
A

Reducing Repair Traffic in P2P Backup Systems: Exact Regener ating
Codes on Hierarchical Codes

ZHEN HUANG, National University of Defense Technology

Ernst Biersack, Eurecom

Yuxing Peng, National University of Defense Technology

Peer to peer backup systems store data on “unreliable” peers that can leave the system at any moment.
In this case, the only way to assure durability of the data is to add redundancy using either replication
or erasure codes. Erasure codes are able to provide the same reliability as replication requiring much less
storage space. Erasure coding breaks the data into blocks that are encoded and then stored on different
nodes. However, when storage nodes permanently abandon the system, new redundant blocks must be
created, which is referred to as repair. For “classical” erasure codes, generating a new block requires the
transmission of k blocks over the network, resulting in a high repair traffic. Recently, two new classes of
erasure codes, Regenerating Codes and Hierarchical Codes, have been proposed that significantly reduce
the repair traffic: Regenerating Codes reduce the amount of data uploaded by each peer involved in the
repair, while Hierarchical Codes reduce the number of nodes participating in the repair. In this paper we
propose to combine these two codes to devise a new class of erasure codes called ER-Hierarchical Codes
that combine the advantages of both.

Categories and Subject Descriptors: E.5 [FILES]: Backup/recovery

General Terms: Storage, P2P backup systems, Maintenance, durability, reliability

Additional Key Words and Phrases: Regenerating Codes, Hierarchical Codes, repair degree

1. INTRODUCTION

1.1. Motivation

In P2P backup systems, redundancy is the basic technique to assure durability of the
data. What kind of redundancy scheme to use has been extensively discussed in the lit-
erature. Many papers focus on the comparison between replication and erasure codes
[Weatherspoon and Kubiatowicz 2002; Lin et al. 2004; Rodrigues and Liskov 2005].
The simplest way to add redundancy is replication, which produces multiple copies
(replicas) that are stored on different nodes. A more complex redundancy scheme is
erasure codes that divide the data into k blocks, encode them into h parity blocks
and store the (k + h) blocks on different nodes. The original data can be reconstructed
by taking a subset of the (k + h) blocks. Compared to replication, erasure codes are
more space efficient, but also require more maintenance traffic to reconstruct a lost
block of data [Lin et al. 2004; Rodrigues and Liskov 2005]. In this paper, we present
a new code called ER-Hierarchical Code that significantly reduces the maintenance
traffic as compared to other erasure codes.

Author’s address: Z. Huang and Y. Peng are with the National Laboratory of Parallel and Distributed
Processing, Department of Computer, National University of Defense Technology, Changsha, Hunan, P. R.
China 410073.
E. Biersack is with Eurecom, Sophia Antipolis, France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1553-3077/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Zhen Huang et al.

1.2. Data Maintenance

A backup system must execute three types of operations.

— Data insertion, to encode and store new data in the backup system
— Data reconstruction, to recover the original data and
— Data maintenance, to repair the loss of data that were stored on nodes in the backup

system that have left the system.

Data maintenance introduces network traffic between the nodes that participate in
the repair of a lost block. As pointed out previously [Rodrigues and Liskov 2005] the
available network bandwidth of these nodes can become the bottleneck resource that
limits the total amount of data that can be stored safely in the system.

The most “straightforward” way of repairing a lost block is as follows: We need a set
R of k nodes that store k blocks of the group of k + h blocks the lost block was part of
and we need an additional node, referred to as newcomer, who will store the block
that “replaces” the lost block. The nodes in R transmit one block each to the newcomer.
The newcomer uses the k blocks to first reconstruct the k original data blocks to then
produce a new block, which will be bit-by-bit identical with the lost block. Such a repair
requires to transfer an amount of data that is k times as big as the lost data.

To see if we can do better, we need to understand the factors that determine the
total amount of data transmitted to repair a lost block, namely (i) the number of nodes
involved in a repair, which is referred to as the repair degree d and (ii) the amount of
data transmitted by each node that participates in the repair, which is referred to as
repair block size SRB . The purpose of this paper is to introduce new codes that allow
to reduce the repair traffic by reducing either one or both these two factors. As we will
see, there are ways to repair a lost block without reconstructing first the original data.

1.3. Codes

Erasure codes can be classified into optimal codes and near-optimal codes. Op-
timal codes have the property that the original data can be reconstructed using any
subset of k blocks from the set of (k + h) blocks. Optimal codes are maximum distance
separable codes, or MDS codes for short.

Reed-Solomon Codes are a well known class for an optimal codes. Consider a
Galois Field GF(2q), where the elements of such a field can be expressed by q-bit words.
Let us denote as oi and pi the ith original block and the ith parity block. A linear code
can be built using the following linear operations in GF(2q):

pi =

{

oi i ≤ k
∑k

j=1 ci,joj k < i ≤ k + h, ci,j ∈ GF (2q)
(1)

We see from Eq. (1) that every parity block that is not identical to an original block is
a linear combination of all the original blocks. The code is optimal since any subset of
k parity blocks allows to reconstruct the k original blocks.

Near-optimal codes, on the hand (i) either need (1+ǫ)k blocks to recovery the original
data (where ǫ > 0) or (ii) can reconstruct the original data only for some subsets of k
blocks but not for any arbitrary subset. Examples for near-optimal codes are Tornado
codes, Low-density parity check codes [Richardson and Urbanke 2008] or hierarchical
codes [Duminuco and Biersack 2009]. Near-optimal codes bring big reductions in terms
of communication and computational overhead [Mitzenmacher 2004; Plank 2005; Du-
minuco and Biersack 2009].

Hierarchical Codes [Duminuco 2009] are near-optimal codes since not any set of k
blocks allows to reconstruct the original data. Hierarchical Codes that have the same
storage efficiency as Reed-Solomon Codes but require in many cases a much lower

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:3

repair degree d, which allows to reduce the total amount of traffic for repairing a lost
block and also allows to complete the download from the d nodes faster [Duminuco and
Biersack 2009].

Regenerating Codes are optimal codes. However, as compared to other codes, they
drastically reduce the repair block size, while their repair degree and block size that is
at least as big as for Reed-Solomon Codes. In the distributed storage systems, Regener-
ating Codes apply the concept of network coding to erasure codes. Regenerating Codes
are a few years old [Dimakis et al. 2010; Rashmi et al. 2009; Duminuco and Biersack
2009; Dimakis et al. 2010] and have been continuously improved since. Particularly
interesting for backup storage systems are Exact Regenerating Codes [Wu and Di-
makis 2009; Rashmi et al. 2009; Suh and Ramchandran 2010] that not only reduce the
computational complexity of Regenerating Codes but are also able, to regenerate back
exactly, i.e bit by bit, the lost block.

Given that Hierarchical Codes reduce the repair degree and that Exact Regener-
ating Codes reduce the repair block size, we propose to “combine” these two codes to
even further reduce the total repair traffic. We devise a new coding scheme called ER-
Hierarchical Codes where the ideas of Exact Regenerating Codes are applied to the
minimum group1 of an Hierarchical Code. We take the coding scheme proposed for
Exact Regenerating Codes [Rashmi et al. 2009] to demonstrate how to construct ER-
Hierarchical Codes that provide the same reliability as Hierarchical Codes and signifi-
cantly reduce the repair traffic by reducing both, the repair degree and the repair block
size.

The next two sections present background material on codes (section 2) and propose
metrics that allow to compare the different redundancy schemes (section 3). The follow-
ing two sections present new codes: In section 4 we propose Exact Hierarchical Codes,
and in section 5 we demonstrate how to build ER-Hierarchical Codes and state some
propositions about ER-Hierarchical Codes. In section 6 we evaluate ER-Hierarchical
Codes in comparison to other erasure codes through analysis and simulation. We con-
clude the paper in section 7 with a summary and an outlook.

2. BACKGROUND ON REGENERATING CODES AND HIERARCHICAL CODES

A key issue in P2P backup systems is data maintenance: storage nodes may leave the
system and the data stored on these nodes need to be repaired to maintain data avail-
ability and durability. Data repair introduces network traffic between the surviving
nodes and the available network bandwidth of these nodes can become the bottleneck
resource [Rodrigues and Liskov 2005] that limits the total amount of data that can be
stored safely in the system.

In response to this problem, Regenerating Codes and Hierarchical Codes have been
proposed. We will show how to combine them to obtain ER-Hierarchical Codes, which
achieve an even higher reduction in repair traffic. The symbols used throughout the
paper are summarized in Table I.

The focus of this paper is erasure codes. We consider an original file of size of Sfile

that is encoded into n = k+h blocks that are stored on n different nodes. The data from
k out of the n nodes allow to reconstruct the original file. Every node stores a block of
size SSB that consists of α fragments, with α ∈ N. When a block is lost because of a
node failure, d storage nodes can be used to repair the lost block: Each of the d nodes
uploads β fragments to the newcomer, with β ∈ N. While for Reed Solomon codes α and
β both take the value of one, α and β can take values larger than one for Regenerating
Codes.

1Minimum group is defined later in section 5.3.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Zhen Huang et al.

Table I. Variables Used

Symbol Description
k number of original blocks
h number of parity blocks
n total number of blocks, n = k + h

d repair degree for one repair process
2q Galois field size
Nl number of concurrent losses
R reliability for the coding scheme
α amount of fragments stored on one node
β amount of fragments uploaded by one node
Sfile size of the original file
Sfrag fragment size
SSB storage block size in one node
SRB repair block size uploaded by one node
Vfi file insert traffic for the system
Vrp total repair traffic for one block
Vrc reconstruction traffic

V
(ec)
rp total repair traffic for one block using code ec

��������	

��������	�

��������	�

��
����	��
��

��������	
�

��������	��

������	��
��

Fig. 1. Regenerating Codes: Storage block used to generate repair block

2.1. Regenerating Codes for distributed storage system

We will now explain the differences between Regenerating Codes and the traditional
erasure codes, present the different types of Regenerating Codes and illustrate how we
derive ER-Hierarchical Codes. For a survey of Regenerating Codes see [Dimakis et al.
2010].

2.1.1. Repair block size for Regenerating Codes. As depicted in Fig. 1, Regenerating codes
differ from Reed-Solomon Codes in the way the block stored at a node is produced and
also by the fact that this block is not simply transferred to the newcomer to repair the
loss of another block. The block stored at a node, referred to as storage block consists
of α fragments of size Sfrag each. At repair, the node who stores a block first linearly
combines the α fragments of its storage block to produce β parity fragments, which
make up a repair block that is uploaded to the newcomer. In this case, the repair
block size is SRB = βSfrag and the storage block size is SSB = αSfrag .

To illustrate the idea of Regenerating codes, we present in Fig. 2 a small example
with four nodes N1, ..., N4. The original data are broken into four fragments and α = 2
original fragments are stored on nodes N1 and N2. The nodes N3, N4 store two parity

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:5

fragments each. The parameters of the code are k = 2, h = 2 and α = 2. If any of the
nodes fails, the lost data can be reconstructed in two different ways.

— “Classical Reed-Solomon type repair:” Since the code is an MDS code, the newcomer
node who will hold the newly generated storage block downloads from any two of the
three remaining nodes all the data stored on these two nodes. In this case the repair
block is identical to the storage block and the repair traffic (volume of data transmit-
ted) is k · SSB = 2 · SSB.
However, there is a second way to repair a lost storage block that requires less net-
work traffic:

— “Regenerating-code type repair:” The newcomer node downloads from each of the
three remaining nodes a repair block of the size of one storage fragment. Assume N1

has failed; The newcomer downloads fragment o3 from N2, fragment o1 − o3 from N3,
and fragment o2+ o3 from N4 to reconstruct the two fragments o1, o2. Sometimes, the
newcomer node does not download simply one of the fragments stored on a remaining
node, but a fragment that is a linear combination of the two fragments stored on that
node: Lets assume that node N4 has failed. In this case the newcomer node downloads
o2 from N1, o3 from N2 and (o1 − o3)− (o2 − o4) from N3.
In both cases, the total repair traffic will be 3 · Sfrag = 1.5 · SSB, which constitutes
a reduction in repair traffic of 25%. While the reduction of the repair traffic in this
example is quite modest, there are other cases where Regenerating Codes reduce the
repair traffic by one order of magnitude or more [Dimakis et al. 2010].

Fig. 2. Example for Regenerating Code

2.1.2. Repair types for Regenerating Codes. Regenerating Codes allow for two different
repair types called functional repair and exact repair. In both cases, we can choose
any d > k alive blocks to repair the lost block. [Dimakis et al. 2010] maps the repair
process onto an Information Flow Graph and casts the problem of reducing the
repair traffic into finding the minimum cut of the Information Flow. In doing so, the
repaired data just need to maintain the MDS property, i.e. any k out of k + h blocks
allow to reconstruct the original data, without requiring the lost block to be replaced by
exactly the same, in the sense of being identical in every bit. This kind of repair can be
regarded as functional repair. However, functional repair has several disadvantages
[Suh and Ramchandran 2010]: (i) it can not efficiently support the applications that
frequently access the original data. (ii) its computational complexity of encoding-and-
decoding is very high.

To address these issues, several authors [Wu and Dimakis 2009; Rashmi et al. 2009;
Suh and Ramchandran 2010] have proposed Exact Regenerating Codes that can
exactly regenerate back a lost block, which can be considered as an exact repair. In
our work, we first propose the exact repair for Hierarchical Codes and then transform
exact Hierarchical Codes into ER-Hierarchical Codes by applying the Regenerating
Codes to the minimum group of Hierarchical Codes.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Zhen Huang et al.

2.1.3. Optimal Regenerating Codes. There are two optimal instances of Regenerating
Codes: Minimum-Bandwidth Regenerating (MBR) and Minimum-Storage Re-
generating (MSR) [Dimakis et al. 2010].

MBR uses more storage space on every node than Reed-Solomon Codes, but mini-

mizes the repair traffic for repairing one block, which is S
(MBR)
SB = dS

(MBR)
RB =

2dSfile

2kd−k2+k
.

In the process to repair one block, d nodes upload SRB , the total repair block size

V
(MBR)
rp = dS

(MBR)
RB . Then we can obtain V

(MBR)
rp = S

(MBR)
SB . The repair degree is d, with

d > k.
In this paper, we focus on MSR that can reduce the repair traffic without requiring

more storage than Reed-Solomon Codes, and we apply one coding scheme proposed in
[Rashmi et al. 2009] called EMSR. The repair degree of MSR is d = k + α − 1 and

the repair traffic is V
(MSR)
rp =

dSfile

k(d−k+1) . As α increases, d increases but V
(MSR)
rp will

decrease. For α = 2 we get d = k + 1 and V
(MSR)
rp =

Sfile(k+1)
2k . This means that for large

k, the repair traffic will be about half of the repair traffic of Reed-Solomon Codes. See
Fig. 2 for an example of a MSR code.

2.2. Hierarchical Codes

Hierarchical Codes have been explicitly designed for storage systems and aim to reduce
the repair traffic [Duminuco and Biersack 2009].

2.2.1. Hierarchical Codes with functional repair. Hierarchical codes reduce the repair de-
gree d, which in most cases will be much smaller than the number of original blocks k.
This is possible since most parity blocks are a linear combination of only a few original
blocks. However, the price to pay is that not all parity blocks are “equally useful” in
reparing a lost block and that not all subsets of k blocks allow to reconstruct the origi-
nal blocks. Hierarchical codes partition the original blocks into groups and define an
iterative generation rule on how to combine the original blocks of one or more groups
to produce the parity blocks. When the parities are generated for the first time, a hier-
archical code-(k, h) is a systematic code with k + h parity blocks, where k parity blocks
are original blocks and h parity blocks are linear combinations of the original blocks. A
general instance of a Hierarchical Code can be generated through its code graph built
according to the following generation rule:

(1) Choose two parameters k0 and h0 and build a code-(k0, h0) using Eq. (1) with the
coefficients ci,j chosen randomly in GF (2q). If we set k0=2 and h0=1 we obtain the
code graph in Fig. 3(a). The generated blocks constitute a group denoted as Gd0,1,
where d0=k0 is the degree used to generate the blocks and is called the combina-
tion degree. In Fig. 3(a), d0=2.

(2) Choose two parameters g1 and h1. Replicate the group structure Gd0,1 g1 times
to obtain g1 groups denoted as Gd0,1 . . .Gd0,g1 . Then add other h1 encoded blocks,
obtained combining (with random coefficients) all the existing g1k0 original blocks.
This corresponds to a combination degree d1=g1k0=g1d0. If we set g1=2 and h1=2
we obtain the code graph in Fig. 3(b). All the blocks constitute a group denoted
as Gd1,1, which corresponds to a hierarchical code-(d1, H1), where H1=g1h0+h1. The
example in Fig. 3(b) is a hierarchical code-(4, 4).

(3) The previous step can be repeated multiple times, adding levels to the code. In step
l, choose two parameters gl and hl. Replicate gl times the structure of the group
Gdl−1,1. Then add other hl encoded blocks, obtained combining all the existing orig-
inal blocks, which corresponds to a degree dl=gldl−1. All the blocks constitute a
group denoted as Gdl,1, which corresponds to a hierarchical code-(dl, Hl), where
Hl = glHl−1+hl.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:7

���

(a) HC-(2,1)

�

�

�

�

�

�

�

�

�

�

�

���

���

���

	

(b) HC-(4,4)

Fig. 3. Code Graphs for Hierarchical Codes.

After L steps, we get the code HC-(dL, HL). From the iterative generation rule, we
obtain the following recurrence relations that allow us to compute (dL, HL):

{

dl = gldl−1, ∀l ∈ [1, L]
Hl = glHl−1 + hl, ∀l ∈ [1, L], H0 = h0

(2)

Solving Eq. (2), we can obtain k and h:

k = dL = (
L
∏

l=1

gl)d0 (3)

h = HL

= gLHL−1 + hL

= gL(gL−1HL−2 + hL−1) + hL

= gLgL−1HL−2 + gLhL−1 + hL

= ...

(H0=h0)
=

L−1
∑

l=0

(

L
∏

i=l+1

gi)hl + hL (4)

Given the HC is constructed as outlined above, [Duminuco and Biersack 2009] have
established the following Rules for reconstructing the original blocks and for repar-
ing a lost block. Since a graph consists of nodes and edges and since each node will
store a single block, we will use in the rest of the paper the terms of block and node
interchangeably.
Reconstruction Condition [Duminuco and Biersack 2009]:

PROPOSITION 1. Consider P k, a set of k nodes in the code graph of a hierarchical
code-(k,h). If the nodes in P k are chosen fulfilling the following condition:

|Gd,i ∩ P k| ≤ d ∀Gd,i belonging to the code (5)

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Zhen Huang et al.

which means that in P k there can be a maximum of d nodes chosen from any group
Gd,i, Then the nodes in P k are sufficient to reconstruct the original nodes.

Repair Condition [Duminuco and Biersack 2009]:

PROPOSITION 2. Consider an Information Flow Graph of a hierarchical code at
time step t. Consider a node p that must be repaired at time step t. Denote as G(p) the
hierarchy of groups that contains p and as R(p) the set of nodes in Pt−1 that have been
combined to repair p. If ∀t and ∀p, R(p) fulfills the following conditions:

|Gd,i ∩R(p)| ≤ d ∀Gd,i belonging to the code (6)

and

∃ Gd,i ∈ G(p) : R(p) ⊆ Gd,i, |R(p)| = d (7)

Then the code does not degrade, i.e. preserves the properties of the code graph ex-
pressed in Proposition 1.

Low repair degree: Let us illustrate the use of the repair condition to repair the loss
of a single block for the HC-(4,4) in Fig. 3(b)

— Repair of block p3 in Group G2,1: Select d0 = 2 blocks p1 and p2 and combine them
using randomly chosen coefficients2 from GF (2q). Independent of the size of k and
h, the repair degree of any block in Group G2,i is 2 as long as the other two blocks in
G2,i are available.

— Repair of block p8 in Group G4,1: Select d1 = 4 blocks, such as p1, p2, p4, p5, or
p1, p2, p7, p5 or p2, p7, p4, p5 and combine them using randomly chosen coefficients
from GF (2q). In this case, condition (6) tells us not to take more than 2 blocks from
G2,1 or G2,2.

Thanks to Proposition 2, a block stored on the failed node can be repaired by dl
blocks in Group Gdl,i. The selection of blocks from a Group depends on the state of the
storage nodes in the system. From the Eq. (2), we see that d0 < d1 < ... < dL = k.
So the repair degree d is typically much lower than k and only the hL parity blocks in
the highest level need dL = k blocks to repair. Conversely, because of the iterative code
construction, many blocks are in the lowest level: Let N0 denote the total number of
the blocks in level 0. We can calculate N0 as:

N0 = (
L
∏

l=1

gl)(d0 + h0)

(Eq. (3))
=

k

d0
(d0 + h0)

(h0≥1)

≥ k +
k

d0
(8)

If we take an existing peer-to-peer backup system such as Wuala [Wuala 2010],
where k is set to a large value such as k = 100 and we design a hierarchical code
using Eq. (2) with d0 = 5 and k = dL = 100, there are at least 120 blocks at level 0 (see
Eq. (8)). In the best case, we need only d0 = 5 blocks to repair a lost block, instead of
k = 100 as for classical erasure codes.

2Since we do functional repair, the newly generated block that replaces p3 is not bit-by-bit identical with p3.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:9

3. METRICS TO EVALUATE REDUNDANCY SCHEMES

Many metrics are possible to compare the different codes. We will select metrics that
allow to evaluate and compare the different codes with respect to our design objectives.

3.1. Storage Space and Network Traffic

A node that stores one block of backup data will consume SSB = αSfrag of space. With
the rapid increase in disk capacity [HardDriver 2010], the storage capacity may not be
the bottleneck of P2P backup systems if we use erasure codes for redundancy. But this
does not mean that we can use all the available disk space of the nodes to store backup
data. The volume of repair traffic is a function of the amount of data stored at each
node and the nodes only support a limited amount of network traffic for repairing lost
blocks.

In P2P backup systems, network traffic results from data transfers that occur at the
following occasions:

— Insert: In this phase, the file owner encodes the file to add redundancy. The encoded
data is distributed across n nodes. Every node stores one block of size of SSB , which
implies that the insert traffic is Vfi = nSSB .

— Reconstruction: When the owner loses the original file he contacts the backup
system to recover the original data. In this case, the user needs to download enough
data from k alive storage peers to rebuild the original file. By downloading k parity
blocks stored in the backup system, user can reconstruct the original file, resulting
in a reconstruction traffic of Vrc = kSSB .

— Maintenance: If d alive storage peers are involved in the repair process and every
peer uploads SRB data, then the total repair traffic is Vrp = dSRB . Compared to the
insert operation, which occurs only once at the beginning, the of repair lost blocks
can occur frequently because of churn.

3.2. Repair degree

The repair degree d is an important parameter for the repair process. It is important
to keep d small: (i) The larger the repair degree, the more peers are involved in the
repair process and the longer time it takes to complete one repair. As discussed in
[Pamies-Juarez et al. 2010], when the repair degree d is much larger than k, the re-
pair time increases quickly. (ii) In many cases, a smaller repair degree also allows to
support more concurrent node failures while still being able to repair the lost blocks.
Conversely, when the repair degree is d = k + h− 1, the failure of more than one node,
will make it impossible to directly repair the lost blocks. Instead, one first needs to
reconstruct the original blocks. Depending on the code that is used, reconstruction can
result in a higher network traffic, namely Vrc = kSSB instead of Vrp = dSRB . (iii) When
the repair degree increases, the computational cost of encoding and decoding increases
quickly [Duminuco and Biersack 2009]. (iv) The larger the number of nodes involved
in the repair process, the higher the chance that one or more nodes involved fail during
the repair, which further increases the complexity of the repair process and the total
repair time [Zhang et al. 2010; Chun et al. 2008].

Different codes impose different constraints on the repair degree:

— d = k is the repair degree for Reed-Solomon Codes.
— d ≤ k is the repair degree for Hierarchical Codes. In fact, for most of the block

repairs, the repair degree will be much smaller than k.
— d ∈ [k + 1, k + h− 1] is the repair degree for Regenerating Codes. As mentioned in

section 2.1, we will use EMSR, which does exact repair with a minimum repair
degree of d = k + 1.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Zhen Huang et al.

3.3. Reliability

There are many ways to lose data, such as disk errors, node crashes, or nodes leaving
the system. However, loss of some blocks must not impact the capability of the backup
system to reconstruct the original data. Therefore, a very high reliability is the design
objective for all the backup systems. As stated in [Duminuco and Biersack 2009], one
of the most important threats for reliability of a P2P backup system is concurrent block
losses. When the number of concurrently lost blocks increases, the system may lose the
ability to reconstruct the original data using the remaining alive blocks. So reliability
is defined as 1−P (failure|Nl), where P (failure|Nl) is the probability of data loss (failure)
given that Nl concurrent losses will occur.

4. EXACT HIERARCHICAL CODES

Hierarchical Codes as defined in [Duminuco and Biersack 2009] do functional repair.
We now show how to do exact repair for Hierarchical Codes, which means that lost
blocks will be regenerated by their exact replica. As a consequence, blocks do not
change over time and we just need to focus on the properties of the code graph when it
was first generated. We call the resulting code Exact Hierarchical Code.

In the following we explain how to do repair for Exact Hierarchical Codes and state
the advantages that exact repair brings to Hierarchical Codes.

Exact Repair for Hierarchical Codes: The repair condition for exact repair is
similar to the one for functional repair, which was stated in Proposition 2. To do exact
repair of a lost block p in Group Gd,i, we first need to find a group Gdl,j with Gd,i ⊆ Gdl,j

for which a set P dl of dl parity blocks is available that meets the following generic
selection rule for Exact Hierarchical Codes:

PROPOSITION 3. EHC-type repair: ∀l ∈ [0, L], consider P dl , a set of dl nodes in the
Group Gdl,i.

If the nodes in P dl are chosen fulfilling the following condition:

∀Gdm,j ⊆ Gdl,i, |Gdm,j ∩ P dl | ≤ dm (9)

which means that in P dl there can be a maximum of dm nodes chosen from any group
Gdm,j,

Then the nodes in P dl are sufficient to repair any one node in Gdl,i.

PROOF. According to the generation rule for Hierarchical Codes, the Group Gdl,i can
be mapped onto a subgraph of HC-(dl, Hl), whose parity blocks are linear combinations
of dl original blocks. Thanks to the Proposition 1, the nodes in P dl are sufficient to
reconstruct all the original blocks in HC-(dl, Hl). It means that all the original blocks
in Gdl,i can be reconstructed. Then any one block in Gdl,i can be exactly repaired by
linearly combing the dl original blocks. So Proposition 3 holds.

Given we have a set P dl of parity blocks that were selected according to Proposition
3, we can now repair the lost block p performing exact repair in two steps:

— Use the parity blocks in P dl to decode the dl original blocks of Gdl,j : The coefficient
vectors of the dl parity blocks build an invertible matrix M that is used to decode
the dl original blocks.

— Then linearly combine the original blocks to exactly repair the failed block p. This
way, the problem of repairing a parity block p is cast into that of repairing all the
original blocks p connects to.

Exact repair brings two advantages for the applications: (i) it maintains the original
blocks in the system over time, which can improve the read efficiency and get rid of

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:11

the computational cost for decoding. (ii) it allows the data reconstruction of different
blocks to be distributed and parallelized. For instance in Fig. 3(b), we can use G2,1

to reconstruct the original blocks o1 and o2, and concurrently use G2,2 to reconstruct
the original blocks o3 and o4. This can not only save the reconstruction time but also
distribute the computational overhead.

5. ER-HIERARCHICAL CODES

To explain how ER-Hierarchical Codes work, we proceed in two steps: We first
show through an example how a Hierarchical Code can be transformed into an ER-
Hierarchical Code and we prove two proposition for ER-Hierarchical Codes concerning
code construction and blocks repair. To describe the different coding operations in a
precise yet succinct way, we use notion from linear algebra such as matrices and vec-
tors

Ok×1 Vector of original blocks
Pn×1 Vector of parity blocks
Cn×k Coefficient matrix.

If we have a HC-(dL, HL) with k = dL, h = HL, n = k + h, then we can express the
generation of the parities as a linear combination of the original blocks:







p1
...
pn






=







c11 . . . c1k
...

. . .
...

cn1 . . . cnk













o1
...
ok






(10)

We use the same formalism for ER-Hierarchical Codes to emphasize the similarities
and differences with respect to Hierarchical Codes. We will introduce ER-Hierarchical
Codes by describing how to convert a Hierarchical code into an ER-Hierarchical Code
and then show how to perform repair.

5.1. Deriving ER-Hierarchical Codes from Hierarchical Cod es

Assume we have a HC-(dL, HL) with a vector O of original blocks, a coefficient matrix
C, and the resulting parity block vector P , with P = CO.

ER-Hierarchical Codes combine concepts of Hierarchical Codes and of Regenerating
Codes, namely that most parity blocks are linear combinations of only a small subset
of all original blocks (c.f. Fig. 3) and that a storage block consists of α fragments, while
a repair block has only β, fragments, with , β < α (c.f. Fig. 1).

If we want to transform a Hierarchical Code into an ER-Hierarchical code, we first
need to partition each original block oi ∈ O into α fragments. For the rest of this article,
we use in our examples α = 2. All the propositions we prove are valid for any value
of α. In practice, however, one should use small values for α to keep the repair degree
low, which is defined as dr = dl + α − 1. If we set α to a large value, we may obtain a
repair degree dr, with dr > dl + hl, which means that there are not enough nodes in a
group to use regenerating codes for repair. Conversely, for α = 2, we can do the repair
using Regenerating Codes in a small group, which means a low repair degree and a
less repair traffic.

To describe the coding and decoding operations for ERHC, the vectors of blocks used
in HC need to be replaced by matrices of fragments. We also need an additional coeffi-
cient matrix:

Ok×2 Matrix of original fragments
Pn×2 Matrix of parity fragments

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Zhen Huang et al.

Cn×k Coefficient matrix
Un×k Coefficient matrix. The coefficients uij take arbitrary values in GF (2q).

The transformation of original fragments into parity fragments is defined in Eq. (11)
and Eq. (12). We note the close resemblance between Eq. (10) and Eq. (11). In Eq. (11)
the first parity fragment of each parity block is generated using only the first parity
fragment of each original block. The coefficients cij (i ∈ {1, ..., n}, j ∈ {1, ..., k}) used in
Eq. (11) are identical to the ones used in Eq. (10) for HC-(dL, HL). On the other hand,
the second parity fragment of each parity block is generated using both, the first and
second fragment of an original block (see Eq. (12)).







p11
...

pn1






=







c11 . . . c1k
...

. . .
...

cn1 . . . cnk













o11
...

ok1






(11)







p12
...

pn2






=







u11 . . . u1k

...
. . .

...
un1 . . . unk













o11
...

ok1






+







c11 . . . c1k
...

. . .
...

cn1 . . . cnk













o12
...

ok2






(12)

If we define Pi = (p1,i, ..., pn,i)
T and Oi = (o1,i, ..., on,i)

T , (i ∈ {1, 2}), where the su-
perscript T denotes the transpose of a vector, we can express Eq. (11) and Eq. (12) as
Eq. (13), which is a variant of EMSR proposed in [Rashmi et al. 2009]. The area of
regenerating codes is rapidly evolving and frequently new codes are developed. The
code we use is an EMSR code, however other MSR codes such as Product-Matrix Con-
struction [Rashmi et al. 2010] could also be used in combination with HC.

{

P1 = CO1

P2 = UO1 + CO2
(13)

5.2. An Example

In Fig. 4 we see an ERHC-(4,4,2) code that was derived from the HC-(4,4) code of
Fig. 3(b) The original blocks oi in Fig. 4 are split into two fragments (oi1, oi2), i ∈ {1...4},
and the parity blocks pj are replaced by fragments pairs (pj1, pj2), j ∈ {1...8}).

If the parity blocks in the HC-(4,4) depicted in Fig. 3(b) can be computed as





















p1
p2
p3
p4
p5
p6
p7
p8





















=





















1 0 0 0
0 1 0 0
c31 c32 0 0
0 0 1 0
0 0 0 1
0 0 c63 c64
c71 c72 c73 c74
c81 c82 c83 c84



























o1
o2
o3
o4






(14)

then the parity fragments of the ERHC-(4,4,2) (c.f. Fig. 4) can be computed as shown
in Eq. (15) and Eq. (16). When the parity fragments are first generated, the coefficients
of the matrix U in Eq. (16) can take arbitrary values. However, whenever a repair of a

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:13

���

���

���

���

���

���

������

���

���

���

���

���

���

���

���

�	�

�	�

�
�

�
�

���

���

���

���

���

���

������

������

Fig. 4. ER-Hierarchical Codes-(4,4,2)

parity fragment is performed the matrix U must be updated (see appendix A.4)





















p11
p21
p31
p41
p51
p61
p71
p81





















=





















1 0 0 0
0 1 0 0
c31 c32 0 0
0 0 1 0
0 0 0 1
0 0 c63 c64
c71 c72 c73 c74
c81 c82 c83 c84



























o11
o21
o31
o41






(15)

and




















p12
p22
p32
p42
p52
p62
p72
p82





















=





















0 0 0 0
0 0 0 0
u31 u32 0 0
0 0 0 0
0 0 0 0
0 0 u63 u64

u71 u72 u73 u74

u81 u82 u83 u84



























o11
o21
o31
o41






+





















1 0 0 0
0 1 0 0
c31 c32 0 0
0 0 1 0
0 0 0 1
0 0 c63 c64
c71 c72 c73 c74
c81 c82 c83 c84



























o12
o22
o32
o42






(16)

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Zhen Huang et al.

Having defined how to generate the parity fragments of an ERHC, we can now focus
on reconstruction and repair. Again, we will insist on the similarities and differences
between HC and ERHC for each of these operations.

5.2.1. Reconstruction the original data:. Suppose original data of HC-(4,4) in Fig. 3(b) is
reconstructed using the parity nodes p1, p3, p6 and p7. In ERHC-(4,4), we also choose
these 4 nodes and reconstruct the original data using the parity fragments (p11, p12),
(p31, p32), (p61, p62) and (p71, p72) as follows:

— Select the first parity fragments p11, p31, p61 and p71 to decode the first original
fragments o11, o21, o31 and o61.







o11
o21
o31
o41






=







1 0 0 0
c31 c32 0 0
0 0 c63 c64
c71 c72 c73 c74







−1 





p11
p31
p61
p71






(17)

— Subtract the first original fragments o11, o21, o31 and o41 from p12, p32, p62 and p72.
To obtain o12, o22, o32 and o42, invert the sub-matrix of C as in Eq. (17).







o12
o22
o32
o42






=







1 0 0 0
c31 c32 0 0
0 0 c63 c64
c71 c72 c73 c74







−1 





p12
p32

p62 − u63o31 − u64o41
p72 − u71o11 − u72o21 − u73o31 − u74o41






(18)

5.2.2. Repair of a lost block:. Suppose the parity block p8 is lost. In HC-(4,4) of Fig. 3(b)
p8 can be repaired using p1, p2, p4 and p7 that fulfill the condition (9). When (p81, p82)
is lost in ERHC-(4,4,2), we must do the repair differently (Fig. 5 depicts the repair
process), which is a RC-type repair.

(1) Select dr = 5 storage blocks from Group G4,1,2, such as (p11, p12), (p21, p22), (p41, p42),
(p51, p52) and (p71, p72). Let I = {1, 2, 4, 5, 7}.

(2) Each of the five nodes that stores a pair of parity fragments (pi1, pi2), i ∈ I , does
a linear combination of its two parity fragments using a coefficient νi, i ∈ I, whose
value was computed by the newcomer and then communicated to node i to compute
then repair fragment λi, with λi = (νi, 1)(pi1, pi2)

T = (νici + ui, ci)(O1, O2)
T , where

the ci and ui are respectively the ith row vector of matrices C and U in Eq. (13).
The repair fragment will be transmitted to the newcomer.

(3) The newcomer, does a linear combination of these five repair fragments λi to ob-
tain two new parity fragments (p81, p

′
82) that replace the lost fragments (p81, p82).

Note that p81 will be replaced by a fragment that is bit-by-bit identical with p81.
However, p82 can not be replaced by a fragment that is bit-by-bit identical. ERHC
therefore does the next best thing, namely, approximately exact repair. Approx-
imately exact repair means that, when RC-type repair is performed, the first parity
fragment stored in a node can be exactly repaired, while the second parity fragment
can only be functionally repaired, i.e. is not bit-by-bit identical. The reason for this
is quite technical and we refer to the literature for the exact details [Shah et al.
2010]. At a high level, the explanation is as follows: The problem of exact repair re-
generating codes can be expressed as an interference-alignment problem. In Fig. 2,
for instance, to repair the lost fragments (o1, o2) of node N1, we use o3, (o1− o3) and
(o2 + o3), in which o3 is the interference to get the information o1, o2. To do exact
repair, requires satisfying multiple interference-alignment conditions simultane-
ously, which turns out to be over-constrained for α < k − 2. However, for the code
presented in Fig. 2 we have 2 = α ≥ k− 2 = 0, which means we can do exact repair
of both fragments. The details of how to compute (p81, p

′
82) are given in appendix A.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:15

We can now evaluate the reduction in repair traffic due to ERHC: Suppose the block
size for HC-(4,4) is 1 MB. Block p8 is repaired by uploading four parity blocks of 1 MB
each, which makes a total repair traffic of 4 MB. For ERHC-(4,4,2) on the other hand,
there are five nodes that upload one repair fragment of size 0.5 MB each, which makes
a total repair traffic of only 2.5 MB.

Now that we have illustrated the operation of ERHC through an example, we must
formalize the process of parity generation and parity repair for ERHC.

1=2

1

p11=o11

p12=o12

p21=o21

p22=o22

1=2o11+o12

2=2o21+o22

7=o11+o21+7o31

+5o41+o12+2o22

+4o32+8o42

1

1 4=4o31+o32

5=4o41+o421

=(1,3,0,9,27)

=(1,2,-1,4,8)

p71=o11+2o21+4o31+8o41

p72=o11+o21+7o31+5o41

+o12+2o22+4o32+8o42

p41=o31

p42=o32

p51=o41

p52=o42

1

p81=o11+3o21+9o31+27o41

p’82=2o11+6o21+36o31+108o41

+o12+3o22+9o32+27o42

p81

p82

2=2

7=0

4=4

5=4

λ

λ

λ

λ

λ

ν

ν

ν

ν

ν

δ

ρ

Fig. 5. Repair of (p81, p82) in ERHC-(4,4,2)

5.3. Formalizing ER-Hierarchical Codes

Assume we have a HC-(dL, hL) that we need to convert into an ERHC-(dL, hL, α). We
first split each original block into α fragments. The following proposition defines a con-
version rule that must be respected when using the original fragments of one original
block to produce the α parity fragments that make up a parity block.

Definition 5.1. Assume we have a graph such as the one depicted in Fig. 4 that
expresses the dependencies between parity fragments and original fragments. We refer
to the nodes on the left as original nodes and on the nodes on the right as parity
nodes. If the original fragment j of node o is used to produce the parity fragment j

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Zhen Huang et al.

of node p we say that there is a connection from node p to node o, with respect to

fragment j, denoted as path
(j)
p→o.

PROPOSITION 4. Consider any parity node p in ER-Hierarchical Codes with the
connections to a set O(p) of original nodes.

If the parity node p fulfills the following condition:

∀o ∈ O(p) : ∃
α
⋃

j=1

{path(j)
p→o} such that ∀i, k

i6=k
∈ {1, ..., α} : path(i)

p→o 6= path(k)
p→o (19)

which means that there exist α disjoint paths from the parity fragments stored on node
p to the original fragments stored on node o.

Then Proposition 3, which defines how to select the nodes used to repair a lost node,
is valid for ER-Hierarchical Codes.

In order to prove Proposition 4, we need the following lemma about hierarchical codes,
which has been proven in [Duminuco and Biersack 2009].

LEMMA 1. At any time t, any possible selection of k nodes P k
t is sufficient to recon-

struct the original fragments only if the disjoint paths condition is provided at time step
t = 1 (by the code graph) and the repair degree is d ≥ k.

PROOF. Suppose dl nodes in Gdl,i,α are selected that fulfill condition (9), which
means dl disjoint paths from these nodes to the source nodes can be found according
to Lemma 1. Because of condition (19), the disjoint paths from the fragments in these
nodes to the original fragments can be found. This means, we can find dl · α disjoint
paths from the fragments in P dl to the original fragments. Then these dl · α fragments
are sufficient to reconstruct the original fragments (See the proposition 1 of [Dimakis
et al. 2010]). So Proposition 4 holds.

Using Proposition 4, we can make a statement about the reliability of ERHC:

PROPOSITION 5. The reliability of ER-Hierarchical Codes is the same as Hierar-
chical Codes.

PROOF. As mentioned in section 3, the probability 1 − P (failure |Nl) denotes the re-
liability of the code. When losses occur in ER-Hierarchical Codes, the same available
nodes can be selected as Hierarchical Codes that fulfill condition (9). Thanks to the
Proposition 3, which applies to GdL,1 and to Proposition 4, ER-Hierarchical Codes can
reconstruct all the original nodes. So Proposition 5 holds.

According to proposition 4, there is no degradation in reliability when using ER-
Hierarchical Codes as compared to Hierarchical Codes. Repair of a lost parity node
can be done according to Proposition 4 by selecting a set of nodes that fulfill the con-
dition (9). Each of these nodes then uploads α = 2 parity fragments to the newcomer
node.

However, as we have shown in the example given in section 5.2.2 (c.f. Fig. 5), we can
also repair a lost parity node by choosing a slightly larger set of nodes, each of which
uploads only β = 1 fragment to the newcomer node. How to determine this set of nodes
will be subject of proposition 6.

We first must define the notion of a minimum group.

Definition 5.2. Consider parity node p that belongs to groups Gdl1
,j,α, ..., Gdls ,j,α

. If
dl = min {dl1 , ..., dls}, then Gdl,j,α is the minimum group for node p.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:17

We can now give a selection rule for nodes, contained in the minimum group of a lost
node, that allows to repair the lost node using repair techniques from Regenerating
Codes.

PROPOSITION 6. RC-type repair: Consider a lost parity node located in the min-
imum group Gdl,i,α of ERHC-(dL, HL, α). Let P dr , with dr = dl + α − 1, be a set of dr
nodes in Gdl,i,α.

If the nodes in P dr fulfill the following condition:

|Gdm,j,α ∩ P dr | ≤ dm ∀Gdm,j,α ⊂ Gdl,i,α (20)

which means that P dr can contain a maximum of dm nodes from any subset Gdm,j,α,

Then if each node in P dr uploads β fragments, the nodes in P dr are sufficient to
repair any lost node in Gdl,i,α.

PROOF. The condition (20) implies that any dl nodes fulfill the condition (9). In this
case, any dl nodes are linearly independent and each of them is a linear combination
of dl original nodes. This is the MDS property of Regenerating Codes for the minimum
group. Then we can do repair using Exact Regenerating Codes by uploading β frag-
ments from each parity node in P dr . After the repair, the new parity node is again a
linear combination of the dl original nodes, which means that the new parity node will
remain part of the same minimum group. So Proposition 6 holds.

5.4. Reconstruction and Repair

Reconstruction can be realized as the repair of the original fragments in the highest
Group. Due to proposition 4, we can reconstruct the original fragments by selecting
nodes that fulfill condition (9). The total traffic is Vrc = dL · α · Sfrag = k · SSB = Sfile ,
which is the same as for Reed-Solomon Codes. Also ER-Hierarchical Codes allow, as do
Exact Hierarchical Codes, to distribute and parallelize the reconstruction of different
blocks.
Repair: For repair, one can choose a Group of nodes using either one of the following
two rules:

— (R1) RC-type repair: Select dr nodes that fulfill condition (20) in the minimum
group and repair by uploading β fragments from each of the dr nodes to the new-
comer. The details on how to generate the parity fragments by the newcomer were
given in section 5.2.2 and in the appendix A.

— (R2) EHC-type repair: Select dl nodes that fulfill condition (9) and are part of one
Group Gdl,i,α and upload all α fragments from each of the dl nodes to the newcomer
who will then generate α parity fragments.

Rule (R2) performs exact repair by reconstructing first all the original blocks corre-
sponding to group Gdl,i,α, which are then used to produce the lost parity block. Since
we have dr = dl + α− 1, rule (R2) has a smaller repair degree than rule (R1); however,
each of the dl nodes needs to transmit a larger amount of data to the newcomer node.

In practice, which repair rule to use depends on which nodes of a group are currently
available. For the analytical evaluation in section 6.2, we compute the repair traffic
using rule (R1). For the experimental evaluation in section 6.3, we consider both rules
and prefer rule (R1), which minimizes the repair traffic. If rule (R1) does not allow
to repair the lost block we try rule (R2). For example, if we take the ERHC-(4,2,2) of
Fig. 4, to repair any lost block in groups G2,1,2 and G2,2,2 we need to use rule (R2) since
we do not have dr = 3 blocks in the minimum group as required by rule (R1). For more
details see also section 6.3.7 and Fig. 12.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Zhen Huang et al.

6. EVALUATION

6.1. Scope of the Comparison

Many different types of regenerating codes are possible (see section 2.1.3). We carefully
considered which type of regenerating code to use in order to both, reduce the repair
bandwidth and also to allow for a meaningful comparison with existing codes such as
Reed Solomon codes or Hierarchical Codes. We choose MSR and not MBR since MSR
allows us to compare the repair bandwidth with other existing codes that all require
the same amount of storage space. However, for sake of completeness we have added a
comparison between ERHC and MBR in appendix B of the paper. For a cost analysis
of different types codes including regenerating codes, replication, and Reed Solomon
codes we refer the reader to [Pamies-Juarez and Biersack 2011]. We now evaluate
and compare ER-Hierarchical Codes with Reed Solomon codes, Hierarchical codes, and
Exact Regenerating Codes (EMSR) both, analytically and through simulation.

6.2. Analytical Evaluation

We compare the different codes using the metrics from section 3.

6.2.1. Storage. Because MSR just splits the block into α fragments stored on each
node, the storage requirement of ER-Hierarchical Codes is equal to the storage re-
quirement of Hierarchical Codes, namely SSB = αSfrag = M

k
. It is the same storage

consumption as for the traditional Reed-Solomon code.

6.2.2. Reliability. Thanks to the Proposition 5, there is no degradation in reliability as
compared to Hierarchical Codes.

6.2.3. Traffic. d(ERHC) denotes the repair degree in ER-Hierarchical Codes. When one
node fails, every node that participates in the repair will upload β fragments. So

the repair traffic in ER-Hierarchical Codes is V
(ERHC)
rp = d(ERHC)βSfrag . We want to

compare ER-Hierarchical Codes with the other erasure codes. EM-ERHC denotes the

EMSR on Hierarchical Codes. IV
(ec)
rp denotes the reduction in repair traffic due to ER-

Hierarchical Codes as compared to another code ec.

— Comparison with Reed-Solomon Codes: In Reed-Solomon Codes, one failed
block will be repaired using k = dL nodes that each upload entire blocks, i.e. all

the α fragments. So the repair traffic is V
(RS)
rp = dLαSfrag . Then we can obtain an

improvement of

IV (RS)
rp = 1− V

(ERHC)
rp

V
(RS)
rp

Eq. (3)
= 1− d(ERHC)β

(
∏L

i=1 gi)d0α
(21)

In the case of EM-ERHC, α = 2β. Suppose we use the Group in level l to do repair

in ER-Hierarchical Codes. Then the repair traffic can be improved IV (RS)
rp = 1 −

(1+dl)

2(
∏

L
i=0 gi)d0

.

— Comparison with Exact Regenerating Codes: From the repair process, we can
see that the amount of data uploaded by the nodes that participate in a repair is
the same as for both, for Exact Regenerating Codes and ER-Hierarchical Codes.
However, the repair degree is different. In ER-Hierarchical Codes, the repair degree

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:19

is dynamic and depends on the state of the Groups.

IV (ER)
rp = 1− V

(ERHC)
rp

V
(ER)
rp

= 1− d(ERHC)

d(ER)
(22)

For Exact Regenerating Codes the repair degree is constant: d(ER) = dL+1. Suppose
ER-Hierarchical Codes use nodes that are part of a Group at level l to do the repair,

then d(ERHC) = dl+1. The repair traffic can be improved by IV (ER)
rp = 1− dl+1

(
∏

L
i=0 gi)d0+1

.

— Comparison with Hierarchical Codes: In Hierarchical Codes, the exact repair
degree depends on the nodes that are available to participate in the repair. Let d(HC)

denote the repair degree for Hierarchical Codes. As for Reed-Solomon Codes, each
participating nodes uploads an entire block to the newcomer.

IV (HC)
rp = 1− V

(ERHC)
rp

V
(HC)
rp

= 1− d(ERHC)β

d(HC)α
(23)

In the case of EM-ERHC, α = 2β. And for the repair in one Group, d(ERHC) =

d(HC)+1. Then the repair traffic can be improved IV (HC)
rp = 1− d(HC)+1

2d(HC) .

To get an intuition for reduction in repair traffic, we look at two examples.

— (S1) Code-(64,64) with parameters: d0 = 8, g1 = g2 = g3 = 2, h0 = h1 = h2 = 4 and
h3 = 8.

— (S2) Code-(32,32) with parameters: d0 = 4, g1 = g2 = g3 = 2, h0 = h1 = h2 = 2, and
h3 = 4.

For all four codes, we use the same values (k, h). Note that the comparison is done for
the case of EM-ERHC where the coding scheme for Regenerating Codes is EMSR (see
section 2.1.3). Using Eq. (21)– Eq. (23), we can compute the results depicted in Fig. 6.
Compared to Hierarchical Codes, independent of the repair degree, the reduction in
repair traffic due to ER-Hierarchical Codes is around 50%. When compared to Reed-
Solomon or Regenerating codes, the reduction in repair traffic is about one order of
magnitude when the repair degree is d0 + 1, which is the case for most of the repairs
of ER-Hierarchical Codes.

6.3. Experimental Evaluation

For the analytical evaluation, we have assumed that rule (R1) is always used for re-
pair. Therefore the analytical results obtained indicates the maximum possible im-
provement. To get a more comprehensive and realistic view of the improvement due to
ERHC, we use two real peer availability traces that define the peer churn. We simulate
the repair process using these traces to obtain various metrics such as repair traffic,
number of repairs for the different codes. Before we can present the results, we need
to give a few more details about the repair process and the availability traces.

6.3.1. Repair Policy. We adopt the policy also used by Duminuco [Duminuco and Bier-
sack 2009], which is a hybrid policy that performs (i) immediate repair if there is a
danger of loosing the data and (ii) delayed repair otherwise. The repair policy assumes
the presence of an entity able to monitor the availability of the nodes and to trigger a

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Zhen Huang et al.

9 17 33 65
0

0.2

0.4

0.6

0.8

1

Repair Degree

T
ra

ffi
c

R
ed

uc
tio

n

ER−Hierarchical Codes(64,64)

Reed−Solomon Codes
Regenerating Codes
Hierarchical Codes

(a) (S1):ERHC-(64,64)

5 9 17 33
0

0.2

0.4

0.6

0.8

1

Repair Degree

T
ra

ffi
c

R
ed

uc
tio

n

ER−Hierarchical Codes(32,32)

Reed−Solomon Codes
Regenerating Codes
Hierarchical Codes

(b) (S2):ERHC-(32,32)

Fig. 6. Traffic reduction due ER-Hierarchical Codes as compared to other erasure codes

repair operation accordingly. The aim of a repair policy is to assure the data reliability
in face of data loss due to node churn. If the code used is a Reed-Solomon Code or a Re-
generating Code, the data reliability solely depends on the number of available blocks:
As long as there are at least k out of k + h blocks available, the reliability is 100 %.
Otherwise the reliability is zero

In case a Reed-Solomon Code or a Regenerating Code is used, the following repair
policy is adopted (See Fig. 7 for an illustration of the repair policy):

— Immediate repair: When a peer A disconnects and the number of available peers
Na is smaller or equal to TH: Na ≤ TH → immediately perform the repair of the
block stored on peer A.

— Delayed repair: When a peer A disconnects and Na > TH → wait for a time du-
ration To and if A is then still unavailable, perform a repair of the block stored on
A.

The threshold TH is needed to assure of the data reliability. In the case of Reed-
Solomon Codes, we set TH = k+Nl, which means that in the moment of minimum reli-
ability, i.e. in the moment of maximum risk, the system can still support Nl more losses
while maintaining 100 % reliability. Similarly, for Regenerating Codes the threshold is
TH = k +Nl + 1.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:21

k

TH

n=k+h

delayed

repair

immediate
repair

Fig. 7. Repair Policy for Reed Solomon and Regenerating Codes

In the case of Hierarchical Codes and ER-Hierarchical Codes, the situation is slightly
different since the reliability does not only depend on the number of blocks that are
available but also on which blocks are available. In this case we define reliability as
1− P (failure|Nl). and adopt the following repair policy:

— Immediate repair: When a peer A disconnects and P (failure|Nl) > 10−4 → imme-
diately perform the repair of the block stored on peer A.

— Delayed repair: When a peer A disconnects and P (failure|Nl) ≤ 10−4 → wait for
a time duration To and if A is then still unavailable, perform a repair of the block
stored on A.

As we discussed in section 3, peers leave the system concurrently and dynamically
which leads to concurrent failures. To provide high reliability, we have introduced the
parameter Nl. The two repair policies (i) for the RS and RG code and (ii) for HC and
ERHC are defined in such a way that repair will be delayed only if at least another
Nl failures can be tolerated before the data will become unavailable. This assures that
we evaluate all codes using the same guarantees in terms of data availability. The
particular values chosen for Nl and P (failure |Nl) throughout the simulations are Nl =
10 and P (failure |Nl) = 10−4 For both parameters, we have explored a wider range of
values but did not see that results were sensitive to the particular choice of value.

The timeout To is used to distinguish between transient and permanent failures,
which is very important since the transient failures occur frequently in P2P systems
and may result in unnecessary repairs. If a node has been offline for more than To and
its blocks were subject to delayed repair, than the blocks are assumed to be lost and
will be repaired. Choosing the right value for To is challenging: When To is set to a low
value, it means the delayed repair will be eager. When To is set to a large value, it
means the delayed repair will be lazy. To compare the performance of our codes and
the impact of timeout for different erasure codes, we will use different values for To. As
usually done in the literature [Druschel and Rowstron 2001; Dabek et al. 2001; Adya
et al. 2002; Kubiatowicz et al. 2000; Blake and Rodrigues 2003; Haeberlen et al. 2005;
Chun et al. 2006], we use the same timeout value for all the peers.

6.3.2. Trace Analysis. In the experiments we use two different availability traces from
Skype and PlanetLab [Godfrey 2006] as input to our simulator. We randomly place
the blocks on the online peers without optimization. To mediate the impact of place-
ment, we run the simulation 10 times with different random seeds and get the mean
of each cases as the final result for the experiments.

As discussed in [Kondo et al. 2010], the peer volatility in the Skype trace is high and
in the PlanetLab trace is low. The peer availability in the Skype trace is low and in the
PlanetLab trace is medium. We can therefore say that the Skype trace represents a

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Zhen Huang et al.

very dynamic environment and the PlanetLab traces represent a stable environment.
To help characterize these two traces, we define the following metrics:

—Np: number of peers.

—R
(i)
o : online rate of peer i, formally R

(i)
o =

T (i)
on

T
(i)
on +T

(i)
off

—Ro: average online rate, formally Ro =
∑Np

i=1 R(i)
o

Np
.

—Np{Ro>0.5}: number of peers whose online rate is larger than 50%.
— Tdur: duration time of the traces.

In these two traces, some peers exist for only one session and then abandon the system.
Since real storage systems such as Wuala [Wuala 2010] use incentive mechanism to
make peers come back, we exclude peers with only one session from the traces. After
eliminating these peers, we can compute the following metrics presented in table II.

Table II. Trace Characteristics

Trace Np Ro Np{Ro>0.5} Tdur [days]
Skype 1598 56.13% 797 30
PlanetLab 659 75.37% 560 500

6.3.3. Maximum Inter-Session Time. Inter-session time is defined as the time period

a peer k is absent from the system, i.e. ISTj(k) = t
(j+1)
on (k) − t

(j)
off (k). Then let

ISTmax (k) denote the maximum inter-session time for peer k, formally ISTmax (k) =
max∀j(ISTj(k)). If we knew for each peer its ISTmax(k) we could efficiently distin-
guish a permanent failure from transient one. To avoid any unnecessary block repairs
we would set the timeout value To for peer k to be ISTmax(k). However, in a real system
the ISTmax (k) values are not known. Therefore, to select a timeout To, we look at the
cumulative distribution function (CDF)) of the peer maximum inter-session time in the
traces denoted as F(ISTmax), which is depicted in the Fig. 8. We set the timer To to be
the value of one of the deciles of the F(ISTmax); namely for eager repair, such that
F (To) = 0.2, for slow repair, such that F (To) = 0.5 and for lazy repair, such that
F (To) = 0.8 .

To get an intuition how these three repair modes impact block availability, we do a
simple experiment for the RS(64,64) using the Skype trace to obtain the distribution of
the number of available blocks when a repair occurs, which is depicted in the Fig. 9. The
curves show that (1) The case Na ≤ TH = k+Nl = 74 occurs frequently for lazy repair
mode, which means lots of immediate repairs are triggered in this mode. Conversely,
few immediate repairs are triggered in the eager repair mode. (2) The delayed repairs
mainly occur when Na is large and many more delayed repairs occur in the eager repair
mode than the slow repair mode or lazy repair mode.

6.3.4. Metrics. In order to sufficiently study the performance of different cases, we
define the following metrics and test most of them:

—Nimrp : total number of immediate repairs using (P1) during the whole simulation.
—Ndlrp : total number of delayed repairs using (P2) during the whole simulation.
—Ntrp : total number of repairs during the whole simulation.

—Pimrp : percentage of immediate repairs, Pimrp =
Nimrp

Ntrp
.

—Pdlrp : percentage of delayed repairs, Pdlrp =
Ndlrp

Ntrp
.

— Vtrp : total repair traffic during the whole simulation, unit is Sfile .

— Varp : average traffic per repair, Varp =
Vtrp

Ntrp
, unit is Sfile .

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:23

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Peer Maximum Inter−Session Time [hours]

F
(x

)

Skype:CDF of Peer Maximum Inter−Session Time (h)

(a) Skype

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1
PlanetLab: CDF of Peer Maximum Inter−Session Time (h)

Peer Maximum Inter−Session Time [hours]

F
(x

)

(b) PlanetLab

Fig. 8. Cumulative distribution function of peer maximum inter-session time in the traces

60 70 74 80 90 100 110 120 130
0

0.05

0.1

0.15

0.2

0.25

Number of Available Blocks

fre
qu

en
cy

Reed−Solomon Code(64,64) in the Skype traces

eager repair
slow repair
lazy repair

Fig. 9. Distribution of the number of available blocks.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Zhen Huang et al.

— IV
(ec)
trp : the improvement on reducing total repair traffic by ER-Hierarchical Codes

as compared to the ec.

— IV (ec)
arp : the improvement on reducing average traffic per repair by ER-Hierarchical

Codes as compared to the ec.

The most important metrics is Vtrp as the amount of repair traffic impacts the total
amount of data that can be safely stored in the system [Rodrigues and Liskov 2005].
The other metrics are mainly useful to compare different coding schemes or to under-
stand in how the system is operating (e.g. Pimrp and Pdlrp).

6.3.5. Results and Analysis of Different Cases. Now that we have discussed the details
of simulation we can evaluate two cases (S1) a (64,64) Code and (S2) a (32,32) Code
defined in section 6.2.3. The redundancy for both codes is r = k+h

k
= 2. We also carried

out the same the experiments for r = 2.5 with a code whose structure is d0 = 4, g1 =
g2 = g3 = 2, h1 = h2 = 2, and h0 = h3 = 4. In this case the result for ERHC was even
better since more repair could be done using rule (R1).

The following tables Tab.III and Tab.IV show the results for the different erasure
codes using the two availability traces.

Table III. Skype Traces Result (the unit of traffic is Sfile)

Timeout Codes Pimrp Pdlrp Ntrp Vtrp IV
(ec)
trp Varp IV

(ec)
arp

eager ERHC(S1) 0.251 0.749 447.6 81.638 0.000 0.182 0.000
repair HC(S1) 0.257 0.743 449.9 119.250 0.315 0.265 0.312
11.29 RG(64,64) 0.161 0.839 378.3 192.106 0.575 0.508 0.641
[hours] RS(64,64) 0.145 0.855 365.8 365.800 0.777 1.000 0.818

ERHC(S2) 0.581 0.419 382.2 67.927 0.000 0.178 0.000
HC(S2) 0.578 0.422 368.5 94.862 0.284 0.258 0.309
RG(32,32) 0.314 0.686 227.7 117.408 0.421 0.516 0.655
RS(32,32) 0.292 0.708 232.0 232.000 0.707 1.000 0.822

slow ERHC(S1) 0.651 0.349 377.3 115.869 0.000 0.306 0.000
repair HC(S1) 0.657 0.343 374.8 140.315 0.174 0.374 0.182
60.49 RG(64,64) 0.523 0.477 266.5 135.332 0.144 0.508 0.397
[hours] RS(64,64) 0.504 0.496 250.1 250.100 0.537 1.000 0.694

ERHC(S2) 0.887 0.113 419.6 84.869 0.000 0.203 0.000
HC(S2) 0.890 0.110 444.7 132.150 0.358 0.297 0.318
RG(32,32) 0.737 0.263 217.5 112.148 0.243 0.516 0.607
RS(32,32) 0.706 0.294 199.2 199.200 0.574 1.000 0.797

lazy ERHC(S1) 0.864 0.136 427.0 149.683 0.000 0.352 0.000
repair HC(S1) 0.856 0.144 428.9 182.205 0.178 0.426 0.174
118.17 RG(64,64) 0.793 0.207 288.0 146.250 -0.023 0.508 0.308
[hours] RS(64,64) 0.777 0.223 272.3 272.300 0.450 1.000 0.648

ERHC(S2) 0.957 0.043 457.8 95.739 0.000 0.209 0.000
HC(S2) 0.956 0.044 471.5 145.500 0.342 0.308 0.320
RG(32,32) 0.878 0.122 249.8 128.803 0.257 0.516 0.594
RS(32,32) 0.870 0.130 226.3 226.300 0.577 1.000 0.791

From the results, we can draw the following conclusions:

— (Refer to columns To and Pdlrp):
The Timeout value impacts the delayed repairs directly (see the repair policy). For
the eager repair mode, delayed repairs occur frequently (see Fig. 9) and the percent-
age of delayed repairs is high. Conversely, the percentage of delayed repairs is low in
the lazy repair mode.

— (Refer to column Varp(M%)):
In all the repair cases, the average traffic per repair is minimized for ER-

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:25

Table IV. PlanetLab Traces Result (the unit of traffic is Sfile)

Timeout Codes Pimrp Pdlrp Ntrp Vtrp IV
(ec)
trp Varp IV

(ec)
arp

eager ERHC(S1) 0.005 0.995 433.5 54.842 0.000 0.127 0.000
repair HC(S1) 0.012 0.988 435.9 98.588 0.444 0.226 0.441
5.36 RG(64,64) 0.000 1.000 429.7 218.207 0.749 0.508 0.751
[days] RS(64,64) 0.000 1.000 429.7 429.700 0.872 1.000 0.873

ERHC(S2) 0.281 0.719 281.5 44.850 0.000 0.160 0.000
HC(S2) 0.271 0.729 284.2 68.787 0.348 0.242 0.341
RG(32,32) 0.015 0.985 213.6 110.138 0.593 0.516 0.691
RS(32,32) 0.011 0.989 213.4 213.400 0.790 1.000 0.840

slow ERHC(S1) 0.192 0.808 230.6 39.497 0.000 0.171 0.000
repair HC(S1) 0.186 0.814 227.7 59.237 0.333 0.260 0.342
17.06 RG(64,64) 0.085 0.915 204.6 103.899 0.620 0.508 0.663
[days] RS(64,64) 0.072 0.928 201.6 201.600 0.804 1.000 0.829

ERHC(S2) 0.686 0.314 258.4 48.584 0.000 0.188 0.000
HC(S2) 0.671 0.329 249.8 71.662 0.322 0.287 0.344
RG(32,32) 0.231 0.769 120.1 61.926 0.215 0.516 0.635
RS(32,32) 0.203 0.797 117.0 117.000 0.585 1.000 0.812

lazy ERHC(S1) 0.609 0.391 208.9 58.224 0.000 0.272 0.000
repair HC(S1) 0.586 0.414 196.9 67.213 0.134 0.339 0.198
57.64 RG(64,64) 0.343 0.657 130.7 66.371 0.123 0.508 0.464
[days] RS(64,64) 0.315 0.685 124.6 124.600 0.533 1.000 0.728

ERHC(S2) 0.909 0.091 311.2 62.475 0.000 0.201 0.000
HC(S2) 0.904 0.096 319.1 96.750 0.354 0.304 0.339
RG(32,32) 0.709 0.291 125.3 64.608 0.033 0.516 0.610
RS(32,32) 0.652 0.348 110.3 110.300 0.434 1.000 0.799

Hierarchical Codes. Especially in the case of eager repair mode, the average traffic
per repair is smallest as we can choose a lower repair degree.

— (Refer to columns Ntrp and Vtrp):
In most cases, ERHC requires a higher number of repairs but results in a lower total
repair traffic as compared to other erasure codes. A similar observation was previ-
ously made by Dimunuco [Duminuco and Biersack 2009] for Hierarchical Codes. In
order to provide the same high reliability as the other codes, ERHC and HC must
do more repairs but the average traffic per repair is much lower than for the other
codes so that the total repair traffic will still be lower than for the other codes.

— (Refer to column IV
(ec)
trp):

In terms of total repair traffic, ERHC performs better than other codes in all cases,
except one case of lazy repair for the Skype trace when using RG(64,64). The expla-
nation for this outlier is two-fold: (1) For lazy repair with a timeout of To = 118.17
hours, it is often not possible to achieve a low repair degree for ERHC, which leads
to the highest traffic per repair (0.352Sfile) as compared to other cases of ERHC in
the Skype traces, (2) In order to provide the same reliability as RG(64,64), ERHC
requires many more repairs.

— (Refer to column Ntrp to compare Code(64,64) with Code(32,32)):
There are twice as many nodes involved in storing the blocks of a (64,64) Code than
of a (32,32) Code. As a consequence, more node failures will occur for a (64,64) Code
and more repairs are triggered, when Regenerating Codes or Reed-Solomon Codes
are used. However, for ERHC and HC with slow or lazy repair mode, the number of
repairs for the Code (64,64) is lower than that for the Code (32,32). The reason is that
in both cases an immediate repair will be triggered whenever P (failure|Nl) > 10−4.
This implies that for the Code (32,32) the number of failures that can be tolerated
before immediate repair will be done is much smaller than for the Code (64,64).
Since a higher number of immediate repairs implies also a higher number of unnec-
essary repairs, the total number of repairs will be higher for the Code (32,32). On

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Zhen Huang et al.

the other hand, in the case of eager repair mode, the Code (32,32) performs better
than the Code (64,64).

— (Refer to column Vtrp to compare the repair mode:) For RG and RS, the traffic for
each repair is the same. So the total repair traffic depends only on the number of re-
pairs. As discussed in [Blake and Rodrigues 2003; Haeberlen et al. 2005; Duminuco
2009], slow or lazy repair can perform better than eager repair in terms of total re-
pair traffic because they can avoid more useless repairs triggered by transient node
failures. ERHC or HC achieve good performances in all the repair modes. The per-
formance under the lazy repair mode is the worse compared to eager or slow repair
mode: As there are fewer nodes available, the repair degree increases and the more
costly EHC-type repairs need to be done. To select the best repair mode for each
code, we can consult Tab.V.

Table V. Best repair mode for the different codes

Codes Skype PlanetLab
ERHC(S1)/HC(S1) eager slow
ERHC(S2)/HC(S2) eager eager
RG/RS slow lazy

6.3.6. Impact of timeout. To further study the impact of timeout To on different codes,
we define the variance of total repair traffic as using erasure code EC, which is denoted
as var(EC). To make sense the statical analysis of variance, we repeat the simulation
again with the timeout to be set to all the deciles of the CDF of the peer maximum inter-
session time (F (To) =

i
10). And then we get the result of total repair traffic depicted in

Fig. 10 and Fig. 11. In doing so, we get the var(EC) as follows. Let xi = V
(F (To)=

i
10)

trp ,

then the mean is x =
∑10

i=1 xi

10 . So var(EC) =
∑10

i=1 (xi−x)2

10 . From the results shown in
Tab.VI, we can conclude that the impact of the choice of the timeout value in the case
of ER-Hierarchical Codes is less than for other erasure codes (except one case of Code
(64,64) as compared to HC), which indicates that the performance of ER-Hierarchical
Codes is less sensitive to the choice of To than the other codes.

Table VI. Variance of Total Repair Traffic

Trace (k, h) ERHC HC RG RS
Skype (64, 64) 1517.35 1164.60 2614.42 10088.93
Skype (32, 32) 214.59 377.92 449.56 1327.85
PlanetLab (64, 64) 783.01 1673.03 9692.94 38698.98
PlanetLab (32, 32) 235.35 495.16 1670.63 6686.53

6.3.7. Repair type and repair degree. Both, the repair type and the repair degree have an
influence on the repair traffic: (i) RC-type repair results in less traffic than EHC-type
repair and (ii) the lower the repair degree the lower the repair traffic.

In Fig. 12 we see percentage of RC-type repair as a function of the timeout value
used for delayed repair: In case of very small timeout values, RC-type repair is done
more than 70% of the time, while this value drops for very large timeout values to
30% to 40%. The larger the timeout, the longer a repair will be deferred and the lower
the chances that a enough nodes are available to provide the number of repair blocks
needed for RC-type repair. In case RC-type repair is done, the repair traffic is mini-
mal if repair can be done at the lowest level. Given RC-type repair is applied, then
PllR1 denotes the percentage of the RC-type repairs that are done in the lowest level.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:27

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

F(T
o
):T

o
 is the decile of CDF of peers maximum inter−session time

T
ot

al
 T

ra
ffi

c
(S

fil
e)

Skype−Code(64,64)

ER−Hierarchical Codes
Hierarchical Codes
Regenerating Codes
Reed−Solomon Codes

(a) Code-(64, 64)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350 Skype−Code(32,32)

F(T
o
):T

o
 is the decile of CDF of peers maximum inter−session time

T
ot

al
 T

ra
ffi

c
(S

fil
e)

ER−Hierarchical Codes
Hierarchical Codes
Regenerating Codes
Reed−Solomon Codes

(b) Code-(32, 32)

Fig. 10. Total repair traffic Vtrp in the Skype traces

The curves for PllR1 in Fig. 13 show a similar trend the ones in Fig. 12, namely the
percentage of RC-type repairs at lowest level decreases with increasing timeout value
To.

In Fig. 14 we see that, independent of the timeout value To, only a small fraction
of repairs are done at the highest level. On the other hand, in many cases the repair
can be done at the lowest level. When To is small, over 70% of the repairs are done
at lowest level, which not only keeps the repair traffic small but also minimizes the
number of nodes uploading blocks to the newcomer.

6.3.8. Impact of percentage of delayed repairs. (i) Impact on average repair traffic. As
we discussed before, for ERHC or HC the eager repair mode often results in a lower
repair degree so that the average repair traffic will be low and the percentage of de-
layed repairs will be high. To better understand the correlation between the number of
delayed repairs and the average traffic per repair, we look at the relation between per-
centage of delayed repairs and the average repair traffic, which is shown in Fig. 15(a).
We can see that the average repair traffic almost linearly decreases as the percentage

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Zhen Huang et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

F(T
o
):T

o
 is the decile of CDF of peers maximum inter−session time

T
ot

al
 T

ra
ffi

c
(S

fil
e)

PlanetLab−Code(64,64)

ER−Hierarchical Codes
Hierarchical Codes
Regenerating Codes
Reed−Solomon Codes

(a) Code-(64, 64)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400
PlanetLab−Code(32,32)

F(T
o
):T

o
 is the decile of CDF of peers maximum inter−session time

T
ot

al
 T

ra
ffi

c
(S

fil
e)

ER−Hierarchical Codes
Hierarchical Codes
Regenerating Codes
Reed−Solomon Codes

(b) Code-(32, 32)

Fig. 11. Total repair traffic Vtrp in PlanetLab traces

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

F(T
o
):T

o
 is the decile of CDF of peers maximum inter−session time

P
R

1
rp

 (
%

)

percentage of the RC−type repairs

Skype−ERHC(S1)
Skype−ERHC(S2)
PlanetLab−ERHC(S1)
PlanetLab−ERHC(S2)

Fig. 12. Percentage of the RC-type repairs.

of delayed repairs increases. To confirm that linear relation, we compute the correla-

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:29

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

80

F(T
o
):T

o
 is the decile of CDF of peers maximum inter−session time

P
llR

1
 (

%
)

percentage of the RC−type repairs that are done in the lowest level

Skype−ERHC(S1)
Skype−ERHC(S2)
PlanetLab−ERHC(S1)
PlanetLab−ERHC(S2)

Fig. 13. Percentage of the RC-type repairs done at the lowest level.

0 5 9 17 33 65
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Repair Degree

F
(x

)

CDF of repair degree in PlanetLab traces

ERHC(S1),F(T
0
)=0.1

ERHC(S1),F(T
0
)=1

ERHC(S2),F(T
0
)=0.1

ERHC(S2),F(T
0
)=1

Fig. 14. Distribution of the repair degree for Planetlab trace.

tion coefficient cc =
10

∑
Pdlrp(i)∗Varp(i)−

∑
Pdlrp(i)

∑
Varp(i)√

10
∑

P 2
dlrp

(i)−(
∑

Pdlrp(i))2
√

10
∑

V 2
arp(i)−(

∑
Varp(i))2

. We get |cc| > 0.95 in

all the cases for ERHC and HC. So we can conclude that Pdlrp and Varp are strongly
correlated denoted as Pdlrp ∝ Varp . This observation can be exploited in the design of
an efficient repair policy for ERHC and HC. While the choice of a suitable timeout is
very difficult, the percentage of delayed repairs is easy to observe.

As we know, the average repair traffic directly impacts the time duration of a repair.
The longer a repair takes, the higher possibility that other nodes fail, which in turn
will increase the repair time. To control the average repair traffic one can measure the
percentage of delayed repairs and adjust the timeout accordingly. We leave the optimal
control of the repair policy as future work.

(ii) Impact on total repair traffic. Since Pdlrp ∝ Varp and Pdlrp =
Ndlrp

Ntrp
and Varp =

Vtrp

Ntrp
, we can get dlrp ∝ Vtrp if Ntrp is constant. However in practice, Ntrp varies as a

function of timeout. In Fig. 15(b) we show the total repair traffic as a function of the
percentage of delayed repairs. We can see that the total repair traffic is the lowest when
the percentage of delayed repairs is in the range of [58%, 81%] for the Planetlab trace
and [40%, 75%] for the Skype trace.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Zhen Huang et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Percentage of Delayed Repairs

A
ve

ra
ge

 R
ep

ai
r

T
ra

ffi
c

(S
fil

e)

Relation of Delayed Repair With Average Repair Traffic

Skype−ERHC(S1)
Skype−HC(S1)
Skype−ERHC(S2)
Skype−HC(S2)
PlanetLab−ERHC(S1)
PlanetLab−HC(S1)
PlanetLab−ERHC(S2)
PlanetLab−HC(S2)

(a) Average repair traffic as function of delayed repairs.

0 10 20 30 40 50 60 70 80 90 100

40

60

80

100

120

140

160

180

200

220

240

Percentage Of Delayed Repairs (%)

T
ot

al
 R

ep
ai

r
T

ra
ffi

c
(S

fil
e)

Relation Of Delayed Repair With Total Repair Traffic

Skype−ERHC(S1)
Skype−HC(S1)
Skype−ERHC(S2)
Skype−HC(S2)
PlanetLab−ERHC(S1)
PlanetLab−HC(S1)
PlanetLab−ERHC(S2)
PlanetLab−HC(S2)

(b) Total repair traffic as function of delayed repairs.

Fig. 15. Impact of delayed repairs on repair traffic.

6.4. Computational Complexity

A major concern when coding is used is the computational complexity of the coding
and decoding operations. In the following, we will present a formal comparison of the
complexity of the different codes in terms of the number of elementary operations that
need to be executed.

6.4.1. Basics. All operations such as addition and multiplications are executed in a Ga-
lois Field GF(2q) where every value is represented as a sequence of q bits. The value
of q is typically 16 and the operations are performed on unsigned short integers. Every
fragment is a vector of Nfg elements of q bits in length. (i) Addition and subtraction
correspond to an XOR operation between two elements. (ii) Multiplication and division
are performed in the log-space. For example: a · b becomes exp(log a+ log b). For log and
exp all the possible values in GF(2q) are pre-computed and stored in a table, which
requires 256 KB of memory for q = 16. The operations log and exp can then be imple-

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:31

mented as value lookups in a table, which results for the division and multiplication
in 3 lookups and 1 addition.

All the operations for coding, decoding, and repair can be reduced to: (i) Linear Com-
binations and (ii) Matrix inversion. Let us analyze them in detail: (i) A linear combi-
nation of n vectors of length l consists of n · l additions and n · l multiplications and will
therefore require a total of 5nl operations. (ii) The inversion of a square (n, n) matrix
consists of n3 additions and n3 multiplications that can be implemented 5n3 operations.

The cost for matrix inversion is negligible since the number n of coefficients is much
smaller than the number Nfg of elements a fragment consists of [Duminuco 2009]. In
the following, we will therefore ignore the cost for matrix inversion.

Let us now consider the computational cost for each of the codes code:

— Reed-Solomon Code: The participating peers only send their parity block to the
newcomer. The newcomer will first multiply the parity blocks with the inverse of
the coefficient matrix to obtain all the original blocks and then linearly combine the
original blocks to create one new parity block. The decoding corresponds to k linear
combinations of k parity blocks. The length of each block is αNfgelements. The repair
cost is:

CPU(repair)
(RS)
down = CPU(decode) + CPU(combine)

= 5 · k2 · (αNfg) + 5 · k · (αNfg)

= 5k(k + 1)αNfg (24)

— Hierarchical Code: The operations executed are the same as for a Reed-Solomon
Code. However, the number of blocks is d and not k. Using Eq. (24), we get

CPU(repair)
(HC)
down = 5d(d+ 1)αNfg (25)

— Regenerating Code: Every participating peer performs one linear combination of
α parity fragments, which corresponds to:

CPU(repair)(RG)
up = 5 · α ·Nfg (26)

The newcomer performs α linear combinations of d parity fragments, which corre-
sponds to:

CPU(repair)
(RG)
down = 5 · α · d ·Nfg

= 5(k + α− 1)αNfg (27)

The last equality holds if the Regenerating code used is MSR and the repair degree
is fixed to d = k + α − 1. From Eq. (26) and Eq. (27), we see that newcomer has a
larger computational cost, so we only consider the computational cost of newcomer
in the following.

— ER-Hierarchical Code: We have two types of repair, namely EHC-type repair and
RC-type repair:
(i) EHC-type repair: the participating peers only send their parity fragments to the
newcomer who will decode the parity fragments received to first obtain dα original
fragments, which are then linearly combined the to compute α parity fragments.
Decoding requires to multiply the parity fragments by the inverse of its coefficient
matrix and corresponds to dα linear combinations of dα parity fragments.

CPU(repair)
(EHC−type)
down = CPU(decode) + CPU(combine)

= 5 · (dα)2 ·Nfg + α · 5 · (dα) ·Nfg

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Zhen Huang et al.

= 5d(d+ 1)α2Nfg (28)

(ii) RC-type repair has a cost as in Eq. (27). However, now the repair degree d varies
since it depends on the level at which the repair is performed.

CPU(repair)
(RC−type)
down = 5dαNfg (29)

If we compare Eq. (28) and Eq. (29), we see that EHC-type repair is computationally
more expensive than RC-type repair.

6.4.2. Cost Comparison. Given the repair cost for the different codes, we can now compare

them using as metric the cost ratio: R
(code)
cpu−type denotes the ratio of the repair cost of a

code code compared to the repair cost of ERHC using repair-type, where repair-type is
either EHC-type or RC-type:

R
(code)
cpu−type =

CPU(repair)
(code)
down

CPU(repair)
(ERHC−type)
down

In the following, the variables k and d play an important role: k refers to the number
of original blocks a file was decomposed and d denotes the repair degree. While k will
be fix, the value of d depends at what level of the code the repair can be performed. For
Hierarchical codes or EHC-type repair, the values for d will be in the range of d ∈ [d0, k]
and for RC-type repair the d will be in the range of d ∈ [d0+α− 1, k+α− 1], with α = 2
in our case. If we look at distribution of the values of d (c.f. Fig. 14) we see that in most
cases d ≪ k.

— Comparison of ERHC to RS:

(i) When ERHC does EHC-type repair, using Eq. (24) and Eq. (28), we get R
(RS)
cpu−hc =

k(k+1)
d(d+1)α , with k fixed and d ∈ [d0, k]. For all values d < k, the repair cost of RS will be

higher. Only in the case of d = k we have a cost ratio of R
(RS)
cpu−hc = 1

α
. Since α = 2,

the cost ERHC repair will be – in the worst case – twice the cost for RS.
(ii) When ERHC does RC-type repair, using Eq. (24) and Eq. (29), we get a cost ratio

of R
(RS)
cpu−rg = k(k+1)

d
, with k fixed and d ∈ [d0 +1, k+1]. Since the largest value of d is

d = k + 1, we obtain R
(RS)
cpu−rg ≥ k, i.e. the repair cost of RS is always at least k times

higher.

Given that the repair degree d varies, we present in Tab.VII the cost ratio R
(RS)
cpu−erhc

as function of the repair degree.

Table VII. R(RS)
cpu−erhc

as the function of repair degree for ERHC(S1).

Repair Degree 8 9 16 17 32 33 64 65

R
(RS)
cpu−erhc

28.9 462.2 7.6 244.7 1.97 126.1 0.50 64

The computational cost of ERHC(S1) is in all but one case lower than for RS.
— Comparison of ERHC to HC:

(i) When ERHC does EHC-type repair, it uses the same repair degree as HC. Using

Eq. (25) and Eq. (28), we can get a ratio of R
(HC)
cpu−hc = 1

α
, i.e. the cost of ERHC repair

will be twice the one of HC.
(ii) When ERHC does RC-type repair, using Eq. (25) and Eq. (29), we get R

(HC)
cpu−rg =

d(HC)(d(HC)+1)
d(RC−type) . Since d(RC−type) = d(HC) + 1, we get R

(HC)
cpu−rg = d(HC), with d(HC) ∈

[d0, k].

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:33

We give the cost ratios R
(HC)
cpu−erhc in Tab.VIII.

Table VIII. R(HC)
cpu−erhc

as the function of repair degree for ERHC(S1).

Repair Degree 8 9 16 17 32 33 64 65

R
(HC)
cpu−erhc

0.5 8 0.5 16 0.5 32 0.5 64

— Comparison of ERHC to RG:

(i) When ERHC does EHC-type repair, using Eq. (27) and Eq. (28), we get R
(RG)
cpu−hc =

k+α−1
d(d+1)α , with k fixed and d ∈ [d0, k]. (ii) When ERHC does RC-type repair, using

Eq. (27) and Eq. (29), we can get R
(RG)
cpu−rg = k+1

d
, with k fixed and d ∈ [d0+1, k+1]. We

give the cost ratios R
(RG)
cpu−erhc in Tab.IX. Compared to a Regenerating Code, ERHC

with EHC-type repair is computationally more expensive, while for RC-type repair
ERHC is computationally less demanding.

Table IX. R(RG)
cpu−erhc

as the function of repair degree for ERHC(S1).

Repair Degree 8 9 16 17 32 33 64 65

R
(RG)
cpu−erhc

0.45 7.2 0.12 3.8 0.03 1.97 0.008 1

6.4.3. Conclusion. All the different cost ratios are summarized in the Tab.X. We see that
when ERHC uses RC-type repair, its computational cost is lower than any of the three
other codes. When ERHC uses EHC-type repair, its computational cost is worse than
HC and RG, but better than RS, except for d = k (c.f. Tab.VII).

Table X. Computational cost ratios.

ERHC
Code EHC-type RC-type

RS k(k+1)
d(d+1)α

k(k+1)
d

HC 1
α

d(HC)

RG k+1
d(d+1)α

k+1
d

In our evaluation we have only considered the computational cost in terms of ele-
mentary operations and we did not implement the different codes to benchmark them.
However, we are confident that coding and decoding will not be the bottleneck in a
peer to peer backup system. In peer to peer environments, the available bandwidth is
typically less than 10 Mb/sec [Dischinger et al. 2007]. Given such a limited bandwidth,
any implementation that is able to encode/decode at a rate of several MB/sec will suf-
fice. For Reed Solomon codes, rates in the order of tens of MB/sec are achievable today
[Plank 2008].

We also would like to mention that the Graphics Processing Unit (GPU) available in
standard PCs can be used to execute highly parallel implementations of coding and de-
coding operations to achieve rates in the order of hundreds of MB/sec while completely
off-loading the main CPU [Shojania and Li 2009].

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 Zhen Huang et al.

7. SUMMARY

7.1. Conclusions

Reducing the repair in peer-to-peer backup systems is crucial for increasing the over-
all amount of data that can safely maintained in the system. To this purpose, we have
designed a new class of erasure codes, called ER-Hierarchical Codes, which efficiently
combine the ideas of Hierarchical Codes, namely a low repair degree and of Regenerat-
ing Codes, namely a reduced repair block size. Both ideas help reduce the repair traffic
and tolerate more concurrent failures.

We have also proposed an exact repair mode for Hierarchical Codes, which maintains
the original blocks over time and allows to parallelize the data reconstruction.

We show that ER-Hierarchical Codes can reduce the traffic per repair by up to 50%
while maintaining the same reliability as Hierarchical Codes. Compared to Regener-
ating Codes of type MSR, the reduction in repair traffic can be up to one order of mag-
nitude. Simulation experiments that use two different peer availability traces confirm
that ER-Hierarchical Codes: (1) can significantly reduce the total repair traffic as well
as the average repair traffic and that (2) the performance of ER-Hierarchical Codes
in terms of repair traffic is less sensitive to the right choice of the timeout than other
codes.

ER-Hierarchical Codes also have, on average, a much lower computational complex-
ity than Reed Solomon codes.

7.2. Future Work

The work presented here can be extended in several ways to further exploit the possi-
bilities offered by ER-Hierarchical Codes.

The hybrid repair policy used relies in case of delayed repairs on a timeout to distin-
guish between transient and permanent failures. Delayed repairs reduce the number
of unnecessary repairs and improve the overall performance of the system. While it is
difficult in practice to choose the right timeout value, it is easy to measure the percent-
age of delayed repairs. More work is needed to understand how the knowledge about
the percentage of delayed repairs can be used to adjust the timeout value in order to
minimize the repair traffic.

While hybrid repair policies help reduce unnecessary repairs, they may trigger re-
pair events in bursts, e.g. when the number of available blocks is below TH and several
concurrent losses occur. To avoid bursts of repair events, which result in an uneven
utilisation of resources such as network bandwidth, proactive repair policies [Chun
et al. 2006; Duminuco et al. 2007] have been proposed that produce new blocks at a
constant rate that must match the long term block loss rate. If proactive repair is used
with a traditional coding scheme such as Reed Solomon Codes, the repair traffic will
be high due to an increase in the number of unnecessary repairs. However, we have
seen that ERHC with eager repair minimizes the average repair traffic Varp due to a
very small repair degree and the fact that RC-type repair will be possible in most of
the cases. Combining ERHC with proactive repair should allow to even further reduce
the average repair traffic and make proactive repair very attractive.

In our evaluations, we always used α = 2. Increasing α will decrease the total repair

traffic V
(MSR)
trp but unfortunately also increases the repair degree dr. In the case of

proactive repair, an increase of dr may not be much of a problem since repairs will
be performed when the number of available nodes is high. Therefore, exploring larger
values of α in combination with proactive repair seems very promising.

The Regenerating Code used for the construction of the ER-Hierarchical Code is
a Minimum Storage Regenerating Code (MSR). If one is willing to accept a higher
storage overhead in order to further reduce the communication bandwidth needed for

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:35

repair, a Minimum Bandwidth Regenerating Code (MBR) will be attractive. However,
first the details of how to combine Hierarchical Codes with an MBR code need to be
worked out.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their numerous and very constructive comments. We
thank Alessandro Duminuco for many discussions on Hierarchical Codes and Matteo Dell’Amico for his
careful reading of an earlier version of that paper. The first author was visiting Eurecom while carrying out
the research presented in this paper. He was partly supported by the China Scholarship Council. The work
of Y. Peng was supported by the National Basic Research Program of China under Grant No.2011CB302601.

APPENDIX

A. REPAIR OF STORAGE BLOCK

The newcomer computes a new storage block (p81, p
′
82) in three steps.

A.1. Computation of the coefficients νi by newcomer

The repair fragments (p81, p
′
82) must have the following structure:

p81 = (c81, . . . , c84)(o11, . . . , o41)
T ,

p′82 = (u′
81, . . . , u

′
84)(o11, . . . , o41)

T + (c81, . . . , c84)(o12, . . . , o42)
T

Suppose we use the coefficients δi and ρi for the linear combination of repair frag-
ments λi (i ∈ I). To compute (p81, p

′
82), the newcomer node can write (p81, p

′
82) as follows:

p81 =























δ1ν1
δ2ν2
δ4ν4
δ5ν5
δ7ν7











T 









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
c71 c72 c73 c74











+











δ1
δ2
δ4
δ5
δ7











T 









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
u71 u72 u73 u74





























o11
o21
o31
o41







+











δ1
δ2
δ4
δ5
δ7











T 









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
c71 c72 c73 c74

















o12
o22
o32
o42







(30)

p′82 =























ρ1ν1
ρ2ν2
ρ4ν4
ρ5ν5
ρ7ν7











T 









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
c71 c72 c73 c74











+











ρ1
ρ2
ρ4
ρ5
ρ7











T 









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
u71 u72 u73 u74





























o11
o21
o31
o41







+











ρ1
ρ2
ρ4
ρ5
ρ7











T 









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
c71 c72 c73 c74

















o12
o22
o32
o42







(31)

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 Zhen Huang et al.

In Eq. (30) the last term must be zero, since p81 does not depend on the (o12, . . . , o42).
This allows the newcomer to compute the coefficients δi (i ∈ I), δi 6= 0 as

(δ1, δ2, δ4 δ5, δ7)











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
c71 c72 c73 c74











= (0, 0, 0, 0) (32)

And in Eq. (31), the last term must be the same coefficients as the lost one which is
(c81, c82, c83, c84). This allows the newcomer to compute the coefficients ρi (i ∈ I) as

(ρ1, ρ2, ρ4, ρ5, ρ7)











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
c71 c72 c73 c74











= (c81, c82, c83, c84) (33)

In Eq. (30) the first term must be (c81, c82, c83, c84), since p81 is repaired exactly.
Since δi 6= 0, the newcomer can now compute the coefficients νi (i ∈ I) as










δ1ν1
δ2ν2
δ4ν4
δ5ν5
δ7ν7











T 









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
c71 c72 c73 c74











+











δ1
δ2
δ4
δ5
δ7











T 









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
u71 u72 u73 u74











=







c81
c82
c83
c84







T

(34)

A.2. Computation of repair fragments by the repair nodes

The newcomer communicates to repair node i the coefficient νi, with i ∈ I .
Node i uses νi to compute the repair fragment λi as λi = (νi, 1)(pi1, pi2)

T (c.f. Fig. 5).
Node i uploads fragment λi to the newcomer.

A.3. Newcomer computes (p81, p
′
82)

Then the newcomer uses the coefficients δi, ρi computed previously to compute the two
fragments (p81, p

′
82) as,

p81 = (δ1, δ2, δ4, δ5, δ7)(λ1, λ2, λ4, λ5, λ7)
T ,

p′82 = (ρ1, ρ2, ρ4, ρ5, ρ7)(λ1, λ2, λ4, λ5, λ7)
T .

The repair is done.

A.4. Update of the matrix U

The second fragment p82 can not be exactly repaired. For this reason the coefficients
u81, u82, u83, u84 need to be updated as follows:







u′
81

u′
82

u′
83

u′
84







T

=











ρ1ν1
ρ2ν2
ρ4ν4
ρ5ν5
ρ7ν7











T 









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
c71 c72 c73 c74











+











ρ1
ρ2
ρ4
ρ5
ρ7











T 









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
u71 u72 u73 u74











(35)

We see in Eq. (35) that the evolution of the matrix U not only depends on the matrix
U itself but also on the matrix C. A closer look at this example also helps understand
why we can not do an exact repair of the second fragment: From Eq. (34) and Eq. (35),
we have only 7 variables: 5 for νi and a single one in δi and a single one ρi because
all the other δi and ρi can be expressed in terms of this one variable by Eq. (32) and

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:37

Eq. (33). However, for exact repair we must fulfill 8 equations (4 in Eq. (34) and 4 in
Eq. (35)), which is not possible. Since this set of 8 equations can not be solved, we
have a contradiction. Therefore the U matrix can not be maintained as is but must be
updated.

B. COMPARISON OF MBR AND ERHC

The focus of this paper is to compare different coding techniques that all use the same
amount of storage space for the redundant data. We did not include MBR in our com-
parison since it requires more storage space. However, MBR is interesting since it min-
imizes the repair traffic. For this reason we provide here a short comparison between
MBR and ERHC. We assume that the original file is partitioned into k blocks, each
block is then partitioned into α fragments, and the repair degree d is set to d = k+α−1,
as it was for MSR.

B.1. Storage Overhead

In case of ERHC, each node holds a storage block of size

S
(ERHC)
SB =

Sfile

k

In case of MBR, each node holds a storage block of size

S
(MBR)
SB =

2dSfile

2kd− k2 + k
=

2(k + α− 1)Sfile

k(k + 2α− 1)

In Fig. 16 we compare the storage requirements for some values for k and α. We
see that the storage overhead of MBR is about 1.7 − 1.9 higher than for ERHC and
decreases slightly with increasing α.

32 36 40 44 48 52 56 60 64
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

k

S
S

B
(S

fil
e
)

Storage Overhead in each node (d=k+α−1)

MBR(α=2)
MBR(α=3)
MBR(α=4)
MBR(α=5)
ERHC

Fig. 16. Storage overhead of MBR and ERHC, d0 = 4

B.2. Repair Traffic

For ERHC the total repair traffic is

V (ERHC)
rp =

d(ERHC)Sfile

kα
=

(d0 + α− 1)Sfile

kα

For MBR, the total repair traffic is

V (MBR)
rp =

2dSfile

2kd− k2 + k

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 Zhen Huang et al.

A comparison of the repair traffic is depicted in Fig. 17 for some values of k and d0, with
d0 being the minimal repair degree for ERHC. We see that MBR starts outperforming
ERHC in terms of repair traffic as soon as the minimal repair degree d0 takes values
larger than 2.

32 36 40 44 48 52 56 60 64
0.02

0.03

0.04

0.05

0.06

0.07

0.08

k

V
rp

 (
S

fil
e
)

Repair Traffic (α=2)

MBR,d=k+1
ERHC,d

0
=2

ERHC,d
0
=3

ERHC,d
0
=4

Fig. 17. Repair traffic of MBR and ERHC, α = 2

REFERENCES

ADYA, A., BOLOSKY, W., CASTRO, M., CERMAK, G., CHAIKEN, R., DOUCEUR, J., HOWELL, J., LORCH, J.,
THEIMER, M., AND WATTENHOFER, R. 2002. Farsite: Federated, available and reliable storage for an
incompletely trusted environment. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation. Vol. 36. 1–14.

BLAKE, C. AND RODRIGUES, R. 2003. High availability, scalable storage, dynamic peer networks: Pick two.
In Proceedings of the Usenix Workshop on Hot Topics in Operating Systems. Vol. 9. Lihue, Hawaii, 1–6.

CHUN, B.-G., DABEK, F., HAEBERLEN, A., SIT, E., WEATHERSPOON, H., KAASHOEK, M., AND KUBIA-
TOWICZ, J. 2006. Efficient Replica Maintenance for Distributed Storage Systems. In Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation.

CHUN, B.-G., DABEK, F., HAEBERLEN, A., SIT, E., WEATHERSPOON, H., M. FRANS KAASHOEK, J. K., AND

MORRIS, R. 2006. Proactive replication for data durability. In Proceedings of the USENIX International
Workshop on Peer-to-Peer Systems.

CHUN, B.-G., RATNASAMY, S., AND KOHLER, E. 2008. Netcomplex: a complexity metric for networked
system designs. In Proceedings of the USENIX Symposium on Networked Systems Design and Imple-
mentation. 393–406.

DABEK, F., KAASHOEK, M. F., KARGER, D. R., MORRIS, R., AND STOICA, I. 2001. Wide-area cooperative
storage with CFS. In Proceedings of ACM Symposium on Operating Systems Principles. 202–215.

DIMAKIS, A. G., GODFREY, P. B., WU, Y., WAINWRIGHT, M. J., AND RAMCHANDRAN, K. 2010. Network
coding for distributed storage systems. IEEE Transactions on Information Theory 56, 9, 4539–4551.

DIMAKIS, A. G., RAMCHANDRAN, K., WU, Y., AND SUH, C. 2010. A survey on network codes for distributed
storage. CoRR. http://arxiv.org/abs/1004.4438.

DISCHINGER, M., GUMMADI, K. P., HAEBERLEN, A., AND SAROIU, S. 2007. Characterizing residential
broadband networks. In Proc. of ACM Internet Measurement Conference (IMC).

DRUSCHEL, P. AND ROWSTRON, A. 2001. PAST: A large-scale, persistent peer-to-peer storage utility. In
Proceedings of USENIX Workshop on Hot Topics in Operating Systems. 75.

DUMINUCO, A. 2009. Data redundancy and maintenance for peer-to-peer file backup systems. Ph.D. thesis,
Telecom ParisTech.

DUMINUCO, A. AND BIERSACK, E. 2009. A Practical Study of Regenerating Codes for Peer-to-Peer Backup
Systems. In Proceedings of the IEEE International Conference on Distributed Computing Systems. 376–
384.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

Reducing Repair Traffic in P2P Backup Systems A:39

DUMINUCO, A., BIERSACK, E., AND EN-NAJJARY, T. 2007. Proactive Replication in Distributed Storage
Systems Using Machine Availability Estimation. In Proceedings of ACM Conference on emerging Net-
working EXperiments and Technologies.

DUMINUCO, A. AND BIERSACK, E. W. 2009. Hierarchical codes : a flexible trade-off for erasure codes. Jour-
nal of Peer-to-Peer Networks and Applications 2, 52–66.

GODFREY, B. 2006. Repository of Availability Traces. http://www.cs.berkeley.edu/ pbg/availability/.

HAEBERLEN, A., MISLOVE, A., AND DRUSCHEL, P. 2005. Glacier: Highly durable, decentralized storage
despite massive correlated failures. In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation. Vol. 2. 143–158.

HARDDRIVER. 2010. Cost of hard drive storage space. http://ns1758.ca/winch/winchest.html.

KONDO, D., JAVADI, B., IOSUP, A., AND EPEMA, D. 2010. The failure trace archive: Enabling comparative
analysis of failures in diverse distributed systems. Proceedings of IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing 0, 398–407.

KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S., EATON, P., GEELS, D., GUMMADI, R., RHEA,
S., WEATHERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B. 2000. Oceanstore: An architecture
for global-scale persistent storage. In Proceedings of the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. Vol. 35. 190–201.

LIN, W. K., CHIU, D. M., AND LEE, Y. B. 2004. Erasure Code Replication Revisited. In Proceedings of the
IEEE International Conference on Peer-to-Peer Computing. Washington, DC, USA, 90–97.

MITZENMACHER, M. 2004. Digital fountains: A survey and look forward. In IEEE Information Theory Work-
shop. 271–276.

PAMIES-JUAREZ, L. AND BIERSACK, E. 2011. Cost analysis of redundancy schemes for distributed storage
systems. CoRR. http://arxiv.org/abs/1103.2662.

PAMIES-JUAREZ, L., GARCIA-LOPEZ, P., AND SANCHEZ-ARTIGAS, M. 2010. Availability and Redundancy
in Harmony: Measuring Retrieval Times in P2P Storage Systems. In Proceedings of the IEEE Interna-
tional Conference on Peer-to-Peer Computing. 1–10.

PLANK, J. S. 2005. Erasure Codes for Storage Applications. In Proceedings of FAST 2005: USENIX Confer-
ence on File and Storage Technologies.

PLANK, J. S. 2008. A new MDS erasure code for RAID-6. In Proceedings of FAST 2008: USENIX Conference
on File and Storage Technologies.

RASHMI, K. V., SHAH, N. B., AND KUMAR, P. V. 2010. Optimal exact-regenerating codes for dis-
tributed storage at the msr and mbr points via a product-matrix construction. CoRR abs/1005.4178.
http://arxiv.org/abs/1005.4178.

RASHMI, K. V., SHAH, N. B., KUMAR, P. V., AND RAMCHANDRAN, K. 2009. Explicit construction of optimal
exact regenerating codes for distributed storage. In Proceedings of the annual Allerton conference on
Communication, control, and computing. 1243–1249.

RICHARDSON, T. AND URBANKE, R. 2008. Modern Coding Theory. Cambridge University Press, New York,
NY, USA.

RODRIGUES, R. AND LISKOV, B. 2005. High Availability in DHTs: Erasure Coding vs. Replication. In Pro-
ceedings of the USENIX International workshop on Peer-To-Peer Systems. New York.

SHAH, N. B., V., R. K., KUMAR, P. V., AND RAMACHANDRAN, K. 2010. Interference alignment in regen-
erating codes for distributed storage: Necessity and code constructions. CoRR(submitted to the IEEE
Transactions on Information Theory). http://arxiv.org/abs/1005.1634.

SHOJANIA, H. AND LI, B. 2009. Pushing the envelope: Extreme network coding on the GPU. In 29th Inter-
national Conference on Distributed Computing Systems (ICDCS).

SUH, C. AND RAMCHANDRAN, K. 2010. Exact regeneration codes for distributed storage repair us-
ing interference alignment. CoRR(to be submitted to IEEE Transactions on Information Theory).
http://arxiv.org/abs/1001.0107.

WEATHERSPOON, H. AND KUBIATOWICZ, J. D. 2002. Erasure Coding vs. Replication: A Quantitative Com-
parison. In Proceedings of the USENIX International workshop on Peer-To-Peer Systems.

WU, Y. AND DIMAKIS, A. G. 2009. Reducing repair traffic for erasure coding-based storage via interference
alignment. Proceedings of the IEEE International Symposium on Information Theory 4, 2276–2280.

WUALA. 2010. Official website. http://www.wuala.com.

ZHANG, Z., DESHPANDE, A., MA, X., THERESKA, E., AND NARAYANAN, D. 2010. Does erasure coding have
a role to play in my data center? Microsoft Research Technical Report MSR-TR-2010-52.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

