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Abstract—This work establishes the diversity-multiplexing
tradeoff (DMT) of the four-phase decode-and-forward (DF)
protocol in the half-duplex, non-separated two-way relay channel.
We consider a fading channel model where the source relay
links are Rayleigh distributed but the direct link between sources
is left more general as Nakagami-m distributed and investigate
for any possible gains in the achievable DMT using four-phase
hybrid broadcast (HBC) protocol, as compared to three-phase
time-division broadcast (TDBC) protocol.

For the statistically symmetric case of Rayleigh fading and
asymmetric fading with more stable direct link (m > 1), the
optimal DMT of the HBC protocol is computed, and is shown to
be achieved by a three-phase orthogonal variant, TDBC protocol.
The operational meaning of this result is that the multiple access
channel (MAC) phase of HBC protocol is not necessary to
achieve optimal performance, this results in a simplification of the
communication protocol. For less stable direct link ( 1

2
≤ m < 1),

the analysis establishes that the MAC phase of HBC protocol is
necessary to achieve optimal DMT.

Index Terms—Diversity-multiplexing tradeoff, Nakagami-m
fading, half duplex, decode-forward, two-way relay channels.

I. INTRODUCTION

Cooperative relays have found applications in many wireless
networks to enhance network capacity, extend radio range,
reduce terminal transmission power, provide spatial diversity
etc. While several cooperation modes involving one-way relays
have been proposed in the literature [1], [2], [3], in most prac-
tical communication scenarios data flows in both directions.
Hence, recently these scenarios are revisited under the assump-
tion that the two communication nodes exchange messages
with cooperation of an intermediate relay node employing
intelligent two-way relaying strategies. This approach has been
modeled as Two-way Relay Channels (TRC) and has attracted
significant interest [4], [5]. The fundamental advantage of TRC
over classical one-way relay channels is that the duplexing
loss due to half-duplex constraint (a node cannot transmit and
receive simultaneously) can be avoided.

The presented work deals with a TRC with an asymmetric
fading channel model, which corresponds to a very perti-
nent communication scenario where source-relay links are
statistically different from the direct link between sources.
In this setting, the source relay links are i.i.d. Rayleigh
distributed but the direct link between sources is left more
general as i.i.d. Nakagami-m (c.f. [6]) distributed (Nakagami-
m includes Rayleigh for m = 1). This channel model is called
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Fig. 1: non-separated Two-way Relay Channel model

a non-separated two-way relay channel (ns-TRC) because of
existence of direct link between sources, and is more general
than many TRC scenarios considered in previous works.

The system model considered in this paper consists of two
source nodes A and B who want to exchange information
in the presence of an assisting relay node R as shown in
Fig. 1(a). The relay employs decode-and-forward (DF) strategy
and does not have any information of its own to transmit.
Each node uses a single antenna and operates under half-
duplex constraint. Note that this system model is statistically
symmetrical with respect to the two source nodes.

Communication between nodes A and B takes place via a
four-phase protocol as shown in Fig. 1(b) with the direction of
arrow indicating the transmit/receive mode of each node. For
instance, in the first phase node A transmits while all other
nodes listen. We denote the fraction of time-slot allocated for



the ith phase with ∆i, and hence
∑

∆i = 1. The third and the
fourth phase are called multiple access channel (MAC) phase
and broadcast channel (BC) phase respectively. Note that this
is the most general scheduling possible, with the half-duplex
constraint imposed.

The relative phase durations affect both the error per-
formance as well as the achievable transmission rates. In
this paper, we use the diversity-multiplexing tradeoff (DMT),
introduced in [7], as a unified metric and compute individual
phase durations that optimize this DMT.

Throughout this paper we assume that all the channels
are frequency flat, quasi-static, and they are all independent
of each other. We assume perfect channel state information
(CSI) at the receiver (CSIR) of each link, but no CSI at the
transmitters (CSIT).

A. Prior Work

The DMT analysis of TRC has attracted significant interest
in the recent past. The work in [8], [9] considers a TRC
model with no direct link between sources (the so called
separated-TRC), and DMT analysis is presented for two differ-
ent settings, with feedback [8] and without feedback [9]. The
work in [10], [11] considers both separated and non-separated
TRC, but the analysis is restricted to an orthogonal three-
phase TDBC protocol. Optimal DMT achievable with TDBC
protocol and Rayleigh fading can be found in [10], [12]. In
this paper, we consider a more general setting viz., a non-
separated TRC with statistically asymmetric fading channels
and investigate for any possible gains in the achievable DMT
using four-phase HBC protocol, as compared to three-phase
TDBC protocol.

B. Contributions

Focusing on the high SNR regime and asymmetric fading
channel model, we analyze diversity-multiplexing tradeoff
(DMT) of a four-phase DF protocol for the ns-TRC system
model. Specifically, the contributions are:
• For m ≥ 1, which is a situation that can be interpreted

as the direct link having similar or a more stable fading
statistic compared to source-relay links, we establish the
expression for optimal DMT of four-phase HBC protocol
and show that an orthogonal three-phase TDBC protocol
achieves this optimal DMT. The practical implication of
this result is that the MAC phase of HBC protocol is not
necessary to achieve optimal performance, this results in
a simplification of the communication protocol.

• For 1
2 ≤ m < 1, the analysis establishes that the MAC

phase of HBC protocol is necessary to achieve optimal
DMT.

C. Summary

The rest of the paper is organized as follows. In section II,
we derive DMT of four-phase HBC protocol. In section III,
we establish DMT optimality of TDBC and HBC protocols
for specific cases of asymmetric fading model and finally
conclusions are made in section IV.

D. Definitions and Notations

A coding scheme is a sequence of codes C(ρ), with R(ρ)
denoting the rate of code C(ρ). In high SNR regime, this
coding scheme is said to achieve a spatial multiplexing gain
r and diversity gain d(r) if

lim
ρ→∞

R(ρ)

log ρ
= r, and − lim

ρ→∞

log(Pe)

log ρ
= d(r)

where Pe denotes probability of codeword error and ρ denotes
signal-to-noise ratio.

We use .
= to denote the exponential equality, i.e., we

write f(ρ)
.
= ρB to denote lim

ρ→∞

log f(ρ)

log ρ
= B and

.
≤,

.
≥ are similarly defined. With this notation, we can write
Pe

.
= ρ−d(r). We use {•} to denote the complement of {•}.

II. DIVERSITY-MULTIPLEXING TRADEOFF

In this section, we derive the DMT d4−ph(∆i, r) for a static
four-phase protocol with fixed phase durations. The DMT for
the optimal protocol, where the optimization is done over
phase durations that can vary with multiplexing gain r, is
presented in next section.

We are interested in the case where both source nodes
transmit with the same rate R, and also, both demand the same
DMT performance. Since the system model is symmetric with
respect to the two source nodes, there is no loss of generality
in making the two phase durations ∆1 and ∆2 equal.

To analyze the system performance for fixed phase dura-
tions, we define the average error probability Pe = P [{EA ∪
EB}], where EA and EB, defined later, denote the error events
at the receive node A and B respectively.

In order to analyze the information flow from source
node A to B, we define the following error event
EB ,{EB,1 ∪ {ER,3 ∩ EB,4}}, where

• EB,1 - occurs if B is able to decode message from A at
the end of phase 1.

• ER,3 - occurs if R is able to decode message from A and
B at the end of phase 3.

• EB,4 - occurs if B is able to decode message from A
at the end of phase 4, conditioned on the occurrence of
event ER,3.

Note that EB,1 ⊂ EB,4 . Error event corresponding to EA can
be similarly defined by interchanging A and B in the above
expressions. With these definitions, we have the upper bound

P [EB] = P [EB,1 ∪ {ER,3 ∩ EB,4}]
= P [EB,1 ∩ {ER,3 ∪ EB,4}]
= P [{EB,1 ∩ ER,3} ∪ {EB,1 ∩ EB,4}]
= P [{EB,1 ∩ ER,3} ∪ EB,4]
(f)

≤ P [{EB,1 ∩ ER,3}] + P [EB,4]

= P [EB,1]P [ER,3] + P [EB,4] (1)



where (f) follows from union bound. We also have a lower
bound,

max{P [EB,1]P [ER,3], P [EB,4]} ≤ P [EB]. (2)

Bounds corresponding to EA can be obtained similarly by
replacing B with A in the expressions (1) and (2).

Now, since

max{P [EA], P [EB]} ≤ Pe ≤ P [EA] + P [EB], (3)

if we can derive the precise optimum SNR exponents for each
of the P [EB,1], P [ER,3] and P [EB,4] defined above and also
show that P [EA]

.
= P [EB], then we have the DMT expression

for the static four phase protocol.
Toward this end, we define the outage events for information

flow from A to B. Let X(i)
J denote the transmit signal, Y (k)

J

denote the receive signal for any node J ∈ {A,B,R}, in the
i-th and the k-th phase, i, k ∈ {1, 2, 3, 4}. The outage event
OJ,k for the respective error event EJ,k is defined as:

OB,1 ,{hAB : ∆1I(X
(1)
A ;Y

(1)
B |hAB) < R} (4)

OR,3 ={OR,3,1 ∪ OR,3,2}

OR,3,1 ,
{

(hAR, hBR) : ∆1I(X
(1)
A ;Y

(1)
R |hAR)

+∆3I(X
(3)
A ;Y

(3)
R |X

(3)
B , hAR) < R

} (5)

OR,3,2 ,
{

(hAR, hBR) : ∆1I(X
(1)
A ;Y

(1)
R |hAR)

+∆2I(X
(2)
B ;Y

(2)
R |hBR)

+∆3I(X
(3)
A , X

(3)
B ;Y

(3)
R |hAR, hBR) < 2R

} (6)

OB,4 ,
{

(hAB , hRB) : ∆1I(X
(1)
A ;Y

(1)
B |hAB)

+∆4I(X
(4)
R ;Y

(4)
B |hRB) < R

}
.

(7)

Again, OB,4 ⊂ OB,1, where hJK denotes channel from
node J to node K (J,K ∈ {A,B,R}). The corresponding
events for information flow from B to A are similarly defined
by interchanging A and B in all the mutual information
expressions.

We can now prove the following result for the asymmetric
fading model:

Theorem 1: For the asymmetric fading model, the DMT
for a static four-phase protocol with fixed phase-durations
∆1,∆3,∆4 satisfying ∆1 = ∆2 and ∆1 ≥ m∆4, is

d4−ph(∆i, r) = min{(d1(r) + d2(r)), d3(r)}. (8)

where

d1(r) = m(1− r

∆1
) for 0 ≤ r ≤ ∆1, (9)

d2(r) =

{
1− r

∆1+∆3
for 0 ≤ r ≤ ∆1

1 + ∆1−2r
∆1+∆3

for ∆1 < r ≤ ∆1 + ∆3

2

(10)

d3(r) =

{
1 +m− r

∆4
for r ≤ ∆4

m(1 + ∆4−r
∆1

) for ∆4 < r ≤ ∆1 + ∆4

(11)

and

P [EB,1]
.
= P [OB,1]

.
= ρ−d1(r),

P [ER,3]
.
= P [OR,3]

.
= ρ−d2(r),

P [EB,4]
.
= P [OB,4]

.
= ρ−d3(r) (12)

Proof: (sketch) To prove (12), one can follow similar
analysis as in [7], [12], [13]. For each of the events OJ,k
and EJ,k defined above, we have

P (OJ,k) ≤ P (EJ,k) ≤ P (OJ,k) + P (EJ,k|OJ,k). (13)

Then, for sufficiently long, independent random Gaus-
sian encoding at every transmitter, joint maximum-likelihood
decode-and-forward relaying at the relay node, we show that

P [EB,1|OB,1]
.
= P [OB,1]

.
= ρ−d1(r), (14)

P [ER,3|OR,3]
.
= P [OR,3]

.
= ρ−d2(r), (15)

P [EB,4|OB,4]
.
= P [OB,4]

.
= ρ−d3(r). (16)

In particular, (14) follows from DMT for single antenna point-
to-point transmission [7], (15) follows from the DMT for MAC
[13] and (16) follows from the DMT for parallel channels [12].
These along with (13) gives

P [EB]
.
= ρ−min{(d1(r)+d2(r)),d3(r)}, (17)

where, (17) follows from (1), (2) and Varadhan’s
lemma [14]. Due to symmetry we have P [EA]

.
= P [EB] and

applying Varadhan’s lemma to (3), we can write

Pe
.
= ρ−min{(d1(r)+d2(r)),d3(r)}, (18)

This completes the proof of Theorem 1.
Remark 1: • For a static protocol with ∆1 < m∆4, the

DMT expression is similar as in Theorem 1, but with

d3(r) =

{
1 +m− mr

∆1
for r ≤ ∆1

1 + ∆1

∆4
− r

∆4
for ∆1 < r ≤ ∆1 + ∆4

• For m = 1, we get the DMT for symmetric Rayleigh
fading model.

Now, for the DMT optimization, we need to solve the
following problem for any r:

dOPT (r) = max
∆1,∆3,∆4

d4−ph(∆i, r)

subject to 2∆1 + ∆3 + ∆4 = 1, ∆i ≥ 0. (19)

III. OPTIMAL DMT

The optimal DMT achievable for m ≥ 1, which is a
situation that can be interpreted as the direct link having
similar or a more stable fading statistic compared to source-
relay links, is given by:

Theorem 2: For the given system settings with m ≥ 1,
optimal DMT is

dOPT (r) =

{
1 +m− (2m+ 3)r for r ≤ 1

(2m+3)
m(1+m)(1−2r)

r+m for 1
(2m+3) < r ≤ 1

2

,

(20)



and it can be achieved using TDBC protocol with

∆1 =

{
(m+1)
(2m+3) for r ≤ 1

(2m+3)
r+m
1+2m for 1

(2m+3) < r ≤ 1
2

(21)

∆2 = ∆1, ∆3 = 0 and ∆4 = 1− 2∆1.

Corollary 2a: For the Rayleigh fading case (m = 1), the
optimal DMT dOPT (r) is attained by an orthogonal three-
phase TDBC protocol.

Proof:

A. Proof for Theorem 2

From Theorem 1 we have:

d1(r) + d2(r)

=

{
1 +m− mr

∆1
− r

∆1+∆3
for r ≤ ∆1

1 + ∆1

∆1+∆3
− 2r

∆1+∆3
for ∆1 < r ≤ ∆1 + ∆3

2

(22)

We are looking at dOPT = max∆i
min{d1(r) +

d2(r), d3(r)} under the sum-constraint and the positivity con-
straints in (19). First we prove that any optimal protocol must
have ∆3 = 0, for m ≥ 1.

This can be proved by contradiction - suppose (∆∗i ) max-
imizes the DMT (dOPT (r)) with ∆∗3 > 0. Now consider the
four phase protocol with new phase durations ∆1 = ∆∗1 +

∆∗
3

2 ,
∆4 = ∆∗4 and ∆3 = 0. These new phase durations are in the
feasible set (19), and substituting these in (22) and (11) we
get

d1(∆i, r) + d2(∆i, r) ≥ d1(∆∗i , r) + d2(∆∗i , r) and

d3(∆i, r) ≥ d3(∆∗i , r)

for all values of r. This contradicts the optimality of (∆∗i ) and
show that for m ≥ 1 any optimal protocol must have ∆3 = 0.

The optimization problem in (19) can now be written as

dOPT (r) = max
∆1,∆4

d4−ph(∆1,∆4, r)

subject to 2∆1 + ∆4 = 1, ∆1,∆4 ≥ 0,

where we now have

d1(r) + d2(r) = (m+ 1)

(
1− r

∆1

)
for 0 ≤ r ≤ ∆1.

Since we are looking at a max-min problem, for any given
multiplexing gain r, the optimal DMT is achieved when the
two DMT curves d1(r) + d2(r) and d3(r) meet at r. When
∆1 < m∆4 it is easy to see that the curves meet only at r = 0.
So we only need to consider the case ∆1 ≥ m∆4. Now we
have

d3(r) =

{
1 +m− r

∆4
for r ≤ ∆4

m(1 + ∆4−r
∆1

) for ∆4 < r ≤ ∆1 + ∆4

The expression for d3(r) suggests that the optimization can
be divided in to two exclusive cases: (i) r ≤ ∆4 (ii) ∆4 <
r ≤ ∆1.

1) Case r ≤ ∆4: With d1(r)+d2(r) = d3(r), and all other
constraints, it is straight-forward to check that the optimum
solution must satisfy ∆1 = (m + 1)∆4. Substituting this in
the sum-constraint, we get

∆4 =
1

(2m+ 3)
, ∆1 =

(m+ 1)

(2m+ 3)
,

and optimum DMT as dOPT (r) = 1+m− (2m+ 3)r for any
r ≤ 1

(2m+3) .

2) Case 1
(2m+3) < r ≤ 1

2 : Again with d1(r) + d2(r) =

d3(r), we get

∆1 =
r +m

1 + 2m
, ∆3 = 0, and ∆4 = 1− 2∆1.

and optimum DMT as

dOPT (r) =
m(1 +m)(1− 2r)

r +m
for 1

(2m+3) < r ≤ 1
2

This proves Theorem 2. Also, for all values of r and m =
1, we have proved that ∆3 = 0 is optimal, which proves
Corollary 2a.

Now we consider the case 1
2 ≤ m < 1, which corresponds

to the case where direct link between sources is less stable
compared to source-relay links. The optimal DMT achievable
using four-phase HBC protocol is given by:

Theorem 3: For the given system settings with 1
2 ≤ m < 1,

optimal DMT is

dOPT (r) = 1 +m− r

κ
for r ≤ κ, (23)

where,

κ =
(2 +m)− (1−m)∆3 −X

3 + 2m

X =
√

(m2 + 4)∆2
3 + (2m2 + 2m− 4)∆3 + (m+ 1)2

and it can be achieved using HBC protocol with

∆3 =
(1−m)(2 +m− 2

√
m)

4 +m2
, ∆4 = κ,

and
∆2 = ∆1 =

1−∆3 −∆4

2

For κ < r ≤ 1
2 , we do not have a closed form expression

for the optimal DMT, however, this optimization problem can
be solved using linear programming.

Proof:

B. Proof for Theorem 3

Again we are looking at a max-min problem, for any given
multiplexing gain r, the optimal DMT is achieved when the
two DMT curves d1(r)+d2(r) and d3(r) meet at r. Solving for
d1(r) + d2(r) = d3(r) from (22) and (11) and sum constraint
2∆1 + ∆3 + ∆4 = 1, we get

∆3 =
(1−m)(2 +m− 2

√
m)

4 +m2
, ∆4 = κ,



and
∆1 =

1−∆3 −∆4

2

and optimum DMT as dOPT (r) = 1 + m − r
κ for r ≤ κ.

This proves Theorem 3.
For κ < r ≤ 1

2 , again, optimal DMT is computed by
solving for d1(r) + d2(r) = d3(r) from (22) and (11) and
sum constraint 2∆1 + ∆3 + ∆4 = 1. Now we have,

∆1 =
m+ r − (3m+ 1)∆3 + Y

2(2m+ 1)
. (24)

where,

Y =
√

(m+ r − (3m+ 1)∆3)2 + 4m(2m+ 1)∆3(1−∆3).

Substituting for ∆1 and ∆4 = 1−2∆1−∆3, the optimiza-
tion problem in (19) can now be written as,

min
0≤∆3≤1−r

f(∆3, r),

where

f(∆3, r) =
m+ r − (3m+ 1)∆3 + Y

1− r −∆3
.

This optimization problem can be solved using linear pro-
graming. Numerical results are shown in Fig. 2 for m = 1

2 .
Theorem 3 establishes DMT optimality of HBC protocol

for the case where direct link between sources is less stable
compared to source-relay links. However, numerical results
show that the gap between the DMT achievable using three-
phase TDBC protocol and optimal DMT for the four-phase
HBC protocol is very small - indicating that the three-phase
protocol is “nearly optimal” for 1

2 ≤ m < 1. This is illustrated
in Fig. 2 for m = 1

2 .
The practical implication of this result is that the MAC

phase of HBC protocol is not necessary to achieve this “nearly
optimal” performance, and this results in a simplification of
the communication protocol.
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IV. CONCLUSIONS

In this paper, optimal DMT of non-separated TRC for four-
phase HBC protocol is established. The analysis indicates that
for a DMT optimal protocol, duration of MAC phase decreases
with improvement in direct link fading stability relative to
source-relay links. For m ≥ 1, which is a situation that can be
interpreted as the direct link having similar or a more stable
fading statistic compared to source-relay links, the optimal
DMT is shown to be achieved by the orthogonal three-phase
TDBC protocol. The operational meaning of this result is
that the MAC phase of HBC protocol is not necessary to
achieve optimal performance, this results in a simplification
of the communication protocol. For less stable direct link
( 1

2 ≤ m < 1), the MAC phase of HBC protocol is necessary
to achieve optimal DMT but a simpler TDBC protocol can
achieve “nearly optimal” DMT performance.
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