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Search Pruning with Soft Biometric Systems:
Efficiency-Reliability Tradeoff

Antitza Dantcheva, Arun Singh, Petros Elia and Jean-Luc Dugelay

Abstract

In the setting of computer vision, algorithmic searches often aim to iden-
tify an object inside large sets of images or videos. Towards reducing the
often astronomical complexity of this search, one can use pruning to filter
out sufficiently distinct objects, thus resulting in a pruning gain of an overall
reduced search space.

Motivated by practical scenarios such as time-constrained human identifi-
cation in biometric-based video surveillance systems, we analyze the stochas-
tic behavior of time-restricted search pruning, over large and unstructured
data sets which are furthermore random and varying, and where in addi-
tion, pruning itself is not fully reliable but is instead prone to errors. In this
stochastic setting we explore the natural tradeoff that appears between prun-
ing gain and reliability, and proceed to first provide average-case analysis of
the problem and then, using large deviations and informational divergence
techniques, to study the atypical gain-reliability behavior, giving insight on
how often pruning might fail to substantially reduce the search space. The
simplicity of the obtained expressions allows for rigorous and insightful as-
sessment of the pruning gain-reliability behavior, as well as for intuition into
designing general object recognition systems.

Index Terms

database pruning, search pruning, biometrics, soft biometrics, person
recognition, reliability–error tradeoff
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1 Introduction

In recent years we have experienced an increasing need to structure and orga-
nize an exponentially expanding volume of data that may take the form of, among
other things, images and videos. Crucial to this effort is the often computation-
ally expensive task of algorithmic search for specific elements placed at unknown
locations inside large data sets. To limit computational cost, pre-filtering such as
pruning can be used, to fast eliminate a portion of the initial data, an action which
is then followed by a more precise and complex search within the smaller subset
of the remaining data. Such methods can substantially speed up the search, at the
risk though of missing the target, thus reducing the overall reliability. Common
pre-filtering methods include video indexing and image classification with respect
to color [1], patterns, objects [2], or feature vectors [3].

1.1 Categorization-based pruning of time-constrained searches over
error-inducing stochastic environments

Our interest in analyzing this speed vs. reliability tradeoff, focuses on the real-
istic setting where the search is time-constrained and where, as we will see later on,
the environment in which the search takes place is stochastic, dynamically chang-
ing, and can cause search errors. We note here that there is a fundamental differ-
ence between search in unstructured versus structured data, where the latter can be
handled with very efficient algorithms, such as the sphere decoding algorithm. One
widely known practical scenario that adheres to the above stochastic setting, is the
scenario of biometric-based video surveillance. In this setting a time constrained
search seeks to identify a subject from within a large set of individuals that may
consist of, for example, the people surrounding the subject in a specific instance at
a specific location. In the language of biometrics we provide analysis on the gen-
eral speed-reliability behavior in search pruning. In this scenario, a set of subjects
can be pruned by means of categorization that is based on different combinations
of soft biometric traits such as facial color, shapes or measurements. The need for
such biometrically-based search pruning often comes to the fore, such as in the
case of the 2005 London bombing where a sizeable fraction of the police force
worked for days to screen a fraction of the available surveillance videos relating to
the event.

We stay focused on search pruning based on soft-biometrics but remind the
reader that this analysis can be generally applied to several domains of computer
vision or other disciplines that adhere to the setting of categorization-based pruning
in time-constrained searches over error-prone stochastic environments.

1.2 Search pruning based on soft biometrics

Soft biometrics are human physical, behavioral or adhered characteristics, which
carry information about the individual, are computationally efficient, easy to ac-
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quire, but which are generally not sufficient to fully authenticate an individual
(cf. [?, 4, 5]). Scientific work on using soft biometrics for pruning the search can
be found in [6, 7], where a multitude of attributes, like age, gender, hair and skin
color were used for classification of a face database, as well as in [8, 9] where the
impact of pruning traits like age, gender and race was identified in enhancing the
performance of regular biometric systems.

In the setting of human authentication, we consider the scenario where we
search for a specific subject of interest, denoted as v′, belonging to a large and
randomly drawn authentication group v of n subjects, where each subject belongs
to one of ρ categories. The elements of the set (authentication group) v are derived
randomly from a larger population, which adheres to a set of population statistics.
A category corresponds to subjects who adhere to a specific combination of soft
biometric characteristics, so for example one may consider a category consisting
of blond, tall, females. We henceforth refer to a system which extracts features and
classifies them in pre-defined categories, as a soft biometric system (SBS).

With n being potentially large, we seek to simplify the search for subject v′

within v by algorithmic pruning based on categorization, i.e., by first identifying
the subjects that potentially belong to the same category as v′, and by then prun-
ing out all other subjects that have not been estimated to share the same traits as
v′. Pruning is then expected to be followed by careful search of the remaining un-
pruned set. Such categorization-based pruning allows for a search speedup through
a reduction in the search space, from v to some smaller and easier to handle set S
which is the subset of v that remains after pruning, cf. Figure 1. This reduction
though happens in the presence of a set of categorization error probabilities {ϵf},
called confusion probabilities, that essentially describe how easy it is for categories
to be confused, hence also describing the probability that the estimation algorithm
erroneously prunes out the subject of interest, by falsely categorizing it. This con-
fusion set, together with the set of population statistics {pf}ρf=1 which describes
how common a certain category is inside the large population, jointly define the
statistical performance of the search pruning, which we will explore. The above
aspects will be precisely described later on.

Example 1 An example of a sufficiently large population includes the inhabitants
of a certain city, and an example of a randomly chosen authentication group (n-
tuple) v includes the set of people captured by a video surveillance system in the
aforementioned city between 11:00 and 11:05 yesterday. An example SBS could
be able to classify 5 instances of hair color, 6 instances of height and 2 of gender,
thus being able to differentiate between ρ = 5 · 6 · 2 = 60 distinct categories. An
example search could seek for a subject that was described to belong to the first
category of, say, blond and tall females. The subject and the rest of the authenti-
cation group of n = 1000 people, were captured by a video-surveillance system
at approximately the same time and place somewhere in the city. In this city, each
SBS-based category appears with probability p1, · · · , p60, and each such category
can be confused for the first category with probability ϵ2, · · · , ϵ60. The SBS makes
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Figure 1: System overview.

an error whenever v′ is pruned out, thus it allows for reliability of ϵ1. To clar-
ify, having p1 = 0.1 implies that approximately one in ten city inhabitants are
blond-tall-females, and having ϵ2 = 0.05 means that the system (its feature esti-
mation algorithms) tends to confuse the second category for the first category with
probability equal to 0.05.

What becomes apparent though is that a more aggressive pruning of subjects
in v results in a smaller S and a higher pruning gain, but as categorization entails
estimation errors, such a gain could come at the risk of erroneously pruning out the
subject v′ that we are searching for, thus reducing the system reliability.

Reliability and pruning gain are naturally affected by, among other things, the
distinctiveness and differentiability of the subject v′ from the rest of the people in
the specific authentication group v over which pruning will take place that partic-
ular instance. In several scenarios though, this distinctiveness changes randomly
because v itself changes randomly. This introduces a stochastic environment. In
this case, depending on the instance in which v′ and its surroundings v − v′ were
captured by the system, some instances would have v consist of bystanders that
look similar to the subject of interest v′, and other instances would have v consist
of people who look sufficiently different from the subject. Naturally the first case
is generally expected to allow for a lower pruning gain than the second case.

The pruning gain and reliability behavior can also be affected by the system de-
sign. At one extreme we find a very conservative system that prunes out a member
of v only if it is highly confident about its estimation and categorization, in which
case the system yields maximal reliability (near-zero error probability) but with a
much reduced pruning gain. At the other extreme, we find an effective but unreli-
able system which aggressively prunes out subjects in v, resulting in a potentially
much reduced search space (|S| << n), at a high risk though of an error. In the
above, |S| denotes the cardinality of set S.
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Figure 2: Pruning gain, as a function of the confusability probability ϵ, for the
uniform error setting, and for p1 = 0.1. Plotted for ρ = 3 and ρ = 8.

1.3 Contributions

In the next section we elaborate on the concept of pruning gain which de-
scribes, as a function of pruning reliability, the multiplicative reduction of the set
size after pruning: for example a pruning gain of 2 implies that pruning managed
to halve the size of the original set. Section 3 provides average case analysis of
the pruning gain, as a function of reliability, whereas Section 4 provides atypical-
case analysis, offering insight on how often pruning fails to be sufficiently helpful.
In the process we try to provide some intuition through examples on topics such
as, how the system gain-reliability performance suffers with increasing confusabil-
ity of categories, or on whether searching for a rare looking subject renders the
search performance more sensitive to increases in confusability, than searching for
common looking subjects.

Before proving the aforementioned results we hasten to give some insight, in
the language of biometrics, as to what is to come. In the setting of large n, Sec-
tion 3 easily tells us that the average pruning gain takes the form of the inverse of∑ρ

f=1 pf ϵf , which is illustrated in an example in Figure 4 for different (uniform)
confusability probabilities, for the case where the search is for an individual that
belongs to a category that occurs once every ten people, and for the case of two
different systems that can respectively distinguish 3 or 8 categories. The atypical
analysis in Section 4 is more involved and is better illustrated with an example,
which asks what is the probability that a system that can identify ρ = 3 categories,
that searches for a subject of the first category, that has 80 percent reliability, that
introduces confusability parameters ϵ2 = 0.2, ϵ3 = 0.3 and operates over a popu-
lation with statistics p1 = 0.4, p2 = 0.25, p3 = 0.35, will prune the search to only
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Figure 3: Asymptotic rate of decay of P (|S| > τn), for ρ = 3, reliability 0.8,
population statistics p1 = 0.4, p2 = 0.25, p3 = 0.35 and confusability parameters
ϵ2 = 0.2, ϵ3 = 0.3.

a fraction of τ = |S|/n. We note that here τ is the inverse of the pruning gain. We
plot in Figure 3 the asymptotic rate of decay for this probability,

J(τ) := − lim
n→∞

log

n/ρ
P (|S| > τn) (1)

for different values of τ . From the J(τ) in Figure 3 we can draw different conclu-
sions, such as:

• Focusing on τ = 0.475 where J(0.475) = 0, we see that the size of the (after
pruning) set S is typically (most commonly - with probability that does not
vanish with n) 47.5% of the original size n. In the absence of errors, this
would have been equal to p1 = 40%, but the errors cause a reduction of the
average gain by about 15%.

• Focusing on τ = 0.72, we note that the probability that pruning removes
less than 1− 0.72 = 28% of the original set, is approximately given by e−n,
whereas focusing on τ = 0.62, we note that the probability that pruning
removes less than 1−0.62 = 38% of the original set, is approximately given
by e−n/2. The probability that pruning removes less than half the elements
is approximately P (τ > 0.5) ≈ e−n/10.

The expressions from the above graphs will be derived in detail later on.
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2 Gain v.s. reliability in soft biometric systems

As an intermediate measure of efficiency we consider the (instantaneous) prun-
ing gain, defined here as

G(v) := n

|S|
, (2)

which simply describes1 the size reduction, from v to S, and which can vary from
1 (no pruning gain) to n. In terms of system design, one could also consider the
relative gain,

r(v) := 1− |S|
n

∈ [0, 1], (3)

describing the fraction of people in v that were pruned out.
It is noted here that G(v), and by extension r(v), vary randomly with, among

other things, the relationship between v and v′, the current estimation conditions
as well as the error capabilities of the system. For example, we note that if v and
v′ are such that v′ belongs in a category in which very few other members of v
belong to, then the SBS-based pruning is expected to produce a very small S and a
high gain. If though, at the same time, the estimation capabilities (algorithms and
hardware) of the system result in the characteristics of v′ being easily confusable
with the characteristics of another populous category in v, then S will be generally
larger, and the gain smaller.

As a result, any reasonable analysis of the gain-reliability behavior must be
of a statistical nature and must naturally reflect the categorization refinement, the
corresponding estimation error capabilities of the system, as well as the statistics
of the larger population.

2.1 SBS categorization, estimation capabilities and population statis-
tics

2.1.1 Categorization and population statistics

In the setting of interest, we consider that v is chosen at random from a large
population, and that everyone in v belongs to one specific category Cf ⊂ v, f =
1, · · · , ρ with probability equal to

pf := Ev
|Cf |
n

, f = 1, · · · , ρ. (4)

Hence the set of pf , f = 1, · · · , ρ describes the categorization-based population
statistics, i.e., the statistics of the population from where v is randomly picked.

Without loss of generality it is assumed that the subject of interest belongs to
the first category, i.e., that v′ ∈ C1. The fact that v′ ∈ C1 is also assumed to be
known to the system. In this setting, pruning employs a categorization/estimation
algorithm which, correctly or incorrectly, assigns each subject v ∈ v to a specific

1We here assume that the SBS is asked to leave at least one subject in S.

6



Figure 4: Confusion parameters {ϵf}.

category Ĉ(v) ∈ [1, ρ]. Errors may originate from say, algorithmic failures or
reduced image and sensing quality. A subject v ∈ v is pruned out if and only
if Ĉ(v) ̸= 1, i.e., when it is estimated that v is not a member of C1, whereas if
Ĉ(v) = 1 then the subject v is not pruned out and is instead added into the selected
set S of remaining candidates.

2.1.2 Error performance capabilities of the SBS

In concisely describing the error performance capabilities of the SBS, we here
adopt the simplifying assumption that the confusion probability is a function of the
category, i.e., that for any subject v ∈ Cf , the probability that the categorization
algorithm does not prune v, is a constant denoted as

ϵf := P (Ĉ(v) = 1), v ∈ Cf . (5)

It becomes clear that ϵ1 describes the system reliability (1 minus the probability
of error), and also that for f ≥ 2, ϵf describes the probability that any member of
Cf is misidentified to share the same characteristics as v′, and is thus incorrectly
not pruned out. We note that the adopted error measure, albeit an approximation,
successfully reflects the fact that different categories may be easier to confuse than
others2. Specifically having ϵf > ϵf ′ means that people in category Cf can be
more easily confused to belong to category C1 of v′, than people in category Cf ′ .

Scaling the error with increasing number of categories Defining the error be-
havior set {ϵf} is an interesting research task in its own right, but it is beyond the
scope of this work. We do though provide a few brief thoughts on this, and sug-
gest a simple error measure that can reflect the fact that generally, an increasing
refinement of categorization can come at the cost of more erroneous detections. As
we are interested in simple insightful expressions, we consider the affine case that

2We note that the set {ϵf} is simply the first row of what is commonly known as a confusion
matrix.
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Figure 5: Scaling error probability, ϵf =
max(ρ−βf ,0)

ρ λf .

assigns ϵf the form

ϵf =
max(ρ− βf , 0)

ρ
λf , f = 2, · · · , ρ (6)

where λf ∈ [0, 1] and βf ≥ 1 are tuned to fit the categorization capabilities of the
system. Specifically the above error measure is suitable for an SBS that introduces
negligible probability of categorization error for subjects in Cf whenever ρ ≤ βf ,
i.e., whenever it is asked to distinguish between fewer than βf categories. Further-
more in such a system, as the categorization refinement ρ increases, the probability
of categorization error for subjects in Cf asymptotically reaches some fixed value
λf ≤ 1. Figure 5 illustrates this.

3 Performance analysis: average behavior of SBS-based
pruning

In the following we analyze the pruning gain, and then proceed to suggest
another simple metric that combines both gain and reliability.

3.1 Pruning gain

We here average G(v) over all possible authentication groups v, and over the
randomness of the categorization errors w, to get the (average) pruning gain

G := Ev,wG(v) (7)

as described in the following.
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Proposition 1 The average pruning rate of categorization-based pruning in SBS
is given by

G =
n

Ev,w|S|
=

( ρ∑
f=1

pf ϵf
)−1

. (8)

Similarly one can see that the relative gain is averaged to be r := Ev,wr(v) =∑ρ
f=1 pf (1− ϵf ). We recall that reliability is given by ϵ1.
The proof of the proposition is simple and is briefly described in the Appendix.

We proceed with a clarifying example that follows directly from Proposition 1.

Example 2 (uniform error setting) In the uniform error setting where the prob-
ability of erroneous categorization of subjects is assumed to be constant and equal
to ϵ for all categories, i.e., where ϵf = ϵ = 1−ϵ1

ρ−1 , ∀f = 2, · · · , ρ, then

G =
(
p1 + ϵ− p1ϵρ

)−1
, (9)

This was already illustrated in Figure 4. We quickly note that for p1 = 1/ρ, then the
gain is equal to 1/p1 irrespective of ϵ and irrespective of the rest of the population
statistics.

Now considering the case where the uniform error increases with the refine-
ment of the pruning, we set ϵ = max(ρ−β,0)

ρ λ, and for any set of population statis-
tics we have

G(λ) =
(
p1[1 + (ρ− β)λ] +

ρ− β

ρ
λ

)−1

, (10)

which approaches G(λ) = (p1[1 + (ρ− β)λ] + λ)−1 as ρ increases. We briefly
note that, as expected, in the regime of very high reliability (λ → 0), and irre-
spective of {pf}ρf=2, the pruning gain approaches 1

p1
. In the other extreme of low

reliability (λ → 1), the gain approaches
(
1− Perr

)−1.

3.2 Goodput of search pruning

We here identify a simple utility measure, to be referred to as the (average)
goodput and to be denoted as U , that can be readily used to simultaneously rank
the gain and reliability worth of SBS-based pruning. For the sake of simplicity the
measure takes the following concise form of a weighted product between reliability
and gain,

U := (1− Perr)
γ1Gγ2 (11)

for some chosen positive γ1, γ2 that respectively describe the importance paid to
reliability and to pruning gain.

We proceed with a clarifying example that focuses on the uniformly scaling
error case.
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Example 3 (goodput under uniform error scaling) In the uniformly scaling er-
ror case where erroneous categorization happens with probability ϵ, and for γ1 =
γ2 = 1, the goodput is equal to

U(ϵ) = ϵ+ (1− ϵρ)

ϵ+ p1(1− ϵρ)
. (12)

The goodput starts at a maximum of U = 1
p1

at near zero ϵ, and decreases at a rate
of

δU
δϵ

=
p1 − 1

[ϵ+ p1(1− ρϵ)]2
, (13)

which as expected3 is negative for all p1 < 1. We here see that δ
δp1

δ U
δϵ |ϵ→0 → 2−p1

p31
which is positive and decreasing in p1. Within the context of the example, the
intuition that we can draw is that, for the same increase in ϵ4, a search for a rare
looking subject (p1 small) can be much more sensitive, in terms of goodput, to
outside perturbations (fluctuations in ϵ) than searches for more common looking
individuals (p1 large).

4 How often soft-biometric systems fail in pruning: rare
event behavior

In the previous section we analyzed the typical behavior of a system, endowed
with the ability to distinguish between ρ categories, having certain estimation error
capabilities {ϵf}ρf=1 and operating in a general population with statistics given by
{pf}ρf=1. Such analysis described how the system behaves most of the time.

Let us consider though a scenario where a search for a subject v′ turned out to
be extremely ineffective, and fell below the expectations, due to a very unfortunate
matching of the subject with its surroundings v. The natural question is then how
often will a system that was designed to achieve a certain average gain-reliability
behavior, fall short of the expectations, providing an atypically small pruning gain
and leaving its users with an atypically large and unmanageable S .

We begin by recalling that for a given authentication group v, the categorization
algorithm identifies set S of all unpruned subjects, defined as

S = {v ∈ v : Ĉ(v) = 1}. (14)

We are here interested in the size of the search after pruning, specifically in the
parameter

τ :=
|S|
n/ρ

, 0 ≤ τ ≤ ρ, (15)

3We also note here that from the condition that pruning returns at least one element in S , then
(cf.(9)) ϵ+ p1(1− ρϵ) > 1

n
which guarantees that δU

δϵ
is finite.

4Example for such deterioration can be a reduction in the luminosity around the image-capture
cameras.
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which represents a relative deviation from a fixed size n/ρ of S. Proposition 1 gave
the typical, i.e., common, value of τ to be

τ0 := Ev
|S|
n/ρ

= ρ

ρ∑
f=1

pf ϵf , (16)

and we are now interested in the atypical behavior, i.e., we are interested in under-
standing the probability of having an authentication group v that results in atypi-
cally unhelpful pruning (τ > τ0), or atypically helpful pruning (τ < τ0).

Towards this let

α0,f :=
|Cf |
n/ρ

, (17)

let a0 = {α0,f}ρf=1 describe the instantaneous normalized distribution (histogram)
of {|Cf |}ρf=1 for the specific, randomly chosen and fixed authentication group v,
and let

p := {pf}ρf=1 = {Ev
|Cf |
n

}ρf=1, (18)

describe the normalized statistical distribution of {|Cf |}ρf=1.
Furthermore, for a given v, let

α1,f :=
|Cf ∩ S|
n/ρ

, 0 ≤ α1,f ≤ ρ, (19)

let α1 := {a1,f}ρf=1, and for α := {α0,α1}, let

V(τ) :=
{
0 ≤ α1,f ≤ min(τ, α0,f ),

ρ∑
f=1

α1,f = τ
}
, (20)

denote the set of valid α for a given τ .
Given the information that α1 has on α0, given that τ is implied by α1, and

given that the algorithms here categorize a subject independently of other subjects,
it can be seen that for any α ∈ V(τ) then

P (α, τ) = P (α0,α1) = P (α0)P (α1|α0) (21)

=

ρ∏
f=1

P (α0,f )

ρ∏
f=1

P (α1,f |α0,f ). (22)

The following lemma describes the asymptotic behavior of P (α, τ), for any
α ∈ V(τ), i.e., it describes the (asymptotic rate of decay of the) probability that,
under a specific set of population statistics, a specific authentication group with a
specific histogram, described by α, will cause the pruning algorithm to allow for
an unpruned set of size

|S| = τ
n

ρ
(23)
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for some 0 ≤ τ ≤ ρ. This answer will be given below as a concise function of a
binomial rate-function (cf. [10])

If (x) =

{
x log( x

ϵf
) + (1− x) log( 1−x

1−ϵf
) f ≥ 2

x log( x
1−ϵ1

) + (1− x) log(1−x
ϵ1

) f = 1.
(24)

The lemma follows.

Lemma 1

− lim
n→∞

log

n/ρ
P (α, τ)

= ρ

ρ∑
f=1

α0,f log
(α0,f

pf

)
+

ρ∑
f=1

(
α0,f − α1,f

)
If
( α1,f

α0,f − α1,f

)
. (25)

The proof follows soon after. We now proceed with the main result, which
averages the outcome in Lemma 1, over all possible authentication groups.

Theorem 1 In SBS-based pruning, the size of the remaining set |S|, satisfies the
following:

J(τ) := − lim
n→∞

log

n/ρ
P (|S| ≈ τ

n

ρ
)

= inf
α∈V

ρ

ρ∑
f=1

α0,f log
α0,f

pf
+

ρ∑
f=1

(
α0,f − α1,f

)
If
( α1,f

α0,f−α1,f

)
. (26)

Furthermore we have the following.

Theorem 2 The probability that after pruning, the search space is bigger (resp.
smaller) than τ n

ρ , is given for τ ≥ τ0 by

− lim
n→∞

log

n/ρ
P (|S| > τ

n

ρ
) = J(τ) (27)

and for τ < τ0

− lim
n→∞

log

n/ρ
P (|S| < τ

n

ρ
) = J(τ). (28)

The above describe the probability of atypical events (authentication groups) v
that deviate from the common behavior described in (16) and that accept atypically
ineffective or atypically effective pruning. We offer the intuition that the atypical
behavior of the pruning gain is dominated by a small set of authentication groups,
that minimize the expression in Theorem 1. Such minimization was presented in
Figure 3, and in examples that will follow after the proofs.

We now proceed with the proofs.

12



Proof of Lemma 1:
We first note that

P (α0)
.
= e−nD(α0/ρ||p) = e

−n
ρ
D(α0||ρp) (29)

where
D(α0||p) =

∑
f

α0,f log
α0,f

pf
(30)

is the informational divergence between α0 and p (cf. [10]). We use .
= to denote

exponential equality, i.e., we write f(n)
.
= e−nd to denote lim

n→∞

log f(n)

n
= d

and
.
≤,

.
≥ are similarly defined. In establishing P (α1|α0), we focus on a specific

category f , and look to calculate

P

(
|S ∩ Cf | =

n

ρ
α1,f | |Cf | =

n

ρ
α0,f

)
, (31)

i.e., to calculate the probability that pruning introduces n
ρα1,f new elements, from

Cf to S, given that there are n
ρα0,f elements of Cf . Towards this we note that there

is a total of
|Cf | =

n

ρ
α0,f (32)

possible elements in Cf which may be categorized, each with probability ϵf , to
belong to C1 by the categorization algorithm. The fraction of such elements that
are asked to be categorized to belong to C1, is defined by α to be

xf :=
|S ∩ Cf |
|Cf |

=

n
ρα1,f

|Cf |
=

α1,f

α0,f
, (33)

an event which happens with probability

P (xf ) = P

(
|S ∩ Cf | =

n

ρ
α1,f | |Cf | =

n

ρ
α0,f

)
.
= e−nf If (xf ), (34)

where in the above, If (xf ) = xf log(
xf

ϵf
)+(1−xf ) log(

1−xf

1−ϵf
) is the rate function

of the binomial distribution with parameter ϵf (cf. [11]). Now given that

P (α1|α0) =

ρ∏
f=1

P

(
|S ∩ Cf | =

n

ρ
α1,f | |Cf | =

n

ρ
α0,f

)
(35)

then
− lim

n→∞

log

n/ρ
logP (α1|α0) = (α0,f )If (

α1,f

α0,f
). (36)

Finally given that P (α, τ) = P (α0)P (α1|α0), we conclude that − limn→∞
log
n/ρ logP (α, τ) =

D(α0||ρp) + (α0,f )If (
α1,f

α0,f
).

13



Proof of Theorem 1: The proof is direct from Varadhan’s lemma (cf. [11]),
which applies after noting that |V(τ)| ≤ n2ρ ≤̇ enδ ∀δ > 0, and that supα∈V(τ) P (α) ≤
P (τ) ≤ |V(τ)| supα∈V(τ) P (α).

Proof of Theorem 2: The proof is direct by noting that for any δ > 0, then for
τ ≥ τ0 we have

− lim
n→∞

log

n/ρ
P (|S| > (τ + δ)

n

ρ
) >− lim

n→∞

log

n/ρ
P (|S| > τ

n

ρ
), (37)

and similarly for τ < τ0 we have

− lim
n→∞

log

n/ρ
P (|S| < (τ − δ)

n

ρ
) > − lim

n→∞

log

n/ρ
P (|S| < τ

n

ρ
). (38)

In the following we gain some insight with clarifying examples. We are par-
ticularly interested in understanding the behavior of the search pruning in the rare
cases where the instances v substantially deviate in distribution {|Cf |}ρf−1 from
the expected p.

Example 4 (system behavior for rare groups) Consider the case where an SBS
has ρ = 2 categories, distribution probabilities p = [p, 1 − p], and cross-over
probabilities (estimation errors) ϵ = [1 − ϵ, ϵ]. Then, the typical authentication
groups v that result in a remaining set of |S| ≈ τ n

2 , have distribution given by
α

′
0 = [α0,1, α1,1 = 1 − α0,1] which is the solution to α0,1(2α0,1 − α1,1) =

(1− α0,1)(2− 2α0,1 − τ + α1,1).
To see this, directly from Lemma 1, we have that

I(α, τ) := − lim
n→∞

log

n/ρ
P (α, τ)

= 2α0,1 log
(α0,1

p

)
+ 2α0,2 log

( α0,2

1− p

)
+ α0,1I1(α1,1/α0,1) + α0,2I2(α1,2/α0,2). (39)

After some algebra we see that infα0 I(α, τ) = I(α
′
0,α1, τ), where α

′
0 = [α0,1, 1−

α0,1] is the solution to α0,1(2α0,1 − α1,1) = (1− α0,1)(2− 2α0,1 − τ + α1,1).

A further clarifying example focuses on the case of a statistically symmetric
population.

Example 5 Consider the simplifying scenario where the general population is uni-
formly distributed over the ρ = 2 categories, and for simplicity of notation let
y := a0,1 and δ := α1,1. Then for

I(y, δ, τ) := lim
n→∞

log

n/2
P (|S| = n

2
τ, y, δ), (40)
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and setting α0 = [y, 1 − y], the behavior of τ and α1 on populations v that are
potentially skewed, can be described as follows.

inf
δ
I(y, δ, τ) = I(y, τ, δ = yτ)

= 2y log 2y + 2(1− y) log 2(1− y) + τ log τ + (2− τ) log(2− τ). (41)

To see the above, simply calculate the derivative of I with respect to δ. For the
behavior of τ we see that

I(τ) = inf
y
inf
δ
I(y, δ, τ) = I(y = p, δ = pτ, τ)

= τ log τ + (2− τ) log(2− τ), (42)

which can be seen by calculating the derivative of infδ I(y, δ, τ) with respect to y.

5 Conclusions

The work provided, in the language of biometrics, statistical analysis of the
gain from pruning when applied to searches over large data sets, where these sets
are random and where there is a possibility that the pruning may entail errors.
In this setting, pruning plays the role of pre-filtering, similar to techniques such
as video indexing. The average-case analysis presented here, described the typi-
cal assistance that pruning provides in reducing the search space, whereas large-
deviations based analysis provided insight as to how often pruning can behave in an
atypically unhelpful, or atypically helpful manner. This insight may help in better
designing pre-filtering algorithms for different search settings.

A Proof of Proposition 1

For a given randomly drawn authentication group v, let

Ŝf := {v ∈ Cf : Ĉ(v) = 1} (43)

denote the set of subjects of Cf that were not pruned out by the categorization
algorithm, i.e., the subjects that were estimated by the algorithm to have the traits
corresponding to C1, and that were thus added to S . Now note that

Ev,w|Ŝf | = npf ϵf , (44)

and conclude that Ev,w|S| =
∑ρ

f=1 Ev,w|Ŝf | =
∑ρ

f=1 npf ϵf which results in

G = n
Ev,w|S| =

(
1−

∑ρ
f=1 pf (1− ϵf )

)−1
.
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