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Abstract

This paper examines the performance of radio systems employing
error-control coding in conjunction with frequency-hopping to
combat the effects of multipath fading. We show for Rayleigh fading
that the achievable diversity is bounded by a maximum value which
depends on the number of available frequencies, the code rate and the
size of the modulation. Two key results are that the maximum
diversity can be reached with fairly simple convolutional codes, and
that constellation expansion can increase diversity. With the aid of
computer simulations we show that added complexity yields non-
negligible coding gain in the frame error-rate performance but may
have less of an effect on the bit error-rate performance.

1. Introduction

GSM and its derivatives DCS 1800 and PCS 1900 [1,2] are prime examples of systems which
combine error-control coding and frequency-hopping effectively to achieve diversity over fading
channels. The use of frequency-diversity is especially attractive in such systems since the diversity
level is invariant to the speed of channel variation. This is not the case in time-diversity systems such
as IS-54 and IS-95 which achieve little diversity from coding at low mobile speeds. Wideband
systems like IS-95 do, however, exploit some frequency-diversity by using a RAKE receiver prior to
decoding. It should be mentioned that GSM exploits frequency-diversity to some extent with
equalization prior to decoding.

It is reasonable to expect that third generation systems may employ similar coding/frequency-hopping
techniques, and quite possibly more complex ones. It is for this reason that we examine the
interaction between coding and frequency-hopping. More precisely, we are interested in determining
the maximum achievable diversity given the code rate, decoding complexity and number of available
and independent carrier frequencies. We also examine the possible gains in employing simple coded-
modulation schemes which expand the constellation. The approach take here is analytic from the
outset and computer simulations are performed in the end to verify the analysis.




2. System Description and Diversity Measure

Let us assume that a block of bits is encoded/modulated into F blocks of N symbols with an
information rate of R bits/symbol. In order to spread the information evenly across the F' blocks, the

coded symbols are interleaved such that after deinterleaving, any F adjacent received symbols came
from a different block. Frequency-hopping assures that each block is transmitted on a different carrier
frequency, and we will assume in this work that the carrier spacing is larger than the coherence

bandwidth. As a result, any set of F adjacent received symbols are affected by uncorrelated channel

realizations. This is much more restrictive than ideal interleaving models which assume that all
received symbols are affected by uncorrelated channel realizations. This restriction must be taken into
account in the code design process which is considered in Section 3. This issue is treated to a large
extent in [3] for a simplified fading channel model.

Denoting the NF interleaved coded symbols belonging to the symbol alphabet (constellation) S by
the codevector
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we consider the discrete-time model for the system
i = JE S0 g
where 7 ¢ is the k™ received symbol from the f™ block, E is the symbol energy, o 7 is the

attenuation of the f™ block and n fkisa Gaussian random variable with variance N;/2. We must

explain the practical validity of this model. It assumes first of all that the channel is stationary during
the duration of a block, which is more or less true for systems like GSM when the mobile station is
traveling at low speeds. We take the continuous-time channel response to be of the form

L-1
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which corresponds to an L -path multipath fading channel. Using a Rayleigh fading model, the path
gains O £,1 are zero-mean unit variance Gaussian random variables. For convenience, we assume that

the average path strengths are equal in each block and are normalized as
L-1__
2
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so that the true average attenuation is included in the transmitted signal energy E . For narrowband
systems (i.e. with Nyquist pulse shapes) without multipath induced intersymbol interference (ISI) the
multipath channel cannot be resolved and a. in the discrete-time model is exponentially distributed.
For very wideband systems, the multipath can be completely resolved using a RAKE receiver [4]
which combines the different multipath components so that o f has a characteristic function [4]
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In medium-band systems like GSM, the multipath is partially resolved using an equalizer and the
performance lies between the two limits we have just described depending on the bandwidth of the




signalling pulse. Moreover, the diversity factor offered by coding is the same in all cases, so as far as
the comparison of coded systems is concerned, there is no loss in generality by assuming that we have

an unresolved multipath situation withno ISI (i.e. L = 1). °

Assuming a maximum-likelihood decoding rule with perfect knowledge of the ®;, which is

implemented in practice with the Viterbi Algorithm [5] the pairwise probability of error between two

codevectors ¢(@) and ¢(®) is given by
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where d?(a, b) is the Euclidean distance between the codevectors given by
F-1
d¥a,b) = Y ad¥(c}®,c®),
f=0
and ¢ f is the component of the codevector belonging to block f. It is not difficult to show that when
the pairwise probability of error is averaged over the unit-mean exponentially distributed random
variables O rwe obtain the upper-bound,
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where dﬁ is the number of non-zero dz(c}a), c}b)) ; or equivalently, the Hamming distance

between ¢(@) and ¢(®) with the symbols taken to be the subvectors ¢ ;. This distance defines the
diversity between the pair of codewords, which is simply the slope of the probability of error vs.
E S/ N o curve on a log-log scale. The other parameter, 7, is the geometric mean of the
dz(c}a), c}b )) . These two quantities sufficiently characterize the pairwise probability of error and

can be used to design good codes.

We now determine the maximum df; for a given code rate R bits/symbol, number of carriers F and

the size of the constellation |S|. This situation can be seen as a non-binary coding scheme of block

length F and symbol alphabet SV , and the Singleton bound [6] can be used to bound dﬁ as

r _ o R
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As an example take the case of half-rate GSM where F = 4, R = 0.5 bits/symbol and |§| = 2.
We have that the maximum diversity is 3. Suppose we now use an expanded constellation with
|S| = 4 keeping the same information rate R, we see that the maximum diversity is increased to 4.
In general we see that by doubling the size of the constellation we can come close to the absolute

maximum diversity F. In the following section we address the necessary code complexity to achieve
the maximum diversity bound.

3. Convolutional Code Search and Simulation Results

Using the results of the previous section we performed a search for rate 1/2 binary convolutional




codes achieving maximal diversity (dg ) for various choices of F (2-16 frequencies). The results of

the search are shown in Table 1. The generators are expressed in octal notation according to the
standard convention described [5], and were chosen first to maximize the diversity and then X . The
codes which appear in the shaded region do not achieve maximum diversity, since their constraint
lengths are not long enough. For F = 14 and 16, 128 and 256 states are required respectively to
achieve the maximum diversities of 8 and 9.

Table 1: Rate 1/2 bits/symbol convolutional codes
F=2 F =4 F=6 F =28
States
“';21 K min gen. “’;‘1 Xmin gen. fj?f Xmin gen. djx.' K min gen.
4 2 9.8 5,7 3 6.4 5,7 4 57 5,7 4 5.7 57
8 2 12.0 64,54 3 10.1 64,54 4 6.3 64,74 5 4.0 44,64
16 2 12.7 62,72 3 13.2 62,46 4 8.2 62,56 5 53 46,66
32 2 16.0 71,73 3 14.5 75,57 4 11.3 21,75 5 82 51,66
64 2 17.9 704, 3 17.9 724, 4 147 664, 5 10.9 444,
564 534 754 774
i F =10 F =12 F =14 F =16
States
(I!L[(w Ximin gen. dplfz Xmin gen. djp Xmin gen. d}fﬁ Xmin gen.
4 5 4.0 3.7 5 4.0 57 5 4.0 5.7 5 4.0 51
8 5 9.3 64,74 6 4.0 64,54 6 4.0 64,54 6 40 64,54
16 3 1.6 62,56 6 4.0 41,51 6 5.0 62,66 7 4.0 62,66
32 6 5.0 61,75 7 4.4 51,67 7 5.4 51,67 8 4.0 75,57
64 6 T3 644, 1 6.3 724, 7 6.3 604, 8 4.76 704,
534 534 634 564

Some of these codes were simulated by computer for F= 4, 8 which have maximum diversities of 3
and 5 respectively. The results are shown in Figures 1 and 2 indicating the frame and bit error rates
respectively, where we have used frames of length 100 input bits. These are plotted versus the signal-

to-noise ratio per information bit E, /N, (E; = RE,) expressed in decibels. We have assumed

binary antipodal modulation for simplicity. We also show simulation of some simple coded
modulation schemes employing rate 1/4 convolutional codes and 4-AM modulation (i.e. R is still.5
bits/symbol) to demonstrate the diversity improvement due to constellation expansion (maximum
diversities of 4 and 7 for F = 4 and 8 resp.) The codes chosen in the GSM standard were also
simulated. As a general remark we see that increasing complexity beyond the minimum required to

achieve maximum diversity can have a significant effect on the frame error-rate performance, but has
less in terms of bit error-rate. The simple coded modulation can provide significant performance

enhancement, especially in the case of frequency hopping over F' = 8 carriers.

In terms of the choice of code in GSM, we see that in both the case of full and half-rate, the
complexity is more than that necessary to achieve maximum diversity. For full-rate, we can achieve
comparable performance with and 8 state code. A potential drawback of this lower complexity code is
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Figure 1: Simulated Frame-Error Rate (.5 bits/symbol)

that is does not achieve maximum diversity for F = 6, whereas the code used in GSM does.

4. Conclusion
In this paper we have approached the problem of designing coding schemes for slow-frequency
hopping systems such as GSM and its derivatives using analytical techniques. We have shown that
there is a fundamental limit on the achievable code diversity which depends on the number of carriers
over which the frequency-hopping is carried out, the desired information rate and the number of

points in the signal constellation. We have shown that for R = 0.5 bits/symbol a diversity close or

equal to F' can be achieved using a constellation with 4 points instead of 2, and that relatively simple
codes can provide the maximum diversity. The codes employed in the GSM standard are optimum in
terms of diversity and their added complexity provides a significant improvement in terms of frame-
error rate performance.
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