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Abstract—Traditionally, the performance of different semi-
blind channel estimation algorithms has been assessed and
compared to a certain lower bound. One of these famous lower
bounds that has been extensively used in the literature is the
Cramer Rao Bound (CRB). Depending on how we treat the
symbols and the channel, different versions of CRB have been
derived. There are two possible cases on how to treat the symbols
and/or the channel namely, deterministic unknowns or random.
Moreover, the symbols are either jointly estimated with the
channel or eliminated. In other words, we have six different cases
to be handled. In this paper we present the CRBs that exist in
the literature and fit to some of these cases and derive the others
in the context of SIMO single carrier cyclic prefix systems (SC-
CP). On the top of that we present a unified framework that
permits to derive all versions of CRBs in a concrete manner.
All the derived CRBs are validated numerically by conducting
limited Monte-Carlo simulations.

I. INTRODUCTION

Traditionally, the transmitter sends some known information

to the receiver to aid the latter in estimating the channel. How-

ever, in wireless communication the channel varies rapidly

with time and as a consequence more training sequence/pilots

are required. This process wastes a lot of bandwidth as a

result of augmenting the transmission rate to maintain the

throughput. In the last two decades a new branch of channel

estimation has emerged focusing on accomplishing this task

blindly i.e. without the need for a training sequence. Nev-

ertheless, most wireless standards that have evolved during

this period are still relying on the training sequence/pilots to

estimate the channel. This is due probably to the unsatisfactory

results of the blind channel estimation algorithms. On the

other hand, some powerful channel estimation algorithms that

take advantage of both aforementioned techniques have been

also developed during the same era. These are known as

semi-blind where a superior performance is achieved although

few training sequence/pilots are transmitted. As usual the

performance of these algorithms are lower bounded. We will

focus in this paper on the most famous lower bound used by

the statisticians namely, the CRB. Different versions of semi-

blind CRBs are shown and derived in the sequel. Basically,

there are two approaches on how to tackle the problem of

semi-blind channel estimation depending on how we treat the

transmitted symbols. The first approach is based on jointly

estimating the symbols with the channel while the second

approach is based on estimating the channel and marginalizing

the symbols. Moreover, in the first approach we have the

choice to consider the channel and/or the symbols as either

deterministic unknowns or random with known probability

density function (pdf). Hence, there are four methodologies

to jointly estimate the channel and the symbols. However, in

the second approach we can only marginalize the symbols

if we consider them as random with known pdf regardless

of how we treat the channel. Therefore, there are only two

methodologies to estimate the channel while marginalizing

the symbols. Overall we have six cases to be handled. It

should be noted that treating the channel as random rather than

deterministic in the context of blind and semi-blind channel

estimation has been introduced in [1] and developed recently

in [2]. Once the channel is treated as random, we are within the

framework of Bayesian semi-blind channel estimation. In [2]

the Bayesian and the deterministic algorithms are evaluated by

running Monte-Carlo simulations. In this paper we will derive

the lower bounds that correspond to the different algorithms

elaborated in [2]. This paper is organized as follows: In section

II we develop the SIMO SC-CP transmission system model,

while in section III we show a general framework that permits

the derivation of the different CRBs that belong to the two

approaches stated above. In section IV we make use of the

framework developed in section III to derive the different

CRBs. In section V we show a summary of the CRBs and

in section VI we conduct some Monte-Carlo simulations to

pictorially compare different CRBs with their corresponding

algorithms. Finally, in section VII we draw some conclusions

and in section VIII we show the acknowledgments.

II. SIMO FIR SC-CP TX SYSTEM MODEL

In (semi-)blind channel identification, a multichannel frame-

work can be obtained from oversampling a received signal

and leads to a Single Input Multiple Output (SIMO) vector

channel representation. The multiple FIR channels we obtain

in this representation can also be obtained from multiple

signals received from an array of antennas (in the context of

mobile digital communications [3]) or from a combination of

both. To further develop the case of oversampling, consider a

linear digital modulation over a linear channel with additive

noise so that the received signal y(t) has the following form:

y(t) =
∑

k

h(t− kT )a(k) + v(t). (1)

In (1) a(k) are the transmitted symbols, T is the symbol pe-

riod, h(t) is the channel impulse response and v(t) designates

noise. The channel is assumed to be FIR with length NT .

If the received signal is oversampled at the rate m
T (or if

m different samples of the received signal are captured by

m sensors every T seconds, or a combination of both), the



discrete input-output relationship can be written as:

y(k) =

N−1∑

i=0

h(i)a(k−i) + v(k) = HAN (k) + v(k) (2)

where y(k) = [yH1 (k) · · · yHm(k)]H ,h(i) =[
hH
1 (i) · · ·hH

m(i)
]H

, v(k) = [vH1 (k) · · · vHm(k)]H , H =

[h(N−1) · · ·h(0)], AN (k) =
[
a(k−N+1)H · · · a(k)H

]H
and superscript H denotes Hermitian transpose. Let

H(z) =
∑N−1

i=0 h(i)z−i = [HH
1 (z) · · ·HH

m(z)]H

be the SIMO channel transfer function, and

h =
[
hH(N−1) · · ·hH(0)

]H
. As for the noise, we consider

an additive independent white Gaussian circular noise v(k)
with rvv(k−i) = Ev(k)v(i)H = σ2

vIm δki. Assume we

receive a (OFDM or single-carrier) CP block transmission

system with M samples per block. The introduction of a

cyclic prefix of L samples means that the last L samples of

the current block (corresponding to M samples) are repeated

before the actual block. If we assume w.l.o.g. that the current

block starts at time 0, then samples a[M−L] · · · a[M−1]
are repeated at time instants −L, . . . , −1. This means that

the output at sample periods 0, . . . ,M−1 can be written in

matrix form as



y[0]
...

y[M−1]


 = Y[0] = T (h) A[0] + V [0] (3)

where the matrix T (h) is not only (block) Toeplitz but even

(block) circulant: each row is obtained by a cyclic shift to

the right of the previous row and [h(0) 0m×(M−N) h(N −
1) · · ·h(1)] is the first block row. We shall simplify the

notation in (3) to

Y = T (h)A+ V = TK(h)AK + TU (h)AU + V

= AKh+AUh+ V .
(4)

Where TK(h) and TU (h) represent respectively the portions

of T (h) that correspond to Ak (MK known symbols) and AU

(MU unknown symbols), see (5). Here we assume for simplic-

ity that the known symbols are gathered at the beginning of

the block. On the other hand, A is a block circulant matrix

filled with the elements of A whereas AK and AU are also

block circulant matrices filled with the elements of AK and

AU respectively.

T (h) =




|
TK(h) | TU (h)

|


 (5)

III. A UNIFIED FRAMEWORK FOR DIFFERENT CRBS

As we have stated before, there are six possible cases that

can be classified into two categories. In the first category the

channel and the unknown symbols are estimated jointly by

making some assumptions on the channel and the unknowns

symbols. It is worthy to note that in this category the esti-

mation of the channel and symbols from one side and the

noise variance estimation from the other side are decoupled.

Hence, the estimation of the noise variance is excluded in this

category. If we denote by θ the unknown parameters to be

estimated then it is given by:

θ = [AH
U ,hH ]H (6)

The joint probability density function is given by:

f(Y, θ) = f(Y/θ)f(θ) (7)

Where f(θ) stands for the probability density function (pdf)

of θ, f(Y, θ) stands for the joint probability density function

of Y and θ and f(Y/θ) stands for the pdf of Y conditioned

on θ is given or known. Once we substitute (6) in (7) we get:

f(Y,AU ,h) = f(Y/AU ,h)f(AU )f(h) (8)

Since the symbols and the channel are independent of each

other we can write f(θ) = f(AU )f(h). Of course on the basis

of how we treat the symbols and the channel both f(AU ) and

f(h) differ from one estimator to another as we shall see in

the sequel. Knowing that the CRB and consequently the Fisher

Information Matrix (FIM) requires the application of the log

function to the joint pdf in (8), we get:

ln[f(Y,AU ,h)] = ln[f(Y/AU ,h)] + ln[f(AU )] + ln[f(h)]
(9)

Now, let J represents the Fisher Information matrix (FIM),

it is given by [4]:

Jθθ = E

(
∂ ln[f(Y,AU ,h)]

∂θ∗

)(
∂ ln[f(Y,AU ,h)]

∂θ∗

)H

= −E
∂

∂θ∗

(
∂ ln[f(Y,AU ,h)]

∂θ∗

)H

(10)

As we shall observe later, since we are treating complex

parameters we also need, besides Jθθ, Jθθ∗ which is defined

by:

Jθθ∗ = E

(
∂ ln[f(Y,AU ,h)]

∂θ∗

)(
∂ ln[f(Y,AU ,h)]

∂θ

)H

= −E
∂

∂θ

(
∂ ln[f(Y,AU ,h)]

∂θ∗

)H

(11)

When Jθθ∗ 6= 0 we shall resort to θR defined below:

θR =

[
Re(θ)
Im(θ)

]
= M

[
θ
θ∗

]
,M =

1

2

[
I I

−jI jI

]

(12)

Knowing that Jθθ = J∗
θ∗θ∗ and Jθθ∗ = J∗

θ∗θ then (12)

yields:

JθRθR = M

[
Jθθ Jθθ∗

J∗
θθ∗ J∗

θθ

]
MH (13)

On the other side, when Jθθ∗=0 then JθRθR is defined totally

by Jθθ. This holds true for all the cases where we jointly

estimate the channel and the symbols as we shall notice

later. Under some assumptions and regularity conditions [5],

the error covariance matrix of an unbiased channel estimator

ĥ(Y ), which is defined as:

C(ĥ) = E

{[
ĥ(Y )− h

] [
ĥ(Y )− h

]H}
(14)



satisfies the following inequality:

C(ĥ) ≥ {JθRθR}
−1 △

= CRB (15)

We usually focus on comparing the Mean Square Error, MSE

= tr
{
C(ĥ)

}
to the minimum error variance which is defined

by tr {CRB} where tr stands for the trace of a matrix.

However, in the second category the channel and the noise

variance are the only parameters to be estimated while the

symbols are supposed to be marginalized during the estimation

process. Here we can’t exclude the estimation of the noise

variance because it is coupled to the estimation of the channel.

Thus,

θ = [hH , σ2
v ]

H (16)

Once we substitute θ in (7) we get:

f(Y,h, σ2
v) = f(Y/h, σ2

v)f(h)f(σ
2
v) (17)

Again, we apply the log function on both sides of (17) to get:

ln[f(Y,h, σ2
v)] = ln[f(Y/h, σ2

v)]+ln[f(h)]+ln[f(σ2
v)] (18)

As for FIM, both (10) and (11) are still applicable where only

θ is redefined as in (16).

IV. DERIVATIONS OF DIFFERENT CRBS

We shall develop in this section the CRBs of all the cases

that belong to both categories and provide a closed-form for-

mula where it is possible. This will be done by exploiting the

framework introduced in the previous section. To commence

with this task, we shall explain the way by which we call the

different CRBs. First of all, to differentiate between the CRBs

that correspond to the deterministic and Bayesian channels

we call them respectively DCRB and BCRB. However, to

differentiate between CRBs where we treat the symbols as

deterministic and random we use respectively CRBdet and

CRBsto. On the other hand, to differentiate between joint

estimation and marginalization we use respectively CRBjoint

and CRBmarg .

A. DCRBdet,joint

In this lower bound [4] both the unknown symbols and

the channel are considered as deterministic unknowns to

be estimated. Hence it belongs to the first category and

consequently the joint pdf is given by (9). Moreover, since

both are deterministic we have f(h) = hoδ(h − ho) and

f(AU ) = Ao
Uδ(AU −Ao

U ) where ho and Ao represent respec-

tively the true values of the channel and the symbols. It can

be easily noticed that the pdfs of both the unknown symbols

and the channel have no effect on the computation of the FIM.

Hence, ln[f(Y,AU ,h)] is replaced by ln[f(Y/AU ,h)] in (10)

where f(Y/AU ,h) =
1

(πσ2
v)

Mm exp[− 1
σ2
v
(Y − T (h)A)H(Y −

T (h)A)]. After a little treatment (10) yields:

Jθθ =
1

σ2
v

[
T H
U (h)TU (h) T H

U (h)A
AHTU (h) AHA

]
(19)

With a little manipulation we can easily show that Jθθ∗ = 0.

Hence, by applying the Schur’s complement on (19) we get:

DCRBdet,joint = J−1

hh
= σ2

v

(
AHP⊥

TU (h)
A
)−1

(20)

Where P⊥
TU (h)

= I − PTU (h) and PTU (h) =

TU (h)(T
H
U (h)TU (h))

−1T H
U (h) is the projection matrix

on TU (h).

B. DCRBsto,joint
The corresponding blind CRB appeared first in [6]. In

this novel lower bound (see [7] for a profound analysis of

its blind counterpart) we consider the unknown symbols as

random with Gaussian distribution while the channel is con-

sidered deterministic to be jointly estimated with the unknown

symbols. This estimator also belongs to the first category,

thus the joint pdf is given by (9). Moreover, f(AU ) =
1

(πσ2
a)

M+N−1−MK
exp[−

AH
U AU

σ2
a

] and f(h) = hoδ(h − ho). It

is obvious here that ln[f(h)] can be omitted without affecting

the computation of FIM. Hence, (10) yields:

Jθθ = EY,AU/h
1

σ2
v

[
T H
U (h)TU (h) +

σ2
v

σ2
a
IMU

T H
U (h)A

AHTU (h) AHA

]

(21)

Denoting EA {A} = A
′

K and EA

{
AHA

}
= CK where

Ck = A
′H
K A

′

K +MUσ
2
aImN and noting that Jθθ∗=0, then by

applying the Schur’s complement on (21) we get:

DCRBsto,joint = J−1

hh
= σ2

v
(
CK −A

′H
K TU (h)[T

H
U (h)TU (h) +

σ2
v

σ2
a

I]−1T H
U (h)A

′

K

)−1

(22)

C. DCRBsto,marg
This lower bound [4], [8] belongs to the second category,

hence we are interested in estimating the channel and the

variance of the noise only while the unknown symbols are

supposed to be eliminated during the estimation process.

Furthermore, the joint pdf is given by (18) where we consider

the channel and the noise variance to be deterministic while the

unknown symbols have a Gaussian distribution. Here again,

ln[f(h)] and ln[f(σ2
v)] have no influence on computing the

FIM. Substituting f(Y/h, σ2
v) = 1

(π)(Mm|CY Y |
exp[−(Y −

mY )
HC−1

Y Y (Y −mY ))] Where mY = TK(h)AK and CY Y =
E (Y −mY )(Y −mY )

H = σ2
aTU (h)TU (h)

H + σ2
vIMUm in

(18) after omitting ln[f(h)] and ln[f(σ2
v)] then with a little

manipulation (10) and (11) yield:

Jsto
θθ (i, j) =

tr

{
C−1

Y Y
∂CY Y

∂θ∗

i

C−1
Y Y

(
∂CY Y

∂θ∗

j

)H}
+
[
AH

KC−1
Y Y AK

]
i,j

Jsto
θθ∗(i, j) = tr

{
C−1

Y Y

∂CY Y

∂θ∗i
C−1

Y Y

(
∂CY Y

∂θ∗j

)}

(23)

Where [B]i,j denotes the element that lies in the ith row and

jth column of matrix B. We have used in the derivation of (23)



the following facts: ∂CY Y

∂h∗

i

= σ2
aTU (h)TU (

∂h
∂h∗

i

)H , ∂CY Y

∂σ2
v

=

1
2 ,

∂ln|CY Y |
∂θ∗

i

= tr
{
C−1

Y Y
∂CY Y

∂θ∗

i

}
and ∂

∂θ∗

i

tr
{
C−1

Y Y

}
=

− tr
{
C−1

Y Y
∂CY Y

∂θ∗

i

C−1
Y Y

}
. Once we compute both Jθθ and Jθθ∗

from (23), we substitute them in (13) to compute JθRθR .

Consequently, by using Schur’s complement we can extract

easily Jhh from JθRθR then DCRBsto,marg = J−1

hh
follows

directly.

D. BCRBsto,joint
In this lower bound [9] (see also [10] for its applica-

tion in cooperative-OFDM system) both the channels and

the unknown symbols are assumed random with Gaussian

distribution and are supposed to be estimated jointly. Hence,

this lower bound in its turn belongs to the first category and

its joint pdf is given by (9). By substituting the terms in (9)

by their corresponding functions we deduce the corresponding

FIM as follows:

Jθθ =
1

σ2
v

E
Y,h,A

[
T H
U (h)TU (h) +

σ2
v

σ2
a
IMU

T H
U (h)A

AHTU (h) AHA+ σ2
vC

0−1
h

]

(24)

Assuming that both the channel and the symbol distributions

have a zero mean as stated above we get:

Jθθ =
1

σ2
v[
E
Y,h,A

{
T H
U (h)TU (h) +

σ2
v

σ2
a
IMU

}
0

0 CK + σ2
vC

0−1
h

]

(25)

The corresponding CRB for the channel can be readily

extracted from (25) as follows:

BCRBsto,joint = σ2
v

(
CK + σ2

vC
0−1
h

)−1
(26)

It is obvious that this CRB is independent of the number of

training symbols used. Moreover, (28) is a block diagonal

matrix which means that the estimation of the channel and

the symbols are decoupled. Of course, this is not true in case

of semi-blind channel estimation except if all the transmitted

symbols are known but in that case we are no more estimating

the symbols. As a consequence, this CRB is considered to be

too optimistic.

E. BCRBdet,joint
This lower bound called Bayesian CRB for deterministic

symbols BCRBdet,joint is novel. However, it is considered as

a variation of BCRBsto,joint that has been derived in the pre-

vious section. The main difference with BCRBsto,joint is that

we consider the symbols here to be deterministic unknowns

while there we consider them to be random with Gaussian

distribution. Hence, with this lower bound we introduce the

concept of semi-blind Bayesian CRB for channel estimation

by treating the channel as random with Gaussian distribution

f(h) = 1
(π)mN |Co

h
|
exp[−hHCo−1

h h]. However, the unknown

symbols are considered as deterministic to be jointly estimated

with the channel hence, this estimator belongs to the first

category where the joint pdf is given by (9). Moreover, here

again ln[f(AU )] has no effect on computing FIM so it can be

omitted. Therefore, (10) yields:

Jθθ = EY,h/A

1

σ2
v

[
T H
U (h)TU (h) T H

U (h)A
AHTU (h) AHA+ σ2

vC
0−1
h

]

(27)

Assuming that the channel distribution has a zero mean as

stated above we get:

Jθθ =
1

σ2
v

[
EY,h/A

{
T H
U (h)TU (h)

}
0

0 AHA+ σ2
vC

0−1
h

]

(28)

the corresponding CRB for the channel can be readily

extracted from (28) as follows:

BCRBdet,joint = σ2
v

(
AHA+ σ2

vC
0−1
h

)−1
(29)

This CRB is also too optimistic for the same reasons discussed

in the case of BCRBsto,joint.

F. BCRBsto,marg
This lower bound called Bayesian CRB for stochastic sym-

bols (BCRBsto,marg) is by its turn novel. It belongs to the sec-

ond category since the symbols are supposed to be eliminated.

It can be considered as an extension to DCRBsto,marg by

exploiting the prior information that exists about the channel.

The joint pdf is given by (18) but this time ln[f(h)] can’t

be omitted. Substituting the terms in (18) by their corre-

sponding functions and following the same steps mentioned

in DCRBsto,marg section we get:





Jθθ = Eh {Jsto
θθ }+

[
C0−1

h 0
0 0

]

Jθθ∗ = Eh {Jsto
θθ∗}

(30)

Now we can resort to (13) to compute JθRθR . Consequently,

by using Schur’s complement we can extract easily Jhh from

JθRθR then BCRBsto,marg = J−1

hh
follows directly.

V. SUMMARY

Therefore, with the extension of some existing blind

CRBs and deriving novel ones, the picture is broadened

considerably and to sum up we depict the current picture in

Table 1. On the other hand, since some CRBs correspond

to one realization of the channel and/or the symbols while

others correspond to random channel and/or symbols then

these CRBs, in their current form, are not suitable to be

compared together. This problem can be overcome readily by

computing the expectation of the CRBs that correspond to

one realization of the channel and/or the symbols. Hence, in

the simulation section we are going to compare the following:

Eh EAU
{DCRBdet,joint} , Eh {DCRBsto,joint} ,

Eh {DCRBsto,marg} , EAU
{BCRBdet,joint} , BCRBsto,joint

BCRBsto,marg. However, due to the difficulties that we face

when we try to carry on the expectation operator in some

situations, we are going to run Monte-Carlo simulations to



perform the averaging over the ensemble of the symbols

and/or the channel realizations.

CRB Type Unknown Channel Elm Novel
Sym of Sym

DCRBdet,joint Det Det No No

DCRBsto,joint Gauss Det No Yes

DCRBsto,marg Gauss Det Yes No

BCRBsto,joint Gauss Gauss No No

BCRBdet,joint Det Gauss No Yes

BCRBsto,marg Gauss Gauss Yes Yes

TABLE I
SUMMARY OF CRBS

VI. SIMULATIONS

In this section we plot the different CRBs to verify some

of their aspects that we mentioned in the paper. In each

Monte-Carlo simulation we generate different realizations of

the channel, the symbols and the noise. As for the channel,

we generate a Rayleigh fading channel with exponentially

decaying power delay profile (PDP) as follows: e−wn where

n = 0 : N − 1 and w = 2. Hence, Co
h

is the diagonal matrix

Co
h
= Im ⊗ C where C = diag {e−wn, n = 0 : N − 1}. As

for the symbols, we generate random QPSK symbols to reflect

the real world case. The performance of the different CRBs

is evaluated by means of the Normalized MSE (NMSE) vs.

SNR. The SNR is defined as: SNR = ||T (h)A||2

mM σ2
v

. The NMSE

is defined as
avg tr (CRB)

avg ||h||2
where avg stands for average. In

Figure 1 we plot the NMSE of all the CRBs that have been

derived in this paper versus the number of iterations at SNR

= 10 dB. To validate our comments about the looseness

of the Bayesian CRBs elaborated in this paper, we plot

in the same figure the results of the algorithms derived in

[2] which correspond to these CRBs. To be more specific

the algorithms SB-ML-ML, SB-ML-GMAP, SB-GMAP-ML,

SB-GMAP-GMAP, SB-GMAP-Elm-ML and SB-GMAP-Elm-

GMAP are lower bounded respectively by DCRBdet,joint,

BCRBdet,joint, DCRBsto,joint, BCRBsto,joint, DCRBsto,marg

and BCRBsto,marg . Well, at this moderate SNR it is clear that

none of the algorithms attain its corresponding CRB. This

holds true also at high SNR except for DCRBdet,joint and

DCRBsto,marg which can be attained asymptotically in SNR

by SB-ML-ML and SB-GMAP-Elm-ML respectively. Apart

from the fact that they are loose, we can observe that all the

Bayesian CRBs and DCRBsto,joint are so close to each other.

VII. CONCLUSION

We introduced previously the concept of blind Bayesian

channel estimation and extended it to the semi-blind case by

proposing a bunch of useful algorithms. In this paper, we

have presented a framework that permits to derive a complete

set of CRBs that correspond to the various Deterministic and

Bayesian cases. Some of these algorithms already exist in the

literature and the others are novel. The main conclusion that

can be drawn is that the Bayesian Cramer Rao Bound is loose

and there is a need for another lower bound which is tighter.

This result is valid regardless of how we treat the symbols

namely, deterministic or random and it is even valid when

we marginalize the symbols. Furthermore, this result extends
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Fig. 1. NMSE vs. No.of iterations of all CRBs at SNR = 10 dB

also to DCRBsto,joint which corresponds to joint estimation of

deterministic channel and random symbols. Hence, not only

Bayesian CRBs but also some deterministic CRBs requires

tighter alternatives. This point is under investigation and is

subject for further research.
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