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Abstract—Motivated by the femtocell networks where cross-
tier interference management is crucial to achieve higher system
throughput, we consider a basic interference model consisting of
a MIMO two-way relay communication network in presence of a
one-way point-to-point MIMO communication link. We propose
an upper-bound on the maximum degrees of freedom of this
channel. Precoders using signal-space alignment strategies at
the transmitter and zero-forcing (ZF) receivers are shown to
achieve the maximum degrees-of-freedom. The proposed solution
is particularly interesting since it allows the macro transmitter
to be oblivious to the interfering two-way link, which is an
important feature for obtaining distributed solutions.

I. INTRODUCTION

Cooperative communication and relaying have shown to
improve performance of communication systems. To increase
the channel capacity, several cooperation modes involving
relay stations (RSs) have been proposed in the literature [1]–
[3]. Following these works, relaying has found applications
in cellular networks, mobile ad-hoc networks, and sensor
networks due to the potential improvements in system per-
formance provided by relaying mechanism.

Although relaying provides many advantages, the half-
duplex constraint at the nodes (a node cannot listen and
transmit simultaneously) imposes a loss in degrees-of-freedom
(DoF) and therefore limits the achievable spectral efficiency.
To circumvent the spectral efficiency loss in the one-way
relay channel, the two-way relay channel (TRC) has recently
been proposed: here both nodes exchange information via the
intermediate RS [4]–[7]. The key idea in two-way relaying
stems from network coding concepts, where it was shown
that combining packets at the relay node as against classical
routing can improve the system capacity. Note that network
coding is a packet level (and hence a higher layer) processing
technique, which can be thought of as a decode-and-forward
two-way relaying mechanism. Two way relaying in general,
is a physical-layer signal-processing technique that exploits
the naturally combined signal in the channel/air to get similar
gains as digital network coding. This substantially mitigates
the loss in degrees of freedom that is otherwise common
with half-duplex constrained nodes. Earlier forms of two-way
relaying have been called as analog network coding.

The TRC model considered in this paper consists of two
source nodes 1 and 2, wanting to exchange information via
a relay node R as shown in Fig 1. This model is called as
a separated Two-way Relay Channel (s-TRC) because of no
direct link between the source nodes. The relay does not have
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Fig. 1: Separated two-way relay network

any information of its own to transmit, and only helps 1 and
2 communicate.

In this paper, unlike previously considered TRC system
models, we consider a more general network model as in
Fig 2. In addition to the two way relay communication link
(involving nodes 1, 2 and R), there is an other interfering link
- a macro-transmitter (node Tx-3) communicating to a macro-
receiver (node Rx-3) using the same spectrum as the TRC.
Since the two links (TRC and macro-link) interfere with each
other, interference management will be essential to realize the
overall system capacity. Note that this interference channel is
also a generalization of the classical interference channel [12],
in that one of the links is a two way relay channel.

Motivation for considering this model comes from Femto-
cell networks [11]. The two way channel can be considered
as nodes within a femtocell, with the access-point or home
basestation acting as the relay node and the macrocell bases-
tation can be the macro-transmitter transmitting to a user in
the macro cell.

The high-SNR analysis of TRC has attracted significant
interest in the recent past. Diversity-Multiplexing gain tradeoff
(DMT) analysis for various TRC models has been investigated
[8]–[10]. In this paper, we are interested in the DoF (which
is a measure of capacity scaling with SNR) of the above
interference channel. We show that “signal space alignment”
is essential to achieve maximum degrees of freedom of the
system.

A. Definitions and Notations

For a signal-noise-ratio (SNR) equal to ρ at each receiver,
let Ri(ρ) be the rate achievable by transmitter i. If C(ρ) =
{(R1(ρ), R2(ρ), R3(ρ)) denotes the capacity region for the
system, the optimum degrees-of-freedom is defined as

dmax = lim
ρ→∞

supC(ρ)

∑
k Rk(ρ)
log ρ

. (1)
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Fig. 2: System model

For a matrix H, H† denotes the transpose-conjugate matrix.
The notations IM and 0M denote the M ×M identity matrix
and all-zero matrix respectively. We use V(H) to denote all the
eigen-vectors of matrix H. Furthermore, Vmax,K(H) is used
to denote the first K eigen-vectors corresponding to the eigen-
values ordered in the decreasing order. We use the kronecker
product notation

H⊗ I2 =
[
H 02

02 H

]
and span(A) to denote the vector space spanned by the
columns of matrix A.

B. System model

Each node in the system uses multiple antennas to com-
municate. Nodes 1 and 2 both have M antennas while node
Tx-3 has M3 antennas. The relay node and Rx-3 have NR and
N3 number of antennas respectively. Throughout this paper
we assume that all the channels are frequency flat, quasi-
static channels, and they are all independent of each other.
Matrix Hij denotes the channel from transmitter j to receiver
i. We also assume that all nodes have complete channel state
information.

All nodes have a half-duplex constraint, so they can either
transmit or listen at a time. Communication between nodes
1 and 2 takes place via a two-phase protocol - in the first
phase (MAC phase) nodes 1 and 2 transmit s1(t) and s2(t)
respectively, while the relay node listens, and in the second
phase (BC phase) the relay transmits a linearly processed
signal, while the other nodes 1 and 2 listen. On the macro-
link, Tx-3 continuously transmits s(1)

3 (t) and s(2)
3 (t) to Rx-

3 in the first and second phase respectively. Since we are
only interested in the maximum degrees-of-freedom (DoF), we
consider the case where the two phases are of equal duration.

In the first-phase, the received signals at the relay and node
Rx-3 are given by

YR(t) =
∑

i∈{1,2}

HRisi(t) + HR3s
(1)
3 (t) + ZR(t) (2)

Y(1)
3 (t) =

∑
i∈{1,2}

H3isi(t) + H33s
(1)
3 (t) + Z(1)

3 (t), (3)

and in the second phase,

Y1(t) = H1RWYR(t) + H13s
(2)
3 (t) + Z1(t) (4)

Y2(t) = H2RWYR(t) + H23s
(2)
3 (t) + Z2(t) (5)

Y(2)
3 (t) = H3RWYR(t) + H33s

(2)
3 (t) + Z(2)

3 (t), (6)

where W is the NR×NR linear precoding matrix used at the
relay node. Henceforth, we drop the time index t for notational
simplicity.

Since the nodes 1 and 2 are aware of the signals trans-
mitted in the first-phase, they can cancel their respective self-
interference and the resulting signal is

Ỹ1 = H1RWHR2s2 + H1RWHR3s
(1)
3 + H13s

(2)
3 + Z̃1

(7)

Ỹ2 = H2RWHR1s1 + H2RWHR3s
(1)
3 + H23s

(2)
3 + Z̃2,

(8)

where Z̃i denotes the cumulative Gaussian noise at node i. At
node Rx-3, we have

Y3 =

[
Y(1)

3

Y(2)
3

]
= C

[
s(1)
3

s(2)
3

]
+ D

[
s1

s2

]
+ Z3, (9)

where

C =
[

H33 0
H3RWHR3 H33

]
and (10)

D =
[

H31 H32

H3RWHR1 H3RWHR2

]
. (11)

The system is thus described by the tuple (Ỹ1, Ỹ2,Y3).

II. UPPER-BOUND ON DOF

In this section, we derive an upper-bound on the achievable
DoF. This bound is obtained through a series of channel
enhancements (capacity of enhanced channel contains the
capacity of original channel), leading to a classical two-user
interference channel for which the DoF is known [12].

We first consider enhancements of receivers i ∈ {1, 2},
by converting a possibly degenerate channel to a non-
degenerate channel (full-rank channel matrices). Suppose
HiRW = UiΛiVi with the eigen-values arranged in de-
creasing order, then the system (Ỹ1, Ỹ2,Y3) is equivalent
to (U†1Ỹ1,U

†
2Ỹ2,Y3) since multiplication by an invertible

matrix does not change the capacity. Now, suppose ri =
rank(Λi) < M , then the TRC (U†1Ỹ1,U

†
2Ỹ2) is equivalent

to a truncated system with ri number of antennas at receiver i,
since the last M−ri rows in the received signal U†i Ỹi do not
carry any useful information. Our first stage of enhancement
therefore considers a channel obtained by replacing matrix Λi
by Λ̂i, which is obtained by replacing the zero-eigenvalues
of Λi by a non-zero positive real number α. This clearly is
an enhancement since the rates corresponding to the original
channel can always be decoded at both receivers, by ignoring
the last M − ri rows of the received signal. The enhanced
system (Ŷ1, Ŷ2,Y3) is given by

Ŷ1 = Λ̂1V1HR2s2 + Λ̂1V1HR3s
(1)
3 + U†1H13s

(2)
3 + Ẑ1

Ŷ2 = Λ̂2V2HR1s1 + Λ̂2V2HR3s
(1)
3 + U†2H23s

(2)
3 + Ẑ2

For the second stage of enhancement, we consider the case
where receivers 1 and 2 can exchange their received signals
- this corresponds to perfect cooperation between receivers



1 and 2. Clearly, such a cooperation can only improve the
capacity. The resulting channel can now be seen as a two user
MIMO interference channel, with the corresponding signals
given by [

Ŷ2

Ŷ1

]
= Ŷ = A

[
s1

s2

]
+ B

[
s(1)
3

s(2)
3

]
+ Z (12)

Y3 = C

[
s(1)
3

s(2)
3

]
+ D

[
s1

s2

]
+ Z3, (13)

where

A =
[
Λ̂2V2HR1 0

0 Λ̂1V1HR2

]
(14)

B =
[
Λ̂2V2HR3 U†2H23

Λ̂1V1HR3 U†1H13

]
. (15)

With this, following similar approach as in [12], we can
formally prove the following:

Theorem 1: The degrees of freedom (DoF) achievable in a
(M,M,M3, NR, N3) antenna femto-macro interference chan-
nel cannot be more than

min{M +M3, N1 +N3,max(M,N3),max(N1,M3)},

where N1 = N2 = min(M,NR).
In the rest of this paper, we only consider two specific

scenarios
1) All nodes with M antennas, in which case the upper-

bound in Theorem 1 is equal to M .
2) M is even, and NR = N3 = M and M3 = M

2 , in which
case the upperbound is again M .

III. ACHIEVABILITY

In this section, we mainly consider the case when all nodes
have M antennas each. Corresponding result for the other case
is presented without proof, at the end of this section.

A. Time-division duplex (TDD) scheme

For the equal antenna case, the upper-bound suggested in
the previous section can be achieved by a simple TDD scheme.
Let the TRC-link and the macro-link be scheduled to transmit
in orthogonal time-slots - the TRC-link uses αT portion of the
time-slot with half this duration for transmitting to the relay
(MAC-phase) and the other half for the relay to broadcast to
the two nodes (BC-phase), and (1 − α)T fraction of the slot
is used for the macro-link. It is known and straight-forward to
show that a stand-alone (separated) TRC with M antennas at
each node, can achieve maximum DoF equal αM (sum-rate
scaling). Further more, the DoF for the point-to-point macro-
link is equal to (1−α)M . Therefore, the DoF achievable using
TDD scheme is equal to the upper-bound M . This essentially
proves that M is indeed the optimal DoF of the system.

While the TDD scheme is optimal, it needs synchronization
and coordinated scheduling between the two links. For appli-
cations like femtocell networks, which is our main motivation
for the proposed problem, the femtocells are user installed

devices, with minimal coordination/control from the base-
station. Naturally, it is expected that coordinated scheduling is
unrealistic when one needs the network to scale with number
of users and/or femtocells. Also, in the multi-user scenario
(multiple TRC-links and multiple macro-links), TDD might
not be optimal. Hence, we propose an alternate scheme that
is alignment based, which does not require coordination as in
the TDD scheme.

B. Oblivious/Uncoordinated signal-space alignment scheme

We propose two different alignment solutions based on
whether M is even or odd.

1) M is even: Let the transmit/receive precoding matrix
at each nodes 1, 2 and 3, be a complex matrix of dimension
M × M

2 . Let W be a M ×M matrix chosen such that

WHR3V
(1)
3 = 0, and (16)

rank (WHR1V1) = rank (WHR2V2) =
M

2
. (17)

Above choice of W nulls the signal from Tx-3 to the relay
node, preventing the interference forwarding from the relay to
the TWRC link. While the system equations (7), (8) and (9)
suggest that the relay node can potentially be used as a shared
relay between the two links (TWRC and macro-link), above
choice of W restricts this to relay only supporting the two-
way communication link. We show that this choice is optimal
as far as DoF is concerned. Such a matrix W is guaranteed
to exist if the following alignment conditions are imposed on
matrices V1 and V2.

H31V1 = H32V2 (18)
span (HR1V1) = span (HR2V2) (19)

The above conditions imply that the signal spaces correspond-
ing to the users 1 and 2 are aligned at the relay node R as well
as macro-receiver 3. This is significantly different from the
classical interference alignment, since 1 and 2 are interferers
for the macro-link alone; and as for the TWRC, its the macro-
transmitter 3 who is the single interferer. Yet, alignment of
signal spaces 1 and 2 at relay node is essential in achieving the
upper-bound. This is possible because of the side-information
(self-interference) available at nodes 1 and 2.

With the relay matrix W chosen as in (16), the received
vectors in (7), (8) and (9) can be written as

Ỹ1 = H1RWHR2V2x2 + H13V
(2)
3 x(2)

3 + Z̃1 (20)

Ỹ2 = H2RWHR1V1x1 + H23V
(2)
3 x(2)

3 + Z̃2 (21)

Y3 =

[
Y(1)

3

Y(2)
3

]
= C

[
V(1)

3 x(1)
3

V(2)
3 x(2)

3

]
+ D

[
V1x1

V2x2

]
+ Z3, (22)

where matrix C is now equal to H33 ⊗ I2.
Now, if the encoding at the macro-transmitter is independent

across phases (i.e., if x(1)
3 and x(2)

3 are independent), the block-
diagonal structure of C ensures that Y(2)

3 is independent of
x(1)

3 and hence decoding at the macro-receiver can be done
independently across phases. The alignment-conditions ensure



that the interference at macro-receiver 3 are aligned in both
phases - to be precise, while (18) ensures alignment in phase 1,
(19) ensures alignment in phase 2 since it implies

span (H3RWHR1V1) = span (H3RWHR2V2) .

We assume that each of the receivers use a ZF based
precoding matrix, and hence decodability at each receiver is
guaranteed by satisfying the following linear-independence
conditions between the signal-subspace and the interference-
subspace:

• Receiver 1 can decode if
[
H1RWHR2V2 H13V

(2)
3

]
is

full-rank
• Receiver 2 can decode if

[
H2RWHR1V1 H23V

(2)
3

]
is

full-rank
• Receiver 3 is able to decode phase 1 information if[

H33V
(1)
3 H31V1

]
is full-rank

• Receiver 3 is able to decode phase 2 information if[
H33V

(2)
3 H3RWHR1V1

]
is full-rank

Proposition 1: The following choice of beamforming vec-
tors achieves DoF equal to M

2 :

• V2 =
[
e1 e2 · · · eM

2

]
, where eis are all distinct

eigen-vectors of the matrix E = H−1
R2HR1H−1

31 H32.
• V1 = H−1

31 H32V2

• V(1)
3 = V(2)

3 =
[
u1 u2 · · · uM

2

]
, where ui ∈

Vmax,M/2 (H33)
• W = H−1

3RH33P⊥H−1
R3 where P⊥ = I−V(1)

3 (V(1)
3 )†.

Proof: The ZF condition (16) at the relay is easy to see
from the choice of W. Also, the alignment conditions follow
by substituting V1 = H−1

31 H32V2 in both (18) and (19).
To prove (17), we show that rank(WHR2V2) = M

2 with
probability close to one, and the proof for rank(WHR1V1)
follows similarly. Now, rank(WHR2V2) < M

2 if and only if∑
i=1

M

2
αiH−1

R3HR2ei =
∑
j=1

M

2
βiui (23)

⇐⇒ H−1
R3HR2V2α = V(1)

3 β (24)

⇐⇒ H−1
R3HR2

[
V2 V⊥2

] [α
0

]
=
[
V(1)

3 (V(1)
3 )⊥

] [β
0

]
(25)

⇐⇒
[
IM −F 0
IM 0 −G

]
x
α
0
β
0

 (26)

where we use F = H−1
R3HR2

[
V2 V⊥2

]
and G =[

V(1)
3 (V(1)

3 )⊥
]
, that are invertible with very high probabil-

ity, and x ∈ span(F)∩span(G). Since F and G are invertible
with high probability,

rank
([

IM −F 0
IM 0 −G

])
= 2M,

with high probability. Furthermore, since the dimension of the
domain {

[
xT αT 0T βT 0T

]T ; x ∈ CM , α, β ∈ C M
2 }

is only 2M , we have

nullity
([

IM −F 0
IM 0 −G

])
= 0

with very high probability, and hence α = β = 0.
Finally, to show that the linear-independence conditions are

satisfied, it is enough to note that the alignment-conditions
only involve matrices H31,H32,HR1 and HR2, while the
precoding matrices at Tx-3 and the relay matrix W are
independent of these matrices. In each case, the precoding
matrices undergo independent transformations and hence the
signal-space and the interference-space at each receiver are
linearly independent with high probability.

Remark 1: While there could be many solutions for align-
ment achieving DoF equal to M , the solution in Proposi-
tion 1 is particularly interesting since it treats the macro-
link transmitter as a primary user in a cognitive radio system,
that is oblivious to the existence of a TRC-link (similar to a
secondary user system). Hence, the precoders for the macro-
link are designed to improve own links. Nodes 1 and 2
(secondary system) optimize their precoders to maximize the
system performance, with the knowledge of signals/precoders
being used by the primary users.

Remark 2 (Unequal antenna case): For the equal antenna
case, a simple TDD scheme achieves the optimum DoF. But
for the case NR = N3 = M and M3 = M

2 , we can easily
show that the TDD scheme can only achieve αM +(1−α)M2
for any 0 ≤ α ≤ 1.

For this case, the same signal alignment strategy in Proposi-
tion 1 works with W = P⊥ where P is the projection matrix
on the subspace spanned by HR3V

(1)
3 .

2) M is odd: For this case, we follow similar approach as
in [13] by considering a two time-slot symbol extension of
the channel, with the channel assumed to be fixed over the
two slots. With this, the system equations corresponding to
(6)-(10) can be written as

¯̃Y1 = H̄1RW̄H̄R2s̄2 +
[
H̄1RW̄H̄R3 H̄13

]
s̄3 + ¯̃Z1 (27)

¯̃Y2 = H̄2RW̄H̄R1s̄1 +
[
H̄2RW̄H̄R3 H̄23

]
s̄3 + ¯̃Z2 (28)

Ȳ3 =

[
Ȳ(1)

3

Ȳ(2)
3

]
= C̄

[
s̄(1)
3

s̄(2)
3

]
+ D̄

[
s̄1

s̄2

]
+ Z̄3, (29)

where s̄i =
[
si(2t+ 1)T si(2t+ 2)T

]T = V̄ixi now
denotes the vector of symbols transmitted from node i ∈
{1, 2} in the first-phase of two consecutive time-slots (again
using M antennas at each terminal). Similarly, s̄(j)

3 =[
s(j)
3 (2t+ 1)T s(j)

3 (2t+ 2)T
]T

= V̄(j)
3 x(j)

i corresponds to
the signal transmitted in the j-th phase (over two time-
slots) from node 3. The received vectors and noise vectors
correspond to the received signal over two time-slots, and the



equivalent channel H̄ij = Hij ⊗ I2 is a 2M × 2M block-
diagonal matrix representing the extended channel. Note that
all transmit-precoding matrices V̄i and V̄(j)

3 are of dimension
2M ×M , and the relay matrix is a 2M × 2M matrix.

For the symbol extended channel, equivalent expressions
are obtained by replacing every matrix with the corresponding
extended matrix (with bars) in all the conditions (19)-(22) and
also the linear-independence conditions. Note that M should
be replaced by 2M in all these equations for appropriate
dimensions.

Following similar approach as in the case of even M , and
using techniques from [13], we can show that following choice
of precoders achieves DoF equal to M

• V̄2 =
[
e1 0 e3 0 · · · 0 eM
0 e2 0 e4 · · · eM−1 eM

]
, where

ei ∈ V(E), and E = H−1
R2HR1H−1

31 H32.
• V̄1 = H̄−1

31 H̄32V̄2

• V̄(j)
3 = V(j)

3 ⊗ I2, where V(j)
3 =

[
u1 u2 · · · uM

2

]
,

ui ∈ Vmax,M/2 (H33)
• W̄ = W⊗I2, where W = H−1

3RH33P⊥H−1
R3 and P⊥ =

I−V(1)
3 (V(1)

3 )†.
Again, the solution is interesting because the macro-link is

oblivious and uses the same solution whether M is odd or
even. Only the TRC-link users need to alter the solution for
different cases.

IV. CONCLUSIONS

Motivated by the femtocell networks where cross-tier in-
terference management is crucial to achieve higher system
throughput, we consider a basic interference model consisting
of a MIMO two-way relay communication network in presence
of a one-way point-to-point MIMO communication link. We
propose an upperbound on the DoF. For the case with M
antennas at all nodes, we show that the maximum degrees-of-
freedom which is M is achievable by simple TDD scheme.
However, for the general case a more sophisticated precoder
using alignment strategies at the transmitter and ZF receivers
are necessary to achieve the maximum DoF.

The proposed solution is particularly interesting since this can
be achieved with the macro transmitter being oblivious to the
interfering two-way link.
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