
Scalable Multicast Security in Dynamic Groups.

Re�k Molva, Alain Pannetrat

Institut Eurecom, Sophia-Antipolis, France.

fmolva,pannetrag@eurecom.fr

Abstract

In this paper we propose a new framework for multicast

security based on distributed computation of security

transforms by intermediate nodes. The involvement of

intermediate nodes in the security process causes a new

type of dependency between group membership and

the topology of the multicast network. Thanks to this

dependency, the containment of security exposures in

large multicast groups is assured. The framework also

assures both the scalability for large dynamic groups

and the security of individual members. Two di�erent

key distribution protocols complying with the frame-

work are introduced. The �rst protocol is an extension

of the El Gamal encryption scheme whereas the second

is based on a multi-exponent version of RSA.

1 Introduction

Multi-party communications have recently become the

focus of new developments in the area of applications

and networking from group applications like video-

conferencing to network layer multicast protocols. As

part of the new issues involved with multi-party com-

munications, security in terms of privacy and integrity

has received particular attention due to the vulnerabil-

ities inherent to multi-party architectures.

While several projects addressed the problem of key

distribution [9] and digital signatures [3] among the par-

ticipants of a group, the security issues related to mul-

ticast in large and dynamic groups remained compara-

tively unexplored. Multicast is a special case of group

protocols by which a single source transmits data to

multiple recipients. Like any other multi-party scheme,

the inherent complexity of the underlying communica-

tion mechanisms exposes multicast protocols to vulner-
Appeared in the Proceedings of the 6th ACM conference on Computer and Com-
munications Security, November 1999, Singapore.
Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

abilities that have no counterpart in the unicast case as

depicted in [2][6]. Possible countermeasures for those

vulnerabilities are cryptographic security services rang-

ing from authentication of group members, data con-

�dentiality and integrity, non-repudiation of origin to

access control for group membership. Next to basic se-

curity services, automatic key management is necessary

for the secure provision of large recipient groups with

cryptographic keying material.

In this paper we present a framework for multicast

security that focuses on two issues:

� scalability in large dynamic groups: the amount

of processing of each individual component of the

multicast security mechanism should be indepen-

dent of the group size; changes to the group mem-

bership should a�ect the smallest subset of the

group.

� containment of security exposures through parti-

tioning: each recipient group should be partitioned

into sub-groups in order to assure that a security

exposure in a sub-group does not endanger the se-

curity of other sub-groups.

As a preliminary step we present a set of cryptographic

sequences with special properties that are organized in a

tree. The rest of the paper considers this formal graph

and applies it to a multicast tree. We show how the

properties of our formal graph can be used to o�er a

multicast security framework that deals with security

and scalability issues.

In the proposed framework, con
icting security

and scalability requirements are addressed through a

distributed scheme whereby intermediate components

placed on the multicast transmission tree take part in

the security protocol. The intermediate components

share the security processing load with the source and

assure the containment of security exposures at various

parts of the multicast tree. The framework de�nes ba-

sic properties of a set of cryptographic functions that

1

assure data con�dentiality. Depending on the perfor-

mance of the underlying algorithm, implementations of

the framework may be suitable either for the encryp-

tion of bulk data or only for the encryption of short

messages as required by key distribution. The frame-

work is �rst validated with respect to security and scal-

ability requirements. Two di�erent implementations of

the framework are then discussed. Both solutions are

based on asymmetric techniques: an extension of the El

Gamal algorithm [4] and a variation on RSA [8]. These

algorithms which o�er strong protection are only suit-

able for key distribution since, due to their inherent

complexity, bulk data encryption with these solutions

seems prohibitive.

2 Cryptographic Functions

The building blocks we have chosen to use to de-

sign data con�dentiality protocols over a multicast tree

are called Reversible Parametric Sequence (RPS).

This section will give a formal de�nition of these se-

quences and associate them in trees. These trees will

be used is further sections to describe our multicast se-

curity framework.

2.1 Reversible Parametric Sequence

Let f : N2
7! N be a function with the following prop-

erty: if y = f(x; a) it is computationally infeasible to

compute a knowing x and y.

Let (a1�i�n) be a �nite sequence of n elements. Let

(S0�i�n) be a �nite sequence of n+ 1 elements de�ned

as:

Si = f(Si�1; ai), for i > 0.

S0, the initial value of the sequence.

Such a sequence will be called Reversible Parametric

Sequence associated to f or RPSf if, for all couples

(i; j) 2 N2 verifying 0 < i < j � n, there exists a

computable function hi;j such as Si = hi;j(Sj).

Moreover:

� A RPSf (S0�i) will be called a Symmet-

ric (reversible) Parametric Sequence associated

to f or SPSf if hi;j can be computed from

fai+1; ai+2; :::; ajg.

� A RPSf (S0�i) will be called an Asymmetric (re-

versible) Parametric Sequence associated to f or

APSf if it is computationally infeasible to de-

termine the function hi;j from fai+1; ai+2; :::; ajg

alone.

S S

f f
1 2

a
1

a

f
3
b b

4
f

c
4

f f
4

S3

1 1

1

22

1

c

0

S3S2

S2

S
2

S
1
4

4

= =

=

1
S0 S1

22

Figure 1: Two RPSf sequences mapped over a tree.

Example: Let p be a large prime number. Let (ni) be

a set of numbers in Z�(p�1) and g be a generator of the

cyclic group Z�p. De�ne f as f(x; a) = xa mod p. The

following sequence is a SPSf :

Si = f(Si�1; ni)

S0 = g

2.2 RPSf 's over a General Tree

A tree can map a family of RPS0f s which have terms

that di�er only after a certain rank, greater than 1.

For example, if S1 is a RPSf de�ned from a parameter

sequence fa1; a2; b3; b4g and S
2 is a RPSf de�ned from

a parameter sequence fa1; a2; c3; c4g, a simple tree that

maps S1 and S2 can be constructed as in �gure 1. This

tree illustrates the fact that S1 and S2 di�er after rank

2.

This property can be extended to a large number

of RPS0fs, with a tree that branches each time at least

two sequences di�er. The nodes of the tree denote the f

function and the edges are the elements Sij of the i dif-

ferent RPS0fs mapped over that tree. All the sequences

mapped over the same tree share at least two elements,

namely S0 and S1. These two values are the input and

the output, respectively, of the root node of the tree.

In the following discussion, (Si) will refer to the

RPSf mapped over the path that connects the root

to the ith leaf of a tree. The corresponding reversing

functions will be denoted hi(:;:).

3 Multicast Security

The goal of multicast security is to assure that the

source of the multicast stream and the group of mul-

ticast recipients communicate securely. This can be

achieved through the authentication of the message ori-

gin by the recipients and through con�dentiality and

integrity preventing disclosure and modi�cation of the

messages by any party other than the members of the

multicast group. These services typically require the es-

tablishment of a security association between the source

2

and the recipients of the multicast channel. The secu-

rity association de�nes the set of cryptographic keys

and algorithms used for each service. While authenti-

cation, con�dentiality and integrity of messages in the

multicast stream can be assured by classical network

security mechanisms akin to unicast, the establishment

of a security association for a multicast channel is inher-

ently more complex than with unicast. In the unicast

case, a security association is static in that the source,

the recipient and the the data
ow do not vary during

the association. In a dynamic multicast group, a session

is an ever evolving entity as recipients can be added to

or removed from the recipient group through join and

leave operations, respectively. Ideally, the keying ma-

terial shared by the members of the multicast security

association should be updated in order to ful�ll the fol-

lowing conditions:

1. When a user JOINS the group he should not have

access to past keying material.

2. When a user LEAVES a group he should not have

access to future keying material.

Hence, some keying material must change each time

the set of users in a multicast group changes. It should

be noted that the above conditions apply for the high-

est security requirements and they can be relaxed for

multicast applications with less critical security require-

ments.

Moreover, as a group gets larger, it is not acceptable

to share the same keying material between all users of

the group. The security of a large group should not

depend on its weakest member(s). If the keying mate-

rial of a user is intentionally or unintentionally exposed,

the security of the group should not be compromised in

that only a small fraction of the recipient group should

be a�ected by the exposure.

3.1 Scalability

Naturally, while o�ering security services, the multi-

cast spirit needs to be preserved: the amount of multi-

cast data sent by the source should be independent of

the group size. This also means that the cost in space

and processing of the security services at each receiver

should be constant, and therefore not correlated to the

group size.

Suivo Mitra has described [6] two main scalability

pitfalls in multicast security:

1. The \one a�ects all" failure which occurs when the

action of a member a�ects the whole group.

2. The \one does not equal n" failure which occurs

when the group cannot be treated as a whole but

instead as a set of individuals with competing de-

mands.

As noted in [6], JOIN and LEAVE procedures are can-

didates for exhibiting such failures, if they are not care-

fully designed. In a straightforward multicast security

protocol where each member Mi of the group has an

individual key Ki used for the distribution of the group

keyK, at the departure of a member, the security condi-

tions introduced in section 3 would require a new keyK0

to be distributed to all remainingmembers. This simple

scenario illustrates both scalability failures: the depar-

ture of one member a�ects the entire group through

the key update procedure and the remaining members

of the group must be treated individually during the key

update, since the new group key K0 must be placed in a

separate envelope encrypted under the key distribution

key (Ki) of each remaining member. As highlighted in

this example, multicast security requirements naturally

call for solutions that con
ict with scalability.

3.2 Con
icting Requirements

Extending the security requirements of unicast with the

ones due to scalability and group dynamics, the require-

ments of a security protocol for data con�dentiality in a

dynamic multicast group can be summarized as follows:

1. Data con�dentiality: the protocol should be im-

mune to eavesdropping.

2. JOIN and LEAVE security: a new (resp. old)
member should not have access to past (resp. fu-
ture) data exchanged by the group members.

3. Containment: the compromise of one member

should not cause the compromise of the entire

group.

4. Static scalability: the processing load supported

by an individual component (be it the source, an

intermediate forwarding component or a recipient)

should be independent of the group size.

5. Dynamic group scalability: the actions performed

by an individual component should not a�ect the

group as a whole.

6. Transparent group scalability: the group should

not require to be treated as a set of distinct indi-

viduals.

At �rst glance these points seem to o�er nests for con-

tradictions. For example, points 3 and 5 call for the

clustering of group members into di�erent subgroups

with di�erent security parameters. However points 4

and 6 require the group to be treated as a whole. More

generally, it's easy to see that the source and the recip-

ients have opposite requirements. Scalability requires

the source to consider the entire group as a single entity

whereas security requires each recipient to be treated

individually.

3

Many multicast or group security schemes have been

proposed that all satisfy the �rst requirement. However

they di�er widely from one another on the remaining

requirements: [1] does not make provisions for contain-

ment nor join and leave security, [9][10] do not o�er

scalability in large groups. Only [6] and [12] seem to

address both security and scalability requirements in

large dynamic groups.

3.3 Motivation for the Proposed Multicast Security

Framework

The main motivation of the solution proposed in this

paper is to solve the basic con
ict between scalability

and security akin to multicast security in order to come

up with a solution that can scale up to large networks.

We suggest that the con
ict between scalability and se-

curity can be overcome by involving the intermediate

components of the multicast communication in the se-

curity process.

Intermediate components, be they network nodes,

routers, or application proxies, are inherent partici-

pants in the basic multicast transmission process. The

key scalability factor in the basic multicast transmis-

sion schemes is the spread of the multicast routing and

packet forwarding load over a network of intermediate

nodes. Placing security mechanisms on existing inter-

mediate components seems to be a natural extension of

existing multicast protocols. Moreover, partitioning the

cost of security mechanisms over the intermediate com-

ponents appears to be a good way of assuring scalabil-

ity. When the multicast group grows, new intermediate

components are added to support new group members

and the cost of security mechanisms can still be equally

distributed by placing the additional security processing

load due to the new members on the new intermediate

components.

The involvement of intermediate components in the

security process is also a premise for meeting multicast

security requirements. If the security mechanisms can

be made dependent on the intermediate component in

which they are implemented, group members attached

to di�erent intermediate components can be treated in-

dependently or with di�erent keying material. In ad-

dition to its relationship with the group membership,

the keying material can have a relationship with the

topology of the multicast network. The keying mate-

rial associated with each group member can thus be a

function of the intermediate component to which the

member is attached. This topological dependency as-

sures the containment of security exposures: if some

keying material belonging to a group member attached

to an intermediate node is compromised, this keying

material cannot be exploited by recipients attached to

other intermediate nodes.

We introduce our solution in two steps: �rst, we

de�ne a general framework for multicast data con�den-

tiality based on distributed mechanisms involving inter-

mediate components and preserving the scalability and

security properties, then we propose actual solutions

based on cryptographic functions that comply with the

framework.

4 Multicast Security Framework

The proposed multicast security framework consists of

a model that is an abstract de�nition of the compo-

nents involved in the security mechanisms and the re-

lationship between them which is an application of the

functions we de�ned in section 2.

4.1 Model

In the abstract de�nition of the framework, the compo-

nents of the multicast security framework form a tree .

The root of the tree is the multicast source and the

members of the multicast group form the leaves of the

tree. The intermediate nodes of the tree - referred to

as nodes - correspond to the intermediate components

of the multicast communication. Like the multicast

scheme itself, nodes can be implemented at the applica-

tion layer or at the network layer. In the case of appli-

cation layer multicast, nodes can be application proxies,

such as those in a hierarchical web caching structure. In

the case of network layer multicast, nodes can be intel-

ligent routers capable of performing security operations

in addition to multicast packet forwarding functions.

In further abstraction, each leaf of the tree will rep-

resent the set of group members attached to the same

terminal node. In the application layer case, a leaf will

delimit a sub-group of members attached to a proxy. In

the network layer case, a leaf will delimit a sub-network

of recipient stations attached to a router. Hence a leaf

will refer to a set of multicast group members with a

common attachment node in the tree.

If a set of users represented by a leaf becomes too

large, the leaf can easily be subdivided into several \sub-

leaves" by adding new nodes. Hence the leaf size in

terms of the group members it represents is not a scal-

ability issue for algorithms that treat a leaf as a single

entity.

4.2 RPSf 's over a Multicast Tree

Next, we turn to multicast by applying the previous

concept of RPSf from section 2 over a tree as a means

of performing secret transforms in multicast communi-

cations. Let S0 be the information to be transmitted

over the multicast channel by the source under con�-

dentiality. Furthermore, S0 might either be the actual

data or an encoding thereof, if possible data values are

4

di�erent from possible values that S0 can take on from

the point of view of the security algorithm.

As part of the setup for a series of secure multicast

transmissions, each node Ni is assigned a secret value

ai>1. Each node is capable of performing a function f as

de�ned in the previous section. During secure multicast

transmission, upon receipt of multicast data Sj from

its parent node Nj, node Ni computes f(Sj ; ai), and

forwards the resulting value Si as the secure multicast

data to the child nodes or the leaves.

Assuming (Si) is a RPSf mapped over a path from

the root to a leaf on the multicast tree, the leaf will

eventually receive Sin, which is the �nal term of the

RPSf . The leaves in the multicast tree bear a special

role in that they are able to recover the original message

S0. Each leaf is assigned a function hi(0;ni) that allows

it to compute Si0 = S0 from Sini since S0 = hi(0;ni)(S
i
ni
).

On the other hand, the leaves don't use function f .

The distribution of the secret ai values to the nodes

and the reversing functions to the leafs can be assured

by a central server using classical unicast security mech-

anisms. Because of the structure of the algorithm, the

central server will need to have a precise image of the

tree structure. This doesn't mean, however, that the

functionality of this server cannot be distributed over

several network entities.

Working example: Figure 2 depicts a simple tree

with three RPS0fs. Looking at the path from the root

to leaf 3 on �gure 2, we have:

� The root computes f(S0; a1) and sends the result

to its children nodes.

� N1 receives S31 = f(S0; a1), computes and sends

f(S31 ; a7) to N2.

� N2 receives S
3
2 = f(S31 ; a7) and sends f(S32 ; a8) to

leaf 3.

� Leaf 3 receives S33 = f(S32 ; a8) and recovers

the original multicast data by computing S0 =

h3(0;3)
�
S33

�
.

4.2.1 The Join Procedure.

When a user joins a group by contacting a node, two

situations can arise:

1. a leaf (sub-group) attached to this node already

exists.

2. there is no leaf attached to this node prior to the

current join operation.

In the former situation, a RPSf sequence (Si) is al-

ready mapped between the source and the members in

h3
(0,3)

7
a

a
8

S
3
3

S
3
1

S
3
2

a a

aa

a a
1 2

3 4

5 6 h2
(0,4)

h1
(0,4)

S
0

NodesRoot node

N1

N2

Leaf 3

Figure 2: A simple 3 RPSf tree.

a

a a

aa

a

a a
1 2

3 4

7

5 6

8

0

C

A

B

S

Figure 3: User C joins/leaves.

the existing leaf. The last node on the path which holds

parameter aini will be assigned a new value eaini, updat-
ing the last transformation in the sequence. Hence, the

corresponding new ehi(0;ni) function will be distributed to
all the member in the leaf including the new member.

In the example of �gure 3 where C wishes to join

the leaf including existing members A and B, the join

operation will perform as follows:

1. a8 will be substituted to ea8 in last node.

2. h3
(0;4)

will be sent to A;B;C.

If M is the upper bound on the number of members

in a leaf, a join operation requires the exchange of the

following messages:

� 1 message sent to update the value in the last node

on the path,

� at most M � 1 messages sent to the current mem-

bers in the leaf,

� 1 message sent to the new member.

A join operation thus requires at most M + 1 message

exchanges.

5

In fact, it's possible to reduce the number of mes-

sages to 3, by slightly changing the order of operations

in the join procedure. Instead of changing the value aini
in the node right away, it's possible to use the secure se-

quence to vehicle the new ehi(0;ni) function to the current
members in the leaf, thus reducing the update to one

message (versus an upper bound of M � 1 messages).

Then the value aini in the node can be changed and the

new ehi(0;ni) function transmitted to the joining mem-

ber. However this approach has a drawback: it creates

a chain between the di�erent values of ehi
(0;ni)

which po-

tentially weakens the security of the scheme. Unless the

cost of individually sending a message to each member

in the leaf is more important than the security of the

group, such an option should be avoided.

In the second case, the authority which receives a

join request has to �gure out the path from the new

member to the closest node in the active tree. The

path establishment method used in this case depends on

the layer (application/network) at which the multicast

security scheme is implemented. A similar decision has

to be taken by IP multicast routing algorithms when a

new router needs to be included in a multicast routing

tree. Once the path to the new member is selected, the

authority will assign values to the newly added nodes on

the path, thus extending the RPSf mapping. Finally

the new member will receive the hi
(0;ni)

function needed

to recover the original multicast data in the created

RPSf . Hence, he's the only member of the new leaf in

the tree.

The number of messages exchanged here depends on

the algorithm used to set the path between the new

member and the tree. Consequently, as stated in sec-

tion 3.3, this security framework would be a natural

extension of multicast routing schemes. The number of

messages exchanged here to create a new leaf can be as-

sumed to be proportional to the number of messages ex-

changed by the multicast routing protocols when adding

a new element in the multicast tree.

In many cases, it will be possible to perform the node

setup ahead in time, leaving only the hi(0;ni) function to

be distributed when the member e�ectively joins. The

authority that manages the group does not need to be

the root itself and its functionality can be distributed

in a tree hierarchy, where each sub-authority manages

a multicast subtree.

4.2.2 The Leave Procedure.

The leave procedure is similar to the join procedure.

When a user leaves a leaf in the tree, the value in the

terminal node is changed from aini to eaini and the newehi(0;ni) function is distributed to the remaining nodes in

the tree. In e�ect, the associated RPSf sequence has

its last term changed.

4.3 Evaluation of the Framework

The previous discussion has focused on the use RPSf to

achieve data con�dentiality over a multicast tree. This

section will show how the RPSf construct meets the

requirements established in 3.2, assuming that the in-

termediate nodes are trusted and secure. The implica-

tions of node compromise will be discussed in the next

section.

4.3.1 Data Con�dentiality

A secret message x transmitted by the source cannot be

retrieved from the multicast data obtained by intruders

eavesdropping on any of the links of the secure multicast

tree. Retrieving x from multicast data exchanged on

an intermediate link would require the computation of

the inverse of f which, by de�nition, is computationally

infeasible. Retrieving x from the multicast data trans-

mitted to a leaf over the last hop of a multicast path

is also impossible because the secret reversing function

hi(0;ni) cannot be retrieved without the knowledge of

at least the secret ai values assigned to the nodes in-

cluded in the path. In addition, if the multicast security

scheme is based on an APSf even the disclosure of the

ai values would not compromise data con�dentiality as

discussed is section 4.4. Data con�dentiality is an obvi-

ous consequence of the way the model was de�ned. The

degree of security of the one-way function f and should

be evaluated on a per algorithm basis as in section 6

and 7.

4.3.2 JOIN and LEAVE Security

A new member joining a leaf gets a new reversing func-

tion ehi(0;ni) that cannot be used to recover the old re-

versing function hi(0;ni) . As a consequence, past data

is not accessible to a new member. Similarly, a former

member using an old reversing function cannot access

data that is transmitted subsequently to its departure.

4.3.3 Containment

Because of the topological dependency introduced by

the model, the reversing function hi(0;ni) used in a leaf

of the tree will be useless outside that leaf. An intruder

will only bene�t from an attack if he is located in the

same leaf as the victim. This greatly reduces the impact

of member compromise.

4.3.4 Static Scalability

The amount of processing per component is indepen-

dent of the group size. First, in our framework, the size

of messages transmitted by a node (be it the source or

an intermediate component) does not depend on the

number of group members but it depends only on the

6

size of the original secret message. Second, the number

of messages transmitted by a node does not depend on

the number of group members but it depends only on

the number of child nodes attached to this node.

4.3.5 Dynamic Group Scalability

There are three basic actions a group member can per-

form, namely join, leave and receive data. The model is

designed so that none of these actions a�ects the whole

group. In fact these actions have an impact that is lim-

ited to the leaf containing the member performing these

actions as shown in section 4.2.1. The \one a�ect all"

type failure never appears.

4.3.6 Transparent Group Scalability

The \1 does not equal n" type of failure never appears

over the group as a whole, instead, it is con�ned to the

leaves in which join or leave operations occur. Since

the leafs have a maximum size, this is not a scalability

issue. All other operations, including re-key, address

the group as a whole.

4.4 Node Compromise.

The previous section assumed that the nodes of the

tree were completely secure. This has to be true for

the root node of the tree but it might not be possi-

ble to make such an assumption about the intermediate

nodes in the network. Hence the following section will

focus on the impact of intermidiate node compromise.

Two type of attacks that derive from node compromise

are highlighted in this section: unauthorized member-

ship extension and mode compromise by external users.

Unauthorized membership extension happens when a

former member of the secure group is able to maintain

access to the data even though he has not received the

new reversing function. Node compromise by external

users more generally describes unauthorized access to

the group by users that never became group members.

4.4.1 Unauthorized Membership Extension

If a member Eve in a leaf controls the last node on

the path from the source to the leaf i, he can intercept

changes in the last parameter of the RPSf .

Let N be the last node on the path from the root to

leaf i of the tree and a the secret held by N . N receives

Sij�1 from its parent node and sends Sij = f(Sij�1; a) to

the leaf elements which will use a hi
(0;j)

reversing func-

tion to recover S0. If the group membership manager

decides that Eve must leave from the group, the value

a in N will be changed to a new value ea and the cor-

responding reversing function ehi(0;j) will be send to all

leaf members except Eve.

Despite its formal exclusion from the group, Eve can

ignore the change in the router and compute S0 from

Sij�1 using a and the old reversing function hi
(0;j)

ob-

tained trough the compromise of node N , simulating

the older sequence, where S0 = hi(0;j)
�
f(Sij�1; a)

�
.

This attack works whatever the nature of the se-

quence, APSf or SPSf , but requires several conditions

to be met:

1. Eve should be a former member of the group.

2. Eve should be able to access the secret parameter

held by node N .

3. Eve should have access to the data transmitted to

node N by its parent node (i.e. Sj�1).

Moreover, updates of ai values in nodes at a higher level

will limit the scope of this attack because the resulting

reversing functions cannot be retrieved based on the

information gathered in a leaf or from the compromise

of the last node.

A SPSf speci�c attack Condition 2 described in the

previous paragraph is not required if the sequence is a

SPSf . To work around condition 2, the intruder �rst

computes: ehi(j�1;j) form ea
because the sequence is symmetric.

Now, using ehi
(j�1;j)

and the new sequence value eSij
received in the leaf, the former member computes:

Sij�1 =
ehi(j�1;j)(eSij)

Next, the former member uses the value a obtained

through the compromise of N to compute:

Sij = f(Sij�1; a)

Finally, using the old reversing function hi
(0;j)

and

applying it to Sij , we have:

S0 = hi
(0;j)

(Sij)

where S0 is the original multicast data.

This attack doesn't apply in an APSf tree because

by de�nition ehi(j�1;j) cannot be deduced form ea .

4.4.2 Node Compromise by External Users.

If the intruder Eve is not even a former member of the

group, an attack is still a possible if the sequence is

symmetric provided that:

1. Eve has access to the value of the reversing func-

tion used by a legitimate member .

2. Eve control all the nodes on the path between

him1and the legitimate member except the �rst

common ancestor they have in the tree.

1Eve does not have to be in a real leaf, he can simply intercept
tra�c somewhere in the tree.

7

If these conditions are met, Eve will be able to forge

a reversing function he can use to access the group.

Instead of a lengthy formal discussion, we chose to

illustrate the attack with the example scenario depicted

on �gure 6, where the malicious user Eve gets multicast

data S23 from node N5. If Eve knows h3(0;3) from a

compromised user and fa2; a5; a7; a8g, he can compute:

S22 = h2(2;3)(S
2
3)

because h2(2;3) can be derived from a5. Similarly,

S31 = S21 = h2(1;2)(S
2
2)

because h2(1;2) can be computed from a2. Then

S32 = f(S31 ; a7)

and

S33 = f(S31 ; a8)

yielding to

S0 = h3(0;3)(S
3
3)

Again, this attack doesn't apply to an APSf based

tree because reversing functions associated with an

APSf cannot be derived from the parameters used in

the intermediate nodes.

4.4.3 Node Compromise Summary

The distinction between an APSf and a SPSf is to-

tally relevant with respect to node compromise scenar-

ios. Unlike [6], when using APS0f s our framework is

immune to node compromise by external users. The

framework does not however dictate the choice of an

APSf over SPSf as one could expect because SPSf
are likely to be easier to design than APSf .

It should be noted that the security containment

property is also e�ective in case of node compromise.

Hence, previously described node compromise scenarios

don't allow the intruder to provide unauthorized access

to just any other user in the network.

This section concludes the formal presentation of our

secure multicast framework. The next sections present

two implementations of this framework based on exten-

sions of public key cryptographic schemes. The �rst

scheme is an SPSf and will therefore lend itself to

further description of a concrete node compromise sce-

nario.

5 Key Distribution

Depending on the performance of function f our frame-

work can be used either for bulk data con�dentiality or

only for key distribution. Current symmetric crypto-

graphic systems provide su�cient encryption speed but

they don't exhibit the mathematical properties required

to create a RPSf . On the other hand asymmetric cryp-

tography o�ers suitable properties to build a solution

compliant with the framework but it doesn't o�er yet

the necessary performance for bulk data con�dentiality.

Consequently, the next two sections will describe of the

framework based on asymmetric cryptography for mul-

ticast key distribution. The �rst scheme, derived from

the El Gamal encryption algorithm, allows the creation

of a SPSf key distribution tree, whereas the second

scheme, based on RSA, e�ectively creates an APSf key

distribution tree.

Using a RPSf tree, the source can distribute a se-

cret key k by initialising the sequences with S0 = k

(or otherwise a function of k). The data con�dentiality

mechanism of the secure multicast framework will allow

to securely transmit k to the members of the group. The

source can frequently update k but, unlike the revers-

ing function that is di�erent in each leaf, k is shared

among all members of the group so the exposure of k

a�ects the group as a whole. However, unlike the re-

versing function that enables each member to access the

multicast group, the shared key k is a short term value

that can be frequently updated by the source using the

secure multicast framework. Consequent values of k are

independent.

6 Key Distribution using the Discrete Log.

The discrete log problem used in the El Gamal cryp-

tosystem can be used to create a RPSf . Let p be a

large prime and let f , the node operation, be de�ned as

f(x; a) = xamod p. If y = f(u; v) it is computationally

infeasible to compute v from (u; y).

6.1 Setup

The source of the node chooses a generator g of the

cyclic group Z�p and a secret random value r inZ�(p�1).

The nodes and the root are assigned ai>0 values2 in

Z
�
(p�1)

. The initial value of the sequence is set to S0 =

gr mod p.

Let fSik>0g denote the sequence elements. The re-

verse function distributed to the nodes is de�ned as:

hk(0;nk)(x) = x
(ai1 :ai2 :ai3 :::aink

)�1
mod p

2Naturaly, we should avoid the unlikely case that
Q

k
aik = 1 on

the path from the root to the i
th leaf.

8

a
7

a
8

S 1 8
a a a

0
7

a a

aa

a a
1 2

3 4

5 6

0

h
3

S S

S

0

a
1

0

a a
1 7

Leaf 3

S =2
3

S =3
3S =3

1

N1

N2

Figure 4: A discrete log tree.

The function f performed in each node is de�ned as

f(x; aik) = xaik mod p.

6.2 Key Distribution

The source wishing to distribute a key K sends the fol-

lowing initial data to its children in the tree:

S1 = (S0)
a1 mod p

T = K � S0

The intermediate elements in the tree perform f on

their input Sik�1 and send Sik to their children, along

with T, where:

Sik = f(S(ik�1); aik) =
�
S(ik�1)

�aik mod p

An example of this scheme is illustrated on the path

from the root to the leaf 3 of the tree on �gure 4:

� The source send S31 = (S0)
a1modp and T = K�S0

to its children.

� N1 receives (S
3
1 :T) and sends S32 = (S0)

a1a7 mod p

and T = K � S0 to its children.

� N2 receives (S32 ; T) and sends S33 =

(S0)
a1a7a8 mod p and T = K � S0 to leaf

3.

6.2.1 Decryption

The decryption process is straitforward, the reverse

function h is simply applied to the received value, and

the result is used to extract K from T :

h(0;ik)(Sik) = S0 mod p

K = T � S0

Recalling the previous example, where h3(x) =

h3(0;3)(x) = x
1

a1a7a8 mod p , the value of K is computed

simply:

K = T � S0

where

S0 = h3
�
S33

�
= ((S0)

a1a7a8)
1

a1a7a8 mod p

6.2.2 The Next Key

The next key to be sent eK only requires S0 = gr mod p

to be changed to a new eS0 = germodp inZ�p. The initial
value of the sequence is changed for every message. It

should be noted here that if g is a generator ofZ�p then

gr and ger are also a generators of the cyclic group be-

cause r and er are invertible [7] in Z�
(p�1)

. Transitively,

this means that all elements in the created RPSf se-

quence are generators. This assures a constant strength

of the transformations in the RPSf which is a sequence

of generators of Z�p.

6.3 Node Compromise and Member Collusion

Many of the requirements established in section 3.2 are

naturally full�lled by implementing the framework as

described above. However member collusion and node

compromise need to be considered on a per-algorithm

basis.

6.3.1 Node Compromise

The previously described sequence is clearly a SPSf
because the reversing functions can be computed with

the knowledge of the secret parameters in the nodes.

Hence, compromise of the nodes o�ers some potential

for unauthorized membership extension as described in

4.4.

Figure 5 will illustrate the node compromise sce-

nario. The hypothesis here will be that a malicious

member E of leaf 3 wishes to maintain membership in

the group using the information of the terminal node

N2 he has compromised.

In a normal scenario where node compromise is not

taken into account, in a leaf consisting of members

fA;B;C;Eg, when E leaves, the following actions take

place:

9

a
7

a
8

S 1 7
a a a

0
8

a a

aa

a a
1 2

3 4

5 6

0

S S

S

0

a
1

0

a a
1 7

S =2
3

S =3
3S =3

1

N1

N2
Leaf 3h 3

A B

C E

Figure 5: Node Compromise

� In N2, a8 is changed to ea8.
� The newly computed reverse function eh3(0;3) is sent
to fA;B;Cg but not E.

Once the leave procedure is complete, E cannot access

further keys distributed to fA;B;Cg it cannot deriveeh3
(0;3)

from h3
(0;3)

.

However, in the case of node compromise, if E con-

trols the last node, he can monitor the change from a8
to ea8. E can then derive eh3(0;3) from h3(0;3), because if

h3(0;3)(x) = x(a0a1a7a8)
�1

mod p then:

eh3(0;3)(x) = x
1

a0a1a7a8
�

a8
ea8 mod p

In summary, even if E doesn't receive the new re-

versing function, he will be able to compute it and thus

access the keys distributed subsequently to the leave

operation.

This attack can be extended to allow a malicious user

to derive a reversing function from another one even if

the reverse function comes from another leaf. It requires

the attacker to compromise nearly all the nodes on the

graph between him and the compromised member.

Figure 6 will serve as an example where user E -not a

member of the group- listens to tra�c coming out ofN5.

The malicious user is assumed to know the following

node parameters fa2; a5; a7; a8g as well as h
3
(0;3) from a

compromised member in leaf 3. With these conditions

together, E can compute a new local reverse function

h2(0;3) from h3(0;3) thus breaking the clustering appeal of

the model:

h3(0;3)(x) = x
1

a1a7a8 mod p

which allows to compute:

h2(0;3)(x) = x
1

a1a2a5 mod p =
�
h3(0;3)(x)

� a7a8
a2a5

mod p

h(0,3)
3

5

a a

aa

a
1 2

3 4

5 6

S

Eve

a

a

7

8

N
a

0

S3
1

S3
2

S2
1

S2
2

S3
3

S2
3

Figure 6: Multiple node compromise attack.

This second attack assumes that the nodes are easy

to compromise, and the �rst one makes strong as-

sumptions about the compromise power of the attacker.

While these attacks on SPSf 's might be considered

hard to implement in some cases, the possibility itself

pushed us to study a second and stronger construction

based on APSf 's, as described in section 7.

6.3.2 Member Collusion

A set of colluding members could compare their re-

versing functions to try to extract additional informa-

tion. Distributing a reversing function of the form

h(x) = xyi mod p actually consists of distributing the

exponent yi = (ai1ai2 :::ain)
�1 mod (p � 1). A possi-

ble collusion attack would aim at deriving some indi-

vidual sequence values ai based on the knowledge of

fy1; y2; :::; yng by the colluding members. A trivial sce-

nario in which the collusion attack can succeed occurs

if at least one sequence is included in another. This

can easily be prevented if none of the terminal nodes

for one sequence is used as an intermediate node for

another sequence.

7 Key Distribution using RSA.

Extending RSA to use multiple keys as in [5] allows the

creation of an APSf scheme. As in RSA, let n = pq

where p and q are carefully chosen large primes. The

node function is de�ned as f(x; a) = xa mod n.

7.1 Setup

The setup is even simpler here than in the discrete log

case. Each node in the tree is assigned a value ai>1

and the root uses a1 where gcd(ai�0; '(n)) = 1. This

assures that the product A of any subset of these ai
values also veri�es gcd(A;'(n)) = 1. The multiplicative

inverse B of A de�ned as AB � 1 (mod '(n)) can be

computed using the Euclidean algorithm.

10

Let faik>0g denote the set of parameters used in the

nodes between the source and leaf k, plus ai1 = a1 in the

root. The reversing function distributed to the nodes is

de�ned as:

hk(0;nk)(x) = xDk mod n

where,

(ai1 :ai2 :::ank):Dk � 1 (mod '(n))

Like the basic RSA algorithm, the security of this

scheme relies on the di�culty of factoring n, that is,

computing Dk requires the knowledge of '(n) which

currently seems to be only derivable from the factors of

n = pq.

7.2 Key Distribution

The source wishing to distribute a key K, sends the

following value to its children in the tree:

S1 = Ka1 = (S0)
a1 (mod n)

Each node Ni in the secure multicast tree processes

the Si�1 value received from its parent node and sends

Si to its children nodes where:

Si = f(Si�1; ai) = (Si�1)
ai (mod n)

Recalling �gure 5 while assuming an RSA like APSf
sets the following scenario on the path from the root to

leaf 3 of the tree:

� The root send S31 = (S0)
a1 mod n to its children.

� N1 receives S
3
1 and sends S32 = (S0)

a1a7 mod n to

its children.

� N2 receives S32 and sends S33 = (S0)
a1a7a8 mod n

to leaf 3.

7.2.1 Decryption

The decryption process is also simpler than in the dis-

crete log case. The decryption function h is applied to

the received value in the leaf to recover K. For example,

on �gure 6:

K = S0 = h3(0;3)(S
3
3) = ((S0)

a1a7a8)
D3 mod n

assuming

a1a7a8:D3 � 1 (mod '(n))

7.2.2 The Next Key.

Sending a new key eK only requires S0 to be changed

in the preceding description. Nothing else needs to be

done.

7.3 Node Compromise and Member Collusion

The node compromise attack previously described in

section 6 regarding the discrete log case does not apply

here essentially because the RSA based sequences are

asymmetric: to compute a reversing function h(i;j), the

knowledge of the intermidiate parameters fai+1:::ajg

wouldn't be su�cient as '(n) is also required. How-

ever the node compromise attack based on membership

extension in section 4.4 is still possible with the RSA

based scheme.

Possible collusion scenarios do not lend themselves

to the leakage of any secret information or capacity.

8 Related Work

Some other papers have presented scheme that address

some of the requirements hightlighted in section 3.2.

However, only [12] and [6] seem to address both scala-

bility and security. Hence we will focus our comparison

on those two schemes, which di�er from ours in mainly

two areas: containment and trust. Moreover we will

look at the particular implication of using our scheme

for key distribution.

Trust Though our solution uses intermediate compo-

nents, it has a major di�erence with [6]: our framework

does not put any trust in the intermediate components,

whereas in [6] each intermediate component has access

to the multicast data. This problem does not appear in

[12] since no intermediate elements are involved. Hence

even though we use intermediate elements, our scheme

is equivalent to [12] in terms of trust.

Containment In terms of containment, our scheme is

equivalent to [6], where each subgroup uses a di�erent

key to access the multicast data. On the other hand

[12] does not address containment issues even though

it uses a tree structure. In that scheme, the keys held

by any user can be used to access the multicast group

anywhere and all users are equivalently trusted with the

security parameters of the group.

Key distribution Though we o�er higher security in

terms of trust and containment, this has a cost. Indeed,

[6] and [12] have a clear advantage over our scheme in

terms of performance. This has lead us to consider our

scheme for key distribution and not bulk data encryp-

tion. In that respect the framework is used to distribute

11

a short term data encryption key k. As this short

term key is common to all recipients, it may look as

our scheme looses its containment advantage over [12].

However, the short term key can be frequently updated

and its disclosure does not provide a means of long term

group access to intruders. This is because in our scheme

the group membership is represented by the long term

reversing functions that are di�erent in each leaf of the

multicast tree as opposed to the shared secret group

membership key of [12].

9 Conclusion

This paper has presented a framework designed to sup-

port data con�dentiality in a large dynamic multicast

group. The framework meets a set of requirements

wider than the previous work. While covering scala-

bility, the new concept of containment was introduced

as we believe the latter is a key requirement in very

large groups.

The introduction of Reverse Parametric Sequences,

or RPSf , permits a formal but yet practical descrip-

tion of the framework elements, with a voluntary dis-

tinction between symmetric and asymmetric behaviors.

The mapping of these sequences over a multicast tree is

the core mechanism that allows this framework to meet

the previously described requirements.

Next, two key distribution schemes have been ex-

posed as implementations of the framework. Further

detailed studies of the those two schemes, that would

each deserve a complete paper, will be necessary be-

fore a concrete implementation. Nevertheless these two

schemes have served as a proof of concept for the frame-

work and they have allowed us to discuss the implication

of various node compromise scenarios, as the possibil-

ity of node compromise cannot be neglected in a large

multicast network.

The next major step would be the design of e�cient

functions that could be used to build RPS0fs that op-

erate on bulk data, in order to fully capitalize on this

framework. Beyond just multicast, such functions will

have applications in many group security problems.

References

[1] Tony Ballardie, \Scalable Multicast Key Distribu-

tion", RFC 1949, may 1996.

[2] Tony Ballardie and Jon Crowcroft, \Multicast-

Speci�c Security Threats and Counter-Measures",

The Internet Soc. Symposium on Network and Dis-

tributed System Security, February 16-17, 1995,

San Diego, California.

[3] Jan Camenish and Markus Stadler, \E�cient

Group Signature Schemes for Large Groups", Ad-

vances in Cryptology - CRYPTO'97, 1997.

[4] T. ElGamal, \A public key cryptosystem and a sig-

nature scheme based on discrete logarithms", Ad-

vances in Crytology - CRYPTO'84, Santa Barbara,

California, USA, 1984.

[5] Lein Harn and Thomas Kiesler, \Authenticated

Group Key Distribution Scheme For A Large Dis-

tributed Network", Symposium on Security and

Privacy, 1989.

[6] Suivo Mitra, \Iolus: A Framework for Scalable Se-

cure Multicasting", In Proceedings of the ACM

SIGCOMM'97, September 14-18, 1997, Cannes,

France.

[7] Neal Koblitz, \A course in Number Theory and

Cryptography", Springer-Verlag, 1994.

[8] R. L. Rivest, A. Shamir, L. M. Adleman, \A

method for obtaining digital signatures and public-

key cryptosystems", Communications of the ACM,

21(2):120-126, 1978.

[9] Michael Steiner, Gene Tsudik, Michael Waid-

ner, \Di�e-Hellman Key Distribution Extended

to Group Communication", in Proceedings of the

3rd ACM Conference on Communications Security,

March 14-16, 1996, New Delhi, India.

[10] M. Steiner, G. Tsudik, and M. Waidner, \Cliques:

A protocol suite for key agreement in dynamic

groups." Research Report RZ 2984 (#93030), De-

cember 1997, IBM Z�urich Research Lab.

[11] Debby M. Wallner, Eric J. Harder, Ryan C. Agee,

\Key Management for Multicast: Issues and Archi-

tectures", Internet draft, Network working group,

september 1998.

[12] C. K. Wong, M. Gouda, S. S. Lam, \Secure Group

Communications Using Key Graphs", Technical

Report TR 97-23, University of Texas at Austin,

July 1997.

12

