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Abstract
Sparse coding exhibits promising performance in speech

processing, mainly due to the large number of bases that can
be used to represent speech signals. However, the high de-
mand for computational power represents a major obstacle in
the case of large datasets, as does the difficulty in utilising in-
formation scattered sparsely in high dimensional features. This
paper reports the use of an online dictionary learning technique,
proposed recently by the machine learning community, to learn
large scale bases efficiently, and proposes a new parallel and hi-
erarchical architecture to make use of the sparse information in
high dimensional features. The approach uses multilayer per-
ceptrons (MLPs) to model sparse feature subspaces and make
local decisions accordingly; the latter are integrated by addi-
tional MLPs in a hierarchical way for making global decisions.
Experiments on the WSJ database show that the proposed ap-
proach not only solves the problem of prohibitive computation
with large-dimensional sparse features, but also provides better
performance in a frame-level phone prediction task.
Index Terms: sparse coding, feature extraction, posterior fea-
ture, speech recognition

1. Introduction
Inspired by the discovery in neural science that the brain rep-
resents information with only a small number of active neu-
rons [1], sparse coding has been developed as an efficient sub-
space approach, and has been demonstrated to be a powerful
tool in a wide range of research fields, including signal pro-
cessing, image processing and information representation [2,3].
In the speech community, it has been successfully applied to a
number of applications such as blind source separation [4, 5],
de-noising [6] and speech enhancement [7]. For speech recog-
nition, a number of results have been published on digit recog-
nition tasks based on TIMIT or TIDIGITS datasets [8, 9].

Compared to conventional representations based on short-
term spectral analysis such as Mel frequency cepstral coef-
ficients (MFCCs), sparse coding represents speech signals in
terms of speech patterns which cover a longer time span and
which therefore capture spectro-temporal information. This is
a particularly beneficial attribute when used for speech recogni-
tion with hidden Markov models (HMM) where temporal in-
formation is otherwise generally ignored due to the assump-
tion of independent observations. In contrast to conventional
spectro-temporal pattern learning approaches such as principle
component analysis (PCA) and non-negative matrix factorisa-
tion (NMF), sparse coding enables unambiguous encoding us-
ing overcomplete bases, i.e. the number of bases is larger than
the feature dimension. This is a fundamental advantage as
it supports speech representation with a very large number of
bases (even redundant) without introducing ambiguity.

In spite of the promising potential the application of sparse
coding to speech recognition is far from being straight forward,
particularly in the case of complex tasks that involve tens of
thousands of words and hundreds of hours of training data. The
first challenge comes from the prohibitive computing required
for the learning of a large set of bases; the second relates to
making efficient use of the information scattered in high di-
mensional sparse features. For these reasons, the application
of sparse coding in speech recognition is still limited to simple
tasks and small databases. Even then, base learning on entire
datasets is still prohibitive and manually or randomly selected
subsets are often used [8, 9]. This is obviously sub-optimal for
complex recognition tasks where a large number of bases are
necessary and have to be learnt with large volumes of training
data.

In this paper we attempt to tackle the problems associated
with large-scale sparse coding from two directions. First we
employ an online dictionary learning technique [10], recently
proposed by the machine learning community, to speed up base
learning. In contrast to conventional batch mode learning, the
online approach updates learnt bases frame-by-frame. Although
convergence is not guaranteed for small datasets, online learn-
ing quickly approaches the optimum when data are plentiful.
This is particularly beneficial in the case of complex recognition
tasks where a large database is available for base learning. Sec-
ond, we propose a parallel and hierarchical decision approach
to manage high-dimensional sparse features so that the sparsely
coded information can be utilised efficiently. Specifically, we
build a particular discriminant, e.g. a multilayer perceptron
(MLP), to model subset dimensions of high-dimensional sparse
features and to make local decisions accordingly; these local
decisions are then integrated by additional discriminants in a
hierarchical way for making a global decision.

In the following sections we first briefly outline the online
base learning algorithm and then introduce the parallel and hier-
archical decision approach. Experiments are presented in Sec-
tion 4 and the paper is concluded in Section 5.

2. Online base learning
Given a set of bases W , a signal X can be approximately re-
constructed through multiplication with a coefficient vector H
so that X ≈ WH . The sparse coding technique optimises H
by minimising the following objective function:

L(H;W,X) = |X −WH|22 + λ|H|1 (1)

where |.|l represents the Frobenius l-norm. The second term on
the right hand side of Equation 1 drives most of the elements in
H to zero, thus leading to sparse features. The factor λ controls
the sparsity (larger values lead to more sparsity), and bases in
W are usually constrained to have unit length to ensure a defi-



Algorithm 1 Online dictionary learning for sparse coding
1: A :← 0
2: B :← 0
3: for i:=1 to N do
4: H ← arg minH L(H;W,Xi)
5: A← A+H ×HT

6: B ← B +Xi ×HT

7: W ← update(W,A,B)
8: end for

nite solution for H .
An important advantage of sparse coding is that the solu-

tion for H remains definite even though the number of bases in
W is greater than the feature dimension. This allows a highly
accurate representation of signals with a large set of bases. A
major problem accompanying the use of large base sets, how-
ever, relates to the often prohibitive computation demand asso-
ciated with base learning. Traditional base learning approaches
employ iterative optimisation of the base matrixW and the fea-
ture vector H , e.g. [8, 11]. Having to read and process all the
training data twice in each iteration, these ‘batch’ learning ap-
proaches are highly demanding in both memory resources and
computation when the number of bases to be learnt is large and
the training data are plentiful. A recent alternative approach,
presented in [10] and referred to as online dictionary learning
(ODL), processes frames one-by-one (or in small batches) and
updates the bases after each is processed. The ODL approach
is illustrated in Algorithm 1 where N is the number of frames
in the training data. The intermediate matrices A and B are in-
troduced to accumulate sufficient statistics for historical frames
and update(W,A,B) is a one-step quadratic optimisation for
W given A and B.

By updating the bases once for each frame, online learning
converges much more quickly than conventional batch learning.
In [10] ODL is furthermore shown to converge to optimal bases
given sufficient data. When applied to speech signals a poten-
tial limitation of ODL relates to the assumption of independent
frames and thus it is not suitable for learning temporal patterns.
A simple solution is to compose ‘temporal features’ by concate-
nating a window of neighbouring frames centred on the current
frame so that temporal patterns are captured and learnt through
ODL.

Online base learning enables the learning of a larger num-
ber of bases with a large database. This is highly appealing for
speech recognition: on the one hand the large number of bases
provide for more accurate representations of spectro-temporal
speech patterns; on the other hand learning based on a large
amount data ensures that resulting bases are more representa-
tive of speech content (e.g. phones) instead of noise or speaker-
dependent characteristics. Therefore, the sparse features H ,
which are derived from large sets of bases learnt with large
databases, tend to be more accurate and robust for speech recog-
nition than features based on short-time spectral analysis and
other factorisation techniques.

3. Parallel and hierarchical decision
Online base learning facilitates the discovery of a large set of
spectro-temporal bases to represent speech signals in a reliable
and robust way; however, this also means that speech signal rep-
resentations involve high-dimensional sparse features in which
most of the dimensions are uninformative (zero values). How to
make efficient use of the information embedded in such high di-
mensional sparse features is a challenging problem, especially
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Figure 1: The architecture of parallel and hierarchical decision
for sparse features.

for tasks such as large vocabulary speech recognition where the
dimension of sparse features is usually in the order of several
hundred.

One possible solution involves dimension reduction tech-
niques (usually based on linear transforms), e.g. the Kullback
Leibler (KL) transform [12]. The problem with this simple ap-
proach, though, is that the representation power associated with
sparse coding might be largely lost. A better approach is to
map the sparse features to certain dense features while retain-
ing the representation power for the task in hand. For speech
recognition a natural choice of dense features is phone poste-
rior probabilities, which are discriminative for phone recogni-
tion and directly relate to large vocabulary speech recognition.
Therefore the problem associated with high-dimensional sparse
coding can be largely solved if we can find an efficient method
to map sparse features to phone posterior probabilities.

An MLP-based approach can be adopted from the
HMM/ANN hybrid architecture [13] and the tandem frame-
work [14], where MLPs with speech feature inputs and phone
class label outputs are used to map speech features to phone
posteriors. This can be applied to sparse features directly, as
in [9] and works well for sparse features with reasonable di-
mensions; however, if the feature dimension is high, the com-
putation and resources required for MLP training and prediction
becomes unaffordable.

In order to solve this problem, we resort to the locality and
redundancy of sparse coding. On the one hand useful informa-
tion for a particular task usually resides in very few dimensions
of a sparse feature; on the other hand, information residing in
different dimensions might be similar. This motivates a divide-
and-conquer approach to dealing with very high dimensional
sparse features. Specifically, sparse features can be divided into
a number of dimension subsets and, for each subset, a partic-
ular discriminant is trained and used to make local decisions
based on information contained within the dimensions in ques-
tion. Local decisions for each subset are then merged by ad-
ditional discriminants to make broader decisions. The decision
process continues until a global decision is reached. This leads
to a hierarchical decision approach as illustrated in Figure 1,
which shows MLPs as discriminants, although any other suit-
able discriminant may also be used.

With such a hierarchical approach, each discriminative
model operates on a subspace of the sparse feature and thus the
computation and resources become manageable; furthermore,



training and prediction of the discriminants within the same
layer can be conducted in parallel, leading to an inherent solu-
tion to the computational burden. More importantly, the proper-
ties of locality and redundancy ensure that local discriminants
can be well trained with data in subset dimensions. Although
discriminants attached to different dimension subsets may be
better at recognising different phones, the hierarchical discrim-
inants can learn this bias and make optimal global decisions.
We will see in the next section that this hierarchical decision
approach not only solves the computational burden, but that it
also improves decision quality by mitigating over-fitting.

4. Experiments
We assessed the proposed parallel and hierarchical approach
with a frame-level phone recognition task based on the wall
street journal (WSJ) speech corpus which consists of 7861 utter-
ances from 92 speakers for training and 742 utterances from 20
speakers for evaluation. Both training and evaluation speech ut-
terances are forced-aligned to their phone transcripts, and each
frame is labelled according to the alignment and phone class.
Labelled frames in the training utterances are used to train and
cross validate the MLP models (6500 utterances for training
and the rest for cross validation), and the resulting models are
used to predict frame-level phone classes for all utterances in
the evaluation set.

The baseline representation involves conventional 13-
dimensional MFCCs plus the first and second derivatives (39
dimensions in total) which are computed from the magnitude
spectrum of 25ms-windowed speech using 26 Mel-scaled filter
banks. For sparse coding, the same 26 Mel-scaled filter banks
are used to generate short-time spectral features, from which
temporal features are composed by concatenating T neighbour-
ing spectral features. The temporal features are used to learn R
bases with the ODL algorithm, and the learnt bases are used to
obtain sparse features by decomposing temporal features using
the Lasso approach [10]. Different sparsity leads to different
bases and features; setting λ = 0.1 provides good performance
and therefore the value is used in all following experiments. The
HTK toolkit is used to conduct the forced-alignment and ICSI’s
QuickNet tool is used for manipulating MLPs.

4.1. Basic coding

In the first experiment we investigate the quality of sparse fea-
tures derived with various configurations. We concentrate on
the size of learnt bases (R) and the number of neighbouring
spectral frames covered by a temporal feature. The latter is
referred to as the time span and denoted by T . Intuitively,
a longer time span implies greater variety in spectro-temporal
patterns and therefore requires a larger number of bases to rep-
resent them with the same accuracy. If, however, the base set
is overly large, some bases may converge to non-speech pat-
terns, such as noise, and may lead to the over-fitting of training
data. We build MLPs with various inputs including MFCCs and
sparse features and use the resulting models to conduct frame-
level phone prediction. MLP inputs involve a context window
of 9 frames, centred on the prediction frame, as in the tandem
approach [14]. The outputs are 46 phone classes, and the hidden
nodes are fixed to 4000 according to cross validation.

Table 1 illustrates the phone error rate (PER), for phone
class prediction on both the training set and the evaluation set,
using MFCCs and sparse features with differing values ofR and
T . We first observe that, for sparse coding, both a larger time
span (T ) and a larger base set (R) tend to provide better phone
accuracy. With a fixed time span, the use of more bases is usu-
ally beneficial. For example, when T is set to 15 and 21, 100

PER%
Train Eval

R=50 R=100 R=50 R=100
T=9 25.89 28.17 22.62 28.36

SPARSE T=15 25.59 27.15 21.39 26.80
T=21 24.99 27.08 21.03 26.20

MFCC 25.54 27.37

Table 1: Frame-level PERs with various sparse features.

MLP Features PER%
Train Eval

MFCC 25.54 27.37
T9 25.89 28.17
T15 25.59 27.15
T21 24.99 27.08

Combination T9+T15 22.76 26.87
T9+T15+T21 20.90 26.23
MFCC+T9 25.05 27.15

Hybridisation MFCC+T15 23.05 25.68
MFCC+T21 21.61 25.06

Table 2: Frame-level PERs with code combination and hybridi-
sation. Tn represents sparse features with R = 50 and T = n.

bases provides better performance than 50 bases. However, if
the time span is small, and hence the number of likely patterns
is limited, too many bases may lead to decreased performance
on account of over-fitting. This is the case with T=9 where
the learning of 100 bases leads to significantly better results on
the training set but poorer performance on the evaluation set.
Finally, with sufficiently large time spans and base sets sparse
features tend to outperform MFCCs, confirming our conjecture
that sparse coding leads to better representation for speech sig-
nals.

4.2. Combination and hybridisation

In the second experiment, we examine the complementarity of
bases learnt with different configurations. We concentrate on
varying the time span, and assume that different time spans will
lead to the identification of different bases which thus convey
different and complementary information. For instance, shorter
time spans may lead to phone patterns while longer time spans
may lead to word patterns. In order to make use of such com-
plementary information we combine the sparse features derived
from different sets of bases and use them to train the MLPs to
conduct phone prediction. This approach is referred to as code
combination.

In addition, sparse coding with longer time spans is as-
sumed to be complementary to shorter-time analysis and thus
it should also be possible to combine sparse features with
MFCCs. This combination is referred to as code hybridisa-
tion since it merges sparse features and dense features. Ta-
ble 2 presents the results on the training and evaluation sets with
code combination and hybridisation. The three sets of 50 bases
are the same as those used in the previous experiment and are
combined with each other or hybridised with the 13-dimension
MFCCs. We observe that both combination and hybridisation
lead to performance improvements in phone prediction.

4.3. Hierarchical decision

Finally we examine the proposed parallel and hierarchical ap-
proach according to a three-layer architecture. In the first layer



MLP Features PER%
Train Eval

LAYER 1 (1) R50,T9 25.54 28.17
(2) R50,T15 25.89 27.15
(3) R100,T21,H1 22.49 26.89
(4) R100,T21,H2 24.12 26.99

LAYER 2 (1)+(2) 23.48 25.94
(3)+(4) 20.51 25.25

LAYER 3 (1)+(2)+(3)+(4) 20.18 24.47

Table 3: Frame-level PERs with hierarchical decisions.

decisions are made by four MLPs based on features with four
sets of bases:

1. 50 bases spanning 9 frames (R50,T9);

2. 50 bases spanning 15 frames (R50,T15);

3. the first 50 bases of the 100 bases learnt with a time span
of 21 frames (R100,T21,H1);

4. the second 50 bases of the 100 bases learnt with a time
span of 21 frames (R100,T21,H2).

In the second layer, decisions based on feature sets (1) and (2)
are merged by an MLP whose inputs are the outputs of the two
MLPs in the first layer, i.e. 96 posterior probabilities, and the
outputs are 46 phone classes as before. The size of hidden nodes
are fixed to 500. Decisions based on feature sets (3) and (4) are
merged in the same way. Finally, in the third layer, the two
decisions from the second layer are merged in the same way.

Results shown in Table 3 reveal several interesting charac-
teristics. First, decisions based on half of the 100 bases learnt
with time spans of 21 frames approach the accuracy of deci-
sions based on the entire base set (26.20% as shown in Table
1). This observation indicates that the sparse features are in-
deed local and redundant and that, therefore, reliable decisions
can be made using only a fraction of the full feature dimension.
Second, we observe that hierarchical decisions tend to give bet-
ter results than integrative decisions. This can be seen from the
results of the second layer, where hierarchical decisions based
on the two sets of 50 bases (R50,T9 and R50,T15) give bet-
ter performance than integrated decisions using code combina-
tion (Table 2). Similarly, hierarchical decisions based on the
two subsets of 50 bases (R100,T21,H1 and R100,T21,H2) give
better performance than decisions based on the entire base set
(Table 1). Comparing results for training and evaluation sets, it
seems that hierarchical decision making can mitigate the over-
fitting problem by making decisions based on feature subspaces.
This is analogous to sub-band speech recognition [15] and the
TRAP approach based on multiple critical bands [16], where the
locality and redundancy of the speech spectrum leads to noise-
robust recognition through the integration of decisions based on
sub-bands.

5. Conclusions
This paper investigates the application of large-scale sparse cod-
ing to speech recognition. We first report an online learning
technique to learn a large set of bases, which leads to high-
dimensional sparse representations of speech signals. To over-
come the associated computational burden we propose a par-
allel and hierarchical decision making approach. Here, local
decisions are based on feature subsets. Global decisions are
made by combining local decisions in a hierarchical way. In
a frame-level phone recognition task experiments demonstrate
that the hierarchical approach not only solves the computational

burden, but also provides better performance compared to the
conventional approach based on full dimensions. It is expected
that improvements in phone prediction lead to corresponding
improvements for continuous speech recognition using the tan-
dem framework or the hybrid approach.

Further work is required to optimise the approach and to
thoroughly assess the potential. For instance, in the current
work we simply segment the feature dimension linearly and ex-
clusively, while nonlinear and overlapping segmentation should
be investigated. Clustering might also help to discover optimal
dimension groups for local decisions. Dense features other than
phone posteriors should also be investigated.
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