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Abstract—We consider a block fading interference channels
with partial channel state information and we address the issue
of joint power and rate allocation in a game theoretic framework.
The system is intrinsically affected by outage events. Resource
allocation algorithms based on Bayesian games are proposed.
The existence, uniqueness, and some stability properties of Nash
equilibriums (NE) are analyzed. For some asymptotic setting,
closed form expressions of NEs are also provided.

I. INTRODUCTION

The large gain in spectral efficiency achievable by sharing
the complete frequency spectrum is fueling intense research
activities on the interference channel. The interference channel
is intrinsically characterized by a limited level of cooperation
among communication entities, which are rather competing
for the same resources, and by a decentralized resource
management. These complex interactions can be modeled
successfully in a game theoretical framework. This direction
of investigation is currently receiving considerable attention
(see e.g. [1], [2], [3], [4], [5]). Many contributions focus on
the channels with complete channel state information at the
transmitters. Alternatively, iterative algorithms are proposed
whose convergence to an equilibrium point is based on feed-
backs from the receivers. A well known and thoroughly studied
example of this class of algorithms is the iterative waterfilling
algorithm suitable for frequency selective interference chan-
nels (see [3] and references therein). The convergence speed
of these algorithms limits their applicability. Additionally, the
required feedbacks reduce the system spectral efficiency. In
[2], slow fading channels are considered with slow fading
and initial partial channel state information. By using the
approach of repeated games, information about the channel
and the interactions is acquired. When the constraints of
a communication system do not allow for the convergence
of iterative algorithms (e.g. systems whose channels can be
considered constant during the transmission of a codeword
with constrained length but still varying from codeword to
codeword or channels with constrained delay capacities de-
scribed in [6]) or do not support the intensive feedbacks
required by iterative algorithms, Bayesian games provide a
convenient theoretical framework. Resource allocation based
on Bayesian games are adopted in [7], [8], [9]. The works
in [7], [8] focus on fast fading channels while the Bayesian
game in [9] is applied to slow fading multiple access channels

based on orthogonal frequency division multiplexing (OFDM).
Interestingly, [9] shows that the throughput achievable via the
resource allocation based on Bayesian games has performance
comparable to a resource allocation based on an optimization
that assumes full channel state information at the transmitter.

In this work we consider a block fading interference channel
with knowledge of the state of the direct links but only statis-
tical knowledge on the interfering links. With this assumption,
reliable communications are not possible and a certain level of
outage has to be tolerated. We consider the resource allocation
for utility functions based on the real throughput accounting
for the outage events. In the extended technical report [10] we
propose resource allocation algorithms based on both Bayesian
games and optimization. In the context of Bayesian games, we
investigate the two cases of power allocation for predefined
transmission rates and joint power and rate allocation. In
this paper, due to space constraints, we focus on a joint
power and rate allocation algorithm based on a Bayesian
game. For the same reason, we omit here both the analytical
proofs of the theoretical results and the numerical analysis.
We refer the interested reader to [10]. In order to provide
a deeper insight on the behaviour of the analyzed system,
we briefly recapitulate also the most relevant features of both
the optimum resource allocation and the power allocation for
predefined transmission rate based on Bayesian games in this
introduction.

The Bayesian power allocation for predefined transmission
rates boils down to a concave game. Thus, NEs always exist
[11] and they are at most three [10]. Some sufficient conditions
for the uniqueness of the NE are also available [10]. On the
contrary, the Bayesian game for joint power and rate allocation
is not concave and its analysis is based on the analysis of an
equivalent game. The characteristics of the game theoretical
approaches are analyzed in terms of existence, multiplicity,
and stability of the NEs. Special attention is devoted to the
asymptotic high noise regime and the interference limited
regime. In the former case, a closed form expression for the
Nash equilibrium is provided. In the latter case, criteria for
the convergence of best response algorithms are discussed. In
[10], the optimization approach is also analyzed in the two
above mentioned regimes and closed form expressions for the
resource allocation are provided. Interestingly, in the asymp-
totic regimes the optimum allocation implies a condition of
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starvation for one communication while the resource allocation
based on Bayesian games is fairer [10].

II. SYSTEM MODEL

Let us consider an interference channel with two sources
S1,S2 and two destinations D1,D2. The two sources transmit
independent information and source Si aims at communicating
with destination Di, for i = 1, 2. We assume that the channel
is block fading, i.e. the channel gains of all the links are
constant in the timeframe of a codeword but are independent
and identically distributed from codeword to codeword. Note
that these channels are often referred to as quasistatic channels
or as channels with delay-limited capacity [6]. We denote by
gi, i = 1, 2, the channel power gains of the direct links S1−D1

and S2 −D2 and by h12 and h21 the channel power gains of
the interfering links S1 − D2 and S2 − D1. All the channel
gains fade independently such that the channel power gain
statistics are completely determined by the marginal distribu-
tions. Each source transmits only private information that can
be decoded only by its targeted destination, or equivalently,
each receiver performs single user decoding. Additionally,
each source knows the realizations of both direct links g1 and
g2 but not the realizations of the power gains h12 and h21 for
the interfering links. This corresponds to a typical situation
(e.g. in cellular systems) where the receivers estimate only
the channel gains of the direct links and feed them back to
the transmitter but neglect the interfering links. Throughout
this work we make the additional assumption that the power
gains of the interfering links are Rayleigh distributed, i.e. their

probability density function is given by γHij (hij) = 1
σ2

ij
e
−hij

σ2
ij .

Furthermore, these statistics are known to both sources. At the
receiver the channel is impaired by additive Gaussian noise
with variance N0.

III. PROBLEM STATEMENT

Because of the partial knowledge of the channel by the
sources and the assumption of block fading, reliable com-
munications, i.e. with error probability arbitrarily small, are
not feasible (e.g. [12]) and outage events may happen. If the
source i transmits at a certain rate, expressed in nat/sec, with
constant transmitted power Pi, an outage event happens if

Ri > log
(

1 +
Pigi

N0 + Pjhji

)
, i, j = 1, 2, i 6= j, (1)

and the outage probability of source i depends on the choice
of Ri, Pi and Pj . We define the throughput as the average
information that can be correctly received by the destination.
The throughput is given by

Ti(Pi, Ri, Pj) = RiPr
{

Ri ≤ log
(

1 +
Pigi

N0 + Pjhji

)}
(2)

where i, j = 1, 2 with i 6= j, and Pr{E} denotes the
probability of the event E .

The two sources need to determine autonomously and in a
decentralized manner the transmitting power Pi and the rate
Ri. A natural criterion is to allocate such resources in order

to maximize the throughput while keeping power consumption
moderate. Then, we define the objective function for source
Si as

ui((Pi, Ri), (Pj , Rj)) = Ti(Pi, Ri, Pj)− CiPi (3)

where Ci is the cost for unit power.
By making use of the assumption on the power gain

distributions of the interfering links, the utility of Si is given
by

ui((Ri, Pi), (Rj , Pj))

= RiPr
{

Ri ≤ log
(

1 +
Pigi

N0 + Pjhji

)}
− CiPi

=





RiFi(ti)−CiPi, {Pj > 0, Pi, Ri ≥ 0}\{Pi =Ri =0};
0, {Pj > 0, Pi = Ri = 0};
Ri − CiPi, {Pj = 0, Ri, Pi ≥ 0, Pi ≥ (eRi−1)N0

gi
};

−CiPi, {Pj = 0, Ri, Pi ≥ 0, Pi ≤ (eRi−1)N0
gi

};
(4)

where ti = Pigi

eRi−1
−N0, Fi(ti) = 1− exp

(
− ti

Pjσ2
ij

)
and Ci

is the cost of unit power by user i.
Since the objective function of Si depends also on the power

allocated by Sj the problem falls naturally in the framework
of strategic games. Then, the objective of source Si is to
determine the pair (Pi, Ri), that selfishly maximizes its utility
function ui((Pi, Ri), (Pj , Rj)) under the assumption that a
similar strategy is adopted by the other source.

IV. INTERFERENCE GAMES FOR JOINT POWER AND RATE
ALLOCATION

In this section we consider a communication system
where the transmitters need to allocate both power and
rate jointly with the aim of maximizing the utility func-
tion (3). The problem is defined as a strategic game G ={S,P, {ui}i∈{1,2}

}
, where S is the set of players (the

two transmitters), P is the strategy set defined by P ≡
{((P1, R1), (P2, R2))|P1, P2, R1, R2 ≥ 0} , and ui is the util-
ity function defined in (3). Power and rate allocation is
obtained as an equilibrium point of the system. When both
transmitters aim at maximizing their utility functions, a NE is
the allocation strategy (P ∗1 , R∗1, P

∗
2 , R∗2) such that

u1 (P ∗1 , R∗1, P
∗
2 , R∗2) ≥ u1 (P1, R1, P

∗
2 , R∗2) , ∀P1, R1 ∈ R+

u2 (P ∗1 , R∗1, P
∗
2 , R∗2) ≥ u2 (P ∗1 , R∗1, P2, R2) , ∀P2, R2 ∈ R+.

It is straightforward to verify that the utility function is
not concave in Ri. Then, the classical results on N -concave
games in [11] cannot be applied. The analysis of the general
case results very complex. A preliminary characterization of
NEs for game G is provided in the following proposition. This
proposition provides closed form expressions for the NEs at
the boundary of the strategy set jointly with explicit conditions
for the points being NEs. Possible NEs internal to the strategy
set are provided in an implicit form and they will be further
analyzed in subsequent propositions.
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Proposition 1 A boundary point of the strategy set P is a NE
if and only if

Pi = Ri = 0 (5)

Pj =
1
Ci
− N0

gj
Rj = log

(
1 +

gj −N0Cj

N0Cj

)
(6)

and the following conditions are satisfied

gj −N0Cj ≥0 (7)

giαj

Ciσ2
ji

exp

(
− giαj

Ciσ2
ji

+
1

N0αj
+ 1

)
≥1, (8)

being αj = Cjgj

gj−N0Cj
.

An internal point of the strategy set P is a NE if and only
if it is solution of the system of equations

1
Pjσ2

ji

exp

(
− ti

Pjσ2
ji

)
=

Ci(eRi − 1)
Rigi

i, j = 1, 2. (9)

where ti = Pigi

eRi−1
−N0 and P1 and P2 are given as functions

of R1 and R2 by

[
P1

P2

]
=

[
C1

eR1

eR1−1

C1σ2
21

R1g1
(eR1 − 1)

C2σ2
12

R2g2
(eR2 − 1) C2

eR2

eR2−1

]−1 [
1
1

]

(10)
and it satisfies the following inequalities

1 + Ri +
giRi

CiPjσ2
ji(eRi − 1)

− 2RieRi

eRi − 1
> 0 (11)

R2
i gi

CiPjσ2
ji(eRi − 1)

−Ri −
(

1− RieRi

eRi − 1

)2

> 0. (12)

In order to get additional insights into the system behavior
and in particular into the NEs internal to the strategy set
P , we consider firstly the following extreme cases before
discussing the general case: (1) the noise tends to zero,
(interference limited regime ), (2) the noise is much higher
than the transmitted power (high noise regime).

a) Interference Limited Regime: When the noise variance
N0 is negligible compared to the interference power level,
the payoff function is efficiently approximated by (4), with
ti = Pigi

eRi−1
. Note that in the interference limited regime, the

payoff (4) of user i is defined for 0 ≤ N0 ¿ Pj . In the
following proposition equilibriums of game G are obtained
as equilibriums of an equivalent game in a single decision
variable xi for user i.

Proposition 2 When the noise variance tends to zero, the NE
of game G and internal to P satisfy the system of equations

x1 = κ2f(x2) (13)
x2 = κ1f(x1)

where xi = gi

CiPjσ2
ji

, κi = Cigj

Cjσ2
ij

, i, j ∈ 1, 2, i 6= j and

f(x) =
(

1− eR(x) − 1
xR(x)

)−1 (
1− e−R(x)

)−1

(14)

for 1 < x < ∞. In (14), R(x) is the unique positive solution
of the equation

1− xR

eR − 1
exp

(
− x

eR
+

eR − 1
ReR

)
= 0 (15)

such that

−x +
eR − 1

R
6= 0. (16)

Let (x0
1, x

0
2) be solutions of system (13). The corresponding

NE is given by

P1 =
g2

C2x0
2σ

2
12

, R1 = R(x0
1),

P2 =
g1

C1x0
1σ

2
21

, R2 = R(x0
2).

Remarks
• The solution R(x) to the equation eR−1

R = x is also
a solution to (15). Such a solution corresponds to a
minimizer of the utility function.

• The solution R(xj) to (15) is the rate which maximizes
the utility function corresponding to the transmit power of
the other transmitter Pi = gj

Cjxjσ2
ij

. It lies in the interval(
0, R(xj)

)
and we refer to it as the best response in terms

of rate of player j to strategy Pi of player i. Similarly,
κjf(xj) is inverse proportional to the best response in
terms of power of user j to the strategy Pi of its opponent.

• Interestingly, the solution (x0
1, x

0
2) to system (13) depends

on the system parameters only through the constants κ1

and κ2.
• The existence and uniqueness of NE for the class of sys-

tems considered in Proposition 2 reduces to the analysis
of the solution of system (13) and depends on the system
via κ1 and κ2.

• The solution to (15) can be effectively approximated by
R(x) ≈ 0.8 log(x). Then, the function f(x) is approxi-
mated by

f̃(x) =
(

1− e0.8 log(x) − 1
x0.8 log(x)

)−1 (
1− e−0.8 log(x)

)−1

.

(17)
In Figure 2, f(xi) is plotted and compared to its

approximation f̃(x). The approximation f̃(x) matches
almost perfectly f(x) such that can be utilized efficiently
for practical and analytical objectives.

The following proposition provides sufficient conditions for
the existence of a NE.

Proposition 3 When the noise variance is negligible com-
pared to the interference, a NE of the game G exists if

(κ1 − 1)(κ2 − 1) > 0

with κi defined in Proposition 2.

General conditions for the uniqueness of a NE are difficult
to determine analytically. Let us observe that in general a
system with noise that tends to zero may have more than
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Fig. 3: Graphical investigation of con-
vergence of the best response algorithm
in the interference limited regime

one NE. Let us consider a system with κ1 = κ2. The two
curves xj = κif(xi), i, j ∈ {1, 2}, i 6= j, cross each
other in x1 = x2. Furthermore, the curve x2 = κ1f(x1)
(x1 = κ2f(x2)) has two asymptotes in x1 = 1 and x2 = κ1

(x2 = 1 and x1 = κ2). Then, for κ1 = κ2 = 1, the two
curves cross again in (1,+∞) and (+∞, 1). Let us observe
now Figure 3 where the best responses of the two systems
corresponding to the two pairs of coefficients κ

(1)
1 = κ

(1)
2 =

1.05 and κ
(2)
1 = κ

(2)
2 = 2 are plotted. It becomes apparent

that the curves with κ
(1)
1 = κ

(1)
2 = 1.05 will cross again

for high x1 and x2 values since x2 = κ
(1)
1 f(x1) has two

asymptotes in x1 = 1 and x2 = 1.05 while x1 = κ
(1)
2 f(x2)

has two asymptotes in x2 = 1 and x1 = 1.05. These
crossing points correspond to NEs. In contrast, the curves with
κ

(1)
1 = κ

(1)
2 = 2 will diverge from each other. It is worth

noticing that for x1 À 1, x2 ≈ 1, and for x2 À 1, x1 ≈ 1.
From a telecommunication point of view, it is necessary to
question whether the model for N0 ¿ Pjgj is still applicable.
In fact, in such a case, Pi ¿ gi

Ciσ2
ij

, but also Pi À N0 has to be
satisfied because of the system model assumptions. Typically,
the additional NEs with some xi ≈ 1 are not interesting from
a physical point of view since the system model assumptions
are not satisfied. Thus, additional NEs are artifacts introduced
by the asymptotic model.

By numerical simulations, we could observe that games
with multiple NEs exist for a very restricted range of system
parameters, more specifically for 1 ≤ κi ≤ 1.1.

Proposition 2 suggests also an iterative algorithm for com-
puting NE based on the best response. Choose an arbitrary
point x

(0)
1 and compute the corresponding value x

(0)
2 =

κ1f(x(0)
1 ). From a practical point of view, this is equivalent

to choose arbitrarily the transmitted power P
(0)
2 = g1

σ2
21x

(0)
1 C1

for transmitter 2 and determine the power allocation for user
1 which maximizes its utility function. The optimum power
allocation for user 1 is P

(0)
1 = g2

σ2
12x

(0)
2 C2

. We shortly refer to

P
(0)
1 as the best response of user 1 to user 2. Then, by using

x
(0)
2 it is possible to compute x

(1)
1 = κ2f

(
x

(0)
2

)
, the best

response of user 2 to user 1. By iterating on the computation
of the best responses of user 1 and user 2 we can obtain
resource allocations closer and closer to the NE and converge
to it. We refer to this algorithm as the best response algorithm.

The best response algorithm is very appealing for its sim-
plicity. Nevertheless, its convergence is not guaranteed. This
issue is illustrated in Figure 3. Let us consider the interference
channel with κ1 = κ2 = 1.05 and the corresponding solid and
dashed curves x2 = κ1f(x1) and x1 = κ2f(x2). The NE
exists and is unique but the best response algorithm diverges
from the NE even for choices of the initial point arbitrarily
close to the NE but different from it. Numerical results show
that if κ1 and κ2 are both greater than 1.1, the best response
algorithm always converges to a NE.

The following analytical result holds.

Proposition 4 For sufficiently large κ1 and κ2, the fixed point
iterations {

x
(k+1)
1 = κ2f(x(k)

2 ),
x

(k+1)
2 = κ1f(x(k)

1 ),
(18)

converge.

In fact, large values of κ1 and κ2 correspond to a realistic
situation for system where the noise is negligible compared to
the transmitted powers of the users.

A. High Noise Regime

Let us turn to the case when noise is much higher than the
useful received power, Pigi ¿ N0. The throughput can be
approximated by

T i (Pi, Ri, Pj , P∗)=RiPr
{

Ri ≤ Pigi

N0 + Pjhji

}

=RiPr
{

hji ≤ 1
Pj

(
Pi

gi

Ri
−N0

)}
(19)
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Interestingly, the throughput in (19) is nonzero for Pk

Rk
> N0

gk
.

Since Proposition 1 defines completely the NEs on the bound-
ary of the strategy set in the general case, in this section we
focus only on internal points of P. Then, the utility function
is given by

vi = Ri


1− exp


−

(
Pi

gi

Ri
−N0

)

Pjσ2
ji





− CiPi (20)

for i = 1, 2. Correspondingly, we consider the game G ={
S,V,

o

P
}

, where the set of players coincides with the

corresponding set in G while the utility function set V consists
of the functions (20) and

o

P is the open interval obtained from
P. The joint rate and power allocation is given by NE of game
G.

The following proposition states the conditions for the
existence and uniqueness of a NE in the strategy set and
provides the equilibrium point.

Proposition 5 Game G admits a NE if and only if
gi

Ci
> N0, i = 1, 2.

If the above conditions are satisfied, G has a unique equilib-
rium

(
(R∗i , P

∗
i ), (R∗j , P

∗
j )

)
where P ∗i and P ∗j are the unique

roots of the equations
(

1− ln

(
CjPiσ

2
ij

gj

))
Piσ

2
ij =

gj

Cj
−N0 (21)

and (
1− ln

(
CiPjσ

2
ji

gi

))
Pjσ

2
ji =

gi

Ci
−N0 (22)

in the intervals
(
0,

gj

Cjσ2
ij

)
and (0, gi

Ciσ2
ji

) respectively. Also,

Ri =
PigiCi

gi − Pjσ2
jiCi

and Rj =
PjgjCj

gj − Piσ2
ijCj

.

Interestingly, the power allocation of user i decouples from
the one of user j and Pi depends on its opponent only via the
system parameter ratio Cj

gj
.

B. General Case

Let us consider now the general case, when the noise, the
powers of interferences and the transmitted powers are of
the same order of magnitude. A NE necessarily satisfies the
system of equations (9) and (10). Substituting (10) in (9) yields

1− xiRi

eRi − 1
exp

(
− xi

eRi
+

eRi − 1
RieRi

+ ni

)
= 0 i = 1, 2

(23)
with ni = N0

Pjσ2
ji

. Thus, (10) and (23) provide an equivalent
system to be satisfied by NE. In order to determine a NE
we can proceed as in the case of the interference limited
regime. Observe that, in this case, (23) depends on the system
parameters and the other player strategy not only via xi but

also via ni. Then, the general analysis feasible for any commu-
nication system in the interference limited regime is no longer
possible and the existence and multiplicity of NEs should be
studied independently for each communication system. In the
following, we detail guidelines for this analysis.

From (23), it is possible to determine the best response in
terms of rate of transmitter i to policy Pj of transmitter j.
Conditions for the existence of such best response are detailed
in the following statement.

Proposition 6 Equation (23) admits positive roots if and only
if

1− xie−xi+1+ni > 0. (24)

If (24) is satisfied, (23) admits a single positive root in the
interval (0, log xi), which corresponds to the best response in
terms of rate to policy Pj of user j.

From the best responses in terms of rate, it is straightforward
to determine the best response in terms of powers for the two
players.
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