10
friends can already obtain good availability levels.
Keywords: friend-to-friend (F2F), storage systems, data place-
ment, NP-complete, heuristics

I. INTRODUCTION

Peer-to-peer (P2P) storage systems have been studied for
over a decade, starting with the OceanStore [5] project. The
premise of P2P storage is crowdsourcing the storage cloud
[2] to other end-users. One of the many design issues in such
systems is the choice of peers at which to store data. A specific
subclass of P2P storage systems have emerged based on the
placement choice being constrained to ‘friends’ of the data
owner, for example, FriendStore [7]. The basic characteristics
of such friend-to-friend (F2F) storage systems are: (i) real-
life social trust is exploited to guarantee a dependable system
(e.g., a friend of mine won’t erase my data); (ii) data access is
predominantly confined within a small social neighborhood.
These networks, also known as ‘darknets’ when the focus
is on security, can also guarantee privacy and resistance to
censorship [1]. F2F storage thus constitutes a good building
block for diverse applications such as personal backup service
and decentralized online social networking.

For personal backup, while data persistence is more critical,
data availability is nevertheless desirable. For decentralized
online social networking systems such as SuperNova [6],
availability is of paramount importance. Thus, a fundamental
problem that arises is determining what kind of availability
one can achieve in a storage system where data placement for

This work was supported in part by A*Star SERC grant 072 134 0055
and NTU/MoE Tier-1 grant RG 29/09. The collaboration between NTU and
Eurecom was supported by Merlion grant.

any specific data owner is constrained by the use of only peer
nodes run by friends of the data owner.

There are several variations of this basic question that
would interest a F2F storage system designer. A baseline is
determined when all friends of a node store its data. This is
the best in terms of availability that one can achieve subject
to the constraint of using friend nodes exclusively. However,
there are some obvious variations worth studying. Can the
same availability (or any other predetermined threshold of
availability) be achieved using only a subset of the node’s
friends? How does the law of diminishing returns work in
terms of availability, as the number of used friends is in-
creased? If a stipulated number of friends are to be used, what
is the best availability that can be achieved? Furthermore, the
way to measure availability itself may vary. For a personal
backup application, the data owner may care for the data to be
available only when it itself is online - for example, with other
portable devices. For a decentralized online social networking
application, the data owner can serve its own data when it
is itself online, but will like the friends to make the data
available when it is itself offline. More generally, availability
may also be determined based on whether it was available
when there was any access request for the data. These various
interpretations of availability may depend on the access and
application specific characteristics.

The achievable and achieved performance would depend on
the (temporal) characteristics of individual nodes’ egocentric
networks (i.e., the social network consisting of those nodes and
their respective immediate friends), the actual data-placement
policies determining a subset of friends to store data at, as well
as the interpretation of availability itself. This paper is a first
attempt to formalize these quantitative aspects of F2F storage
systems, exploring algorithmic aspects of data placement in
(sub-)optimal subset of friends, and exposition of the efficacy
of F2F storage systems using trace-driven simulations using
real egocentric social network traces capturing additionally
node availability traces over time.

The important contributions of this paper include (i) defin-
ing some key characteristics of an ego-network which influ-
ence the achievable availability in a F2F storage system, (ii)
observing that identification of a minimal set of friends to
achieve the maximum achievable coverage is in fact analogous
to the set cover problem, and hence NP-hard, (iii) propose
greedy heuristic data placement algorithms, and (iv) evaluation

of the heuristics using trace-driven simulation using real ego-
network traces and accompanying up/down-time information.

II. EGO-CENTRIC NETWORK CHARACTERIZATION

In a F2F storage system using exclusively friends, the
quality of service an individual node can have depends solely
on its own ego-centric network.1 We next define some key
characteristics to define a node’s ego-centric network based
on the uptime/downtime characteristics of nodes.

For a node n, we use Fn to represent its set of friends. We
study the system for a period of τ discrete time units (seconds,
minutes, or other quanta), i.e., the whole period of study can
be represented as Ttot = {t1, t2, t3..., tτ}. The uptime of a
node n is represented with a time trace Tn where ti ∈ Tn iff
node n is online at time ti.

In general, a node may want to achieve availability of its
data for an arbitrary subset of time T ′

n ⊆ Ttot. For example,
if a node n wants 24/7 availability then T ′

n = Ttot, while if
it wants availability of its data only for the periods when it is
itself offline, then T ′

n = Ttot − Tn.
Let T ′

Fn
represents the collection of time trace of all the

friends nj of node n, i.e., nj ∈ Fn. For notational conciseness,
we use

∮
to represent |Fn|.

T ′
Fn

= {T ′
Fn1

, T ′
Fn2

, T ′
Fn3

, . . . , T ′
Fn∮ } (1)

A. Achievable Coverage

We define achievable coverage ACn as the fraction of the
total time for which a node n is able to get data availability by
storing data at all and only its friends, out of the total time for
which it is seeking data availability. ACn = |T acn |/|T ′

n| where

T acn = ∪
∮
j=1T

′
Fnj
− T ′

n (2)

B. Degree of Criticality

Out of the periods where coverage is achievable, there are
time slots which can be covered using an unique neighbor, i.e.,
there is only one neighbor which is up for that period, and thus
this specific neighbor is critical in providing such coverage.
We denote using T crn the time slots which are critical.2 We
define the degree of criticality as DCn = |T crn |/|T ′

n|. A high
degree of criticality would typically imply that more friends
are needed to achieve a particular level of availability, and also,
the system is more vulnerable to faults. Conversely, low degree
of criticality implies more redundancy, which translates into
more flexible choices, and robustness of the resulting system.

III. DATA PLACEMENT AT FRIENDS

Replicating data at all friends trivially allows a node to get
maximal achievable coverage. However, this would result in
very high costs for storing data in multiple copies, in particular
for users with a large number of friends. An obvious question
is to find the minimal number of friends that can provide the

1Load distribution at nodes may percolate over multiple social hops. Such
load-related issues are ignored in this preliminary work.

2Note that T cr
n ⊆ Tac

n .

same maximal coverage. It is straightforward to show that this
is in fact an NP-hard problem. This finding motivates us to
propose heuristics that strive to optimize the trade-off between
the number of copies and the achieved data availability.

A. Maximal Coverage With Minimum Replication

Let us now focus on the problem of reaching the maximal
coverage for a node n (i.e., T acn in Equation 2) while mini-
mizing the number of friends employed. This corresponds to
the Set Cover problem introduced and proven to be NP-hard
by Karp in 1972 [4]: using the notation we used so far, Set
Cover can be formalized as follows. Given the family of traces
T ′
Fn

as defined in Equation 1, find the minimum value k such
that a sub-family of traces C ⊆ T ′

Fn
of cardinality k having⋃

C = T acn exists. This observation of NP-hardness motivates
us to design a heuristic greedy policy for data placement.

B. Greedy Data Placement Heuristics

Let F crn be the set of critical neighbors of node n, i.e., each
of them covers at least one critical time slot. To get maximum
possible coverage, in our greedy heuristic the node first picks
all the friends nj s.t nj ∈ F crn . If critical nodes are not able to
cover all the T ′

n time slots for which the node n is looking for
coverage, then the node n picks a non-critical node that covers
the maximum number of the time slots not yet covered. This
process continues until there are no nodes left which cover
further uncovered time slots, or there are no more nodes left.

Variations of this basic approach could entail (i) a cap
on the quality of service, e.g., a node may decide to settle
for coverage not less than 85% of the maximum achievable
coverage; or (ii) a cap on the maximum number of friends to
be used, e.g., a node may want to limit the replication factor of
its data to five. We note that for such variants, other heuristics
– possibly those which do not differentiate among critical and
non-critical nodes – may yield better performance.

IV. RESULTS

For our experiments, we carry out trace-driven simulations
using instant messaging traces. Numerous social network
graphs are available; likewise, several traces from P2P and
other distributed systems exist, providing up/down-time of
nodes. However, we could not find openly available real traces
containing both social relation information and the availability
trace of the same nodes. We thus obtained such dataset from
the operator of an instant messaging (IM) server in Italy.

Our dataset suffers from various shortcomings. First, it does
not have adequate geographic diversity which can be exploited
to achieve better availability. Furthermore, instant messaging
usage pattern may arguably be different from the usage pattern
of P2P storage systems or decentralized social networking
applications. Our data is also a partial view of the complete IM
network (i.e., nodes have some contacts registered on different
servers whose uptime information is not available).

Notwithstanding these issues, the dataset allows us to ex-
periment on real data with a trace of both social and temporal
node behavior, justifying its usage in this empirical study.

Fig. 1. Ego-centric network characteristics.

Fig. 2. Microscopic analysis.

In a friend-to-friend storage system, if all friends agree to
cooperate, then the performance is likely to be better, since
almost all the above mentioned drawbacks also happen to
translate into more pessimistic estimates about the system
environment. We will continue to look for more appropriate
data sets in the future.

Fig. 3. Macroscopic analysis.

A. Experimental Results

The original trace comprised 3,436 nodes. After filtering
the nodes that had no neighbors in the same server or were
not part of the largest connected component of the social
graph, we obtained a set of 848 unique nodes, each having
between one and eighteen neighbors. Nodes’ uptime/downtime
behavior from one week was used to drive the data placement
algorithm, and the achieved availability in the second week
was studied. The rationale for such a simplistic setting is the
well-known diurnal patterns [3] of individual users’ uptimes.

In the following we summarize the characteristics of the
ego-centric networks from our dataset and the system perfor-
mance obtained using our data placement heuristics.

Ego-centric network characteristics: Figure 1 shows the
characteristics of the nodes considered in our experiments,
as derived from the whole period of two weeks of traces. A
reverse CDF (cumulative distribution function) is plotted for
the achievable coverage (AC). From this plot, we observe for
instance, that roughly 50% nodes can achieve at least 90%
of coverage (for the whole period, i.e., if the ideal objective
is to obtain 24/7 coverage for the two weeks studied) if they
replicate their data at all their respective friends.

We likewise plot the reverse CDF graph showing the per-
centage of the total time where coverage is achieved using
critical nodes (Crit), that is, only one friend was up during
the corresponding amount of time. If this sole friend goes
offline for whatever reason, then there are no alternatives for
the corresponding time slots. Ideally, it is desirable for nodes
to have a low value for this metric. We note that roughly 20%
of nodes have more than 90% of their time covered by critical
nodes - which highlights both the importance of critical nodes,
as well as the potential vulnerabilities of a F2F storage system.
However, we also observe that this plot has a relatively steeper
slope (for instance, w.r.to AC). This is again a desirable trait,
since it means many nodes can get coverage using noncritical
nodes for a large amount of time.

Microscopic analysis: In Figure 2 we do a microscopic
study of the performance of our data placement heuristic
by looking at individual, representative ego-centric networks.
We show five nodes in this plot, with distinct characteristics,
summarized using the tuple 〈AC,DC,

∮
〉, i.e., achievable

coverage, degree of criticality, and the number of neighbors.
In these plots, we additionally get a glimpse of the marginal
benefit of incrementally replicating at more friends.

Nodes with high number of neighbors, and relatively low
degree of criticality, for instance, nodes represented with
〈1, 0.50, 18〉, 〈0.95, 0.25, 12〉 and 〈0.83, 0.38, 7〉 enjoy good
level of availability.3 We note that, within these nodes,
those with relatively lower criticality (〈0.95, 0.25, 12〉) obtain
high level of availability with very few replicas, in contrast
with a node with a relatively higher degree of criticality
(〈1, 0.50, 18〉). There are however also greater overlaps among
the neighbors’ uptime, and thus, there is an effect of di-
minishing returns with additional replication, as the maxi-

3Recall that DC needs to be interpreted relative to the value of AC.

mum achievable availability is approached. Finally, when the
maximum availability is indeed achieved, as indicated with
a marker in some of these plots, there can obviously be
no further benefit in adding more replicas. This corresponds
to significant storage space savings with respect to a naive
strategy which would replicate at all friends. For example,
for the node with 18 neighbors, nine neighbors are enough to
achieve 100% availability. In contrast, the rate of increase in
the achieved availability with additional replication is higher
for 〈0.62, 0.43, 4〉 and 〈0.40, 0.34, 3〉 which have fewer neigh-
bors, and degree of criticality is relatively higher. We also
show a node with only a single node, which naturally enjoys
coverage for a very low period of time.

Macroscopic analysis: While one fundamental question is
to minimize the number of replicas needed to achieve the max-
imum possible availability, an obvious dual to this question
is, if a node decides to cap the degree of replication to a
specific predetermined number, for instance due to bandwidth
and storage budgets, what availability is achievable? The first
heuristic algorithm, which necessarily uses the critical nodes
first, may not be best suited to achieve maximum availability
under a cap on the maximum number of neighbors that can be
used. Under such a cap on the number of replicas, a greedy
algorithm which does not discriminate between critical and
non-critical neighbors is expected to perform best. As a base
line for such scenarios with cap on the number of replicas, we
study what is achieved when replication is done at randomly
chosen neighbors instead.

We report our findings in Figure 3, which confirm these
intuitions. CF3 and CF6 represent the results obtained using
our heuristic which prefers critical nodes first, subject to
replication cap of three and six respectively. MC3 and MC6
represent the results obtained using a greedy algorithm to
maximize coverage subject to the corresponding caps, while
R3 and R6 show the results obtained using random placement.
NL represents the result obtained with our first heuristic
with no limit on the degree of replication, hence minimizing
the degree of replication subject to reaching the maximum
achievable storage. As expected, MC outperforms the other
strategies when availability needs to be maximized subject to a
cap on the degree of replication. Interestingly, the randomized
algorithm in fact outperforms the original heuristics under
such limitation on replication, and achieves only slightly less
availability than the greedy approach to maximize coverage.
Finally, note that even using at most six friends yields only
marginally less availability than the maximum achievable.

Further discussions: The data set we used was extremely
sparse (most online social networks have much larger number
of neighbors), which explains the low availability in many
of the results. One may also argue that even if people have
many more online friends, most of them are unlikely to share
their storage spaces, and hence a usable network may also be
sparser. In all cases, our experiments expose some interesting
facets about F2F storage systems. Firstly, if a node has
reasonably large number of friends (say, more than 10) willing
to participate in a F2F storage system, then a very good level of

availability is achievable, and our heuristic does a good job in
determining a minimal subset of friends to achieve maximum
coverage, saving unnecessary replication. However, if there is
a limit on the allowed degree of replication, and the limit is
small, then this heuristic suffers a drastic deterioration because
of its preference to critical nodes. In contrast, a greedy strategy
which does not discriminate between critical and non-critical
nodes works well. More interestingly, even a randomized
placement strategy works almost as well. We hypothesize that
if there is a larger pool of nodes to choose from, it is likely
that the greedy strategy will perform even better, while the
random strategy’s performance will deteriorate in comparison,
since it will be more likely to pick some unsuitable nodes.
Larger choice of nodes will also provide a bigger, and arguably
temporally diverse pool to choose from - thus significantly
increasing the availability.

V. CONCLUSION

In this work we performed an exploratory study on the
trade-offs between redundancy, data placement and data avail-
ability in F2F storage applications. We have shown that the
problem of finding a data placement with maximal availability
minimizing redundancy is NP-complete, which prompted us to
design heuristic data placement strategies. We then evaluated
these policies through an empirical study based on a social
network complemented with availability traces; in our case,
some low availability results were due to the low number
of connections in our particular trace; however, our results
showed that reasonably good availability results could be
obtained already by nodes that had around 10 friends. We
also found out that – depending on the goal – different
data placement heuristics are advisable. For example, if there
is a limit on the applicable redundancy, a simple greedy
heuristic performs better than placement strategies designed
for minimizing replication for maximal coverage. We plan to
continue working on this topic, by exploring the impact of
limited storage resources on nodes, considering both global
optimization techniques and interaction of selfish data place-
ment strategies, and exploring more extensive traces.

REFERENCES

[1] I. Clarke, O. Sandberg, M. Toseland, and V. Verendel. Private Commu-
nication Through a Network of Trusted Connections: The Dark Freenet.
2010. http://freenetproject.org/papers.html.

[2] A. Datta. Peer-to-peer storage systems: Crowdsourcing the storage cloud.
In ICDCN tutorial, 2010.

[3] S. Guha, N. Daswani, and R. Jain. An Experimental Study of the Skype
Peer-to-Peer VoIP System. In IPTPS, 2006.

[4] R.M. Karp. Reducibility among combinatorial problems. Complexity of
computer computations, page 85, 1972.

[5] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. Oceanstore: An architecture for global-scale persistent storage.
In ACM SIGARCH Computer Architecture News, volume 28, pages 190–
201, 2000.

[6] R. Sharma and A. Datta. SuperNova: Super-peers Based Architecture for
Decentralized Online Social Networks. Technical report, arXiv, 2011.

[7] D.N. Tran, F. Chiang, and J. Li. Friendstore: Cooperative online backup
using trusted nodes. In SocialNets ’08: Proceedings of the 1st Workshop
on Social Network Systems, 2008.

