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Abstract

The Recursive Least-Squares algorithm with a Sliding Rectangular Window (SWCRLS) ex-
hibits a better tracking ability than the RLS algorithm with an exponential window (WRLS).
The exploitation of a certain shift-invariance property that is inherent to the adaptive �l-
tering problem allows the derivation of fast versions and leads to the Fast Transversal Filter
(FTF) and SWCFTF algorithms whose complexities are O(N), N being the �lter length. The
SWCRLS algorithm has a major drawback which is noise ampli�cation whereas the WRLS al-
gorithm is less sensible to noise ampli�cation because of the larger memory of the exponential
window. In our communication, we derive a new RLS algorithm that is the Generalized Sliding
Window RLS (SGW RLS) algorithm. This algorithm uses a generalized window which con-
sists of the superposition of an exponential window for the L0 most recent data and the same
but attenuated exponential window for the rest of the data. This new window reduces noise
ampli�cation in the SWCRLS algorithm. Moreover, we prove theoritically that the use of this
window leads to a better compromise between estimation noise and lag noise. Furthermore,
after providing a fast version to the GSW RLS algorithm that is the GSW FTF algorithm,
we apply the Subsampled-Upadating technique to derive the FSU GSW FTF algorithm, a
doubly-fast version of the GSW RLS algorithm.
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1

1 Introduction

The Recursive Least-Squares algorithm with a Sliding Rectangular Window (SWCRLS) ex-
hibits a better tracking ability than the RLS algorithm with an exponential window (WRLS).
This is explained by the fact that the rectangular window allows to forget the past more
abruptly than the exponential window does. The complexity of the RLS algorithm is O(N2)
operations, N being the �lter length. Nevertheless, the exploitation of a certain shift-invariance
property that is inherent to the adaptive �ltering problem allows the derivation of fast versions
and leads to the Fast Transversal Filter (FTF) and SWCFTF algorithms whose complexities
are 7N and 14N respectively. Unfortunately, the SWCRLS algorithm has a major drawback
which is noise ampli�cation. This noise ampli�cation is due to the fact that the estimation
of the covariance matrix of order N is done using a rectangular window of a relatively short
length L0 (L0 > N). With such window, the covariance matrix can be ill-conditionned if the
input signal is not active in a signi�cant portion of the window. The WRLS algorithm is less
sensible to noise ampli�cation because of the larger memory of the exponential window.
In our communication, we propose the GSW RLS algorithm, a new RLS algorithm that gener-
alizes the WRLS and SWCRLS algorithms. This algorithm uses a generalized window which
consists of the superposition of an exponential window for the L0 most recent data and the
same but attenuated exponential window for the rest of the data. This new window reduces
noise ampli�cation in the SWCRLS algorithm. Moreover, we prove theoritically that the use
of this window leads to a better compromise between estimation noise and lag noise. The
SGW RLS algorithm turns out to have the same structure and complexity as the SWC RLS
algorithm. Fast Recursive Least Squares (RLS) algorithms such as the Fast Transversal Filter
(FTF) algorithm [2] exploit a certain shift invariance structure in the input data vector to
reduce the computational complexity fromO(N2) for RLS to O(N) for FTF (N being the FIR
�lter length). The common structure of the GSW RLS and the SWC RLS algorithms allows
to derive easily a fast version of the GSW RLS algorithm by using the structure of the SWC
FTF algorithm. Moreover,he obtained GSW FTF algorithm has also the same complexity
than the SWC FTF algorithm (14N).
In [?],[?],[16], we have pursued an alternative way to reduce the complexity of RLS adaptive
�ltering algorithms. The approach consists of subsampling the �lter adaptation, i.e. the LS
�lter estimate is no longer provided every sample but every L � 1 samples (subsampling
factor L). This strategy has led us to derive new RLS algorithms that are the FSU RLS, FSU
SFTF and FSU FNTF algorithms which present a reduced complexity when dealing with long
�lters.
Here, we apply this technique to the SWC FTF algorithm. The starting point is an interpre-
tation of the SWC FTF algorithm as a rotation applied to the vectors of �lter coe�cients.
Using the �lter estimates at a certain time instant, we compute the �lter outputs over the next
L time instants. Using what we shall call a SWC FTF-Schur algorithm, it will be possible
to compute from these multi-step ahead predicted �lter outputs the one step ahead predicted
�lter outputs in an e�cient way. These quantities will allow us to compute the successive
rotation matrices of the SWC FTF algorithm for the next L time instants. Because of the
presence of a shift operation in the SWC FTF algorithm, it turns out to be most convenient
to work with the z-transform of the rotation matrices and the �lters. Applying the L rota-
tion matrices to the �lter vectors becomes an issue of multiplying polynomials, which can be
e�ciently carried out using the FFT. The subsampled updating technique turns out to be
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especially applicable in the case of very long �lters such as occur in the acoustic echo cancel-
lation problem. The computational gain it o�ers is obtained in exchange for some processing
delay, as is typical of block processing.

In order to formulate the RLS adaptive �ltering problem and to �x notation, we shall �rst
recall the RLS algorithm.

2 The RLS Algorithm

An adaptive transversal �lterWN;k combines linearlyN consecutive input samples fx(i�n); n = 0; : : : ; N�1g
to approximate (the negative of) the desired-response signal d(i). The resulting error signal
is given by

�N (ijk)=d(i) +WN;kXN (i)=d(i) +
N�1X
n=0

W n+1
N;k x(i�n) (1)

where XN (i) =
h
xH(i) xH(i�1) � � � xH(i�N+1)

iH
is the input data vector and superscript

H denotes Hermitian (complex conjugate) transpose. In the RLS algorithm, the set of N

transversal �lter coe�cientsWN;k =
h
W 1

N;k � � �W
N
N;k

i
are adapted so as to minimize recursively

the following LS criterion

�N (k) = min
WN

(
kX
i=1

�k�i kd(i) +WN XN (i)k
2

)

=
kX
i=1

�k�i k�N(ijk)k
2

(2)

where � 2 (0; 1] is the exponential weighting factor, kvk2� = v�vH, k:k = k:k
I
. Minimization

of the LS criterion leads to the following minimizer

WN;k = �PH
N;kR

�1
N;k (3)

where
RN;k = �RN;k�1 +XN (k)XH

N (k)

PN;k = �PN;k�1 +XN (k)dH(k)
(4)

are the sample second order statistics. Substituting the time recursions for RN;k and PN;k
from (4) into (3) and using the Matrix Inversion Lemma (MIL) for R�1

N;k, we obtain the RLS
algorithm: eCN;k = �XH

N (k)�
�1R�1

N;k�1


�1N (k) = 1 � eCN;kXN (k)

R�1
N;k = ��1R�1

N;k�1 � eCH
N;k
N (k)

eCN;k

�pN(k) = �N(kjk�1) = d(k) +WN;k�1XN (k) (5)

�N(k) = �N(kjk) = �pN(k) 
N (k)

WN;k = WN;k�1 + �N(k) eCN;k

(6)

where �pN(k) and �N(k) are the a priori and a posteriori error signals (resp. predicted and
�ltered errors in the Kalman �ltering terminology) and one can verify (or see [2]) that they
are related by the likelihood variable 
N (k). eCN;k is the Kalman gain of order N at time k.
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3 The GSW RLS Algorithm

The Sliding Window Covariance RLS (SWCRLS) algorithm minimizes recursively the follow-
ing criterion:

�N;L0(k) =
kX

i=k�L0+1

�k�i k�N (ijk)k
2 ; (7)

where L0, the length of the sliding window must be greater than the �lter length: L0 > N .
Compared to the WRLS algorithm, the SWC RLS algorithm exhibits a better tracking but is
more sensible to noise. In order to reduce this sensibility, we add to the rectangular window, an
attenuated exponential window. This introduce a new degree of freedom for the choice of the
window which is the attenuation of the exponential tail. Furtermore, it has appeared that the
derivation of a recursive algorithmwhich uses the new window must use an exponential window
instead of the rectangular window and with the same forgetting factor as the attenuated
exponential window. Hence, consider the following criterion:

�N;L0(k)=(1��)
k�L0X
i=1

�k�i k�N (ijk)k
2 +

kX
i=k�L0+1

�k�i k�N (ijk)k
2 (8)

The new criterion generalizes the WRLS and SWC RLS criteria since the WRLS crierion (2)
is obtained from (8) by setting � = 0 and the SWC RLS criterion is the one given by the
generalized criterion when � = 1 and � = 1.
Putting the gradient of the quadratic criterion (8) equal to zero leads to the normal equations
for the optimal �lter WL0;k:

WL0;k = �PH
L0 ;k R

�1
L0;k ; (9)

where

RL0;k =(1��)
k�L0X
i=1

�k�iXN (i)X
H
N (i) +

kX
i=k�L0+1

�k�iXN (i)X
H
N (i)

PL0;k =(1��)
k�L0X
i=1

�k�iXN (i)d
H(i) +

kX
i=k�L0

�k�iXN (i)d
H(i)

(10)

The use of the same forgetting factor for the two windows allows the following recursions for
the sample second moments

RL0+1;k = �RL0;k�1 +XN (k)XH
N (k)

= RL0;k � ��L
0

XN (k�L0)XH
N (k�L

0)
(11)

PL0+1;k = �PL0;k�1 +XN (k)dH(k)
= PL0;k � ��L

0

XN (k�L0)dH(k�L0) :
(12)

Hence, the new algorithm is derived by applying the strategy for the usual RLS algorithm
twice. The �rst step will be devoted to the time and order update (k�1; L0) ! (k; L0+1),
which is analogous to the update of the usual RLS algorithm while the second step will be
the order downdate (k; L0+1)! (k; L0). The downdate scheme is obtained as follows:
By using (12), one has

WL0;kRL0;k = WL0+1;kRL0+1;k � ��L
0

dk�L0XH
N (k�L

0) : (13)
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Using (11) for RL0+1;k in term of RL0 ;k, we get

WL0;k =WL0+1;k + ��L
0

�pN;L0(k)DN;L0;k ; (14)

where �pN;L0(k) = d(k�L0)+WL0+1;kXN (k�L0) and DN;L0;k = �XH
N (k�L

0)R�1
L0;k are the a priori

error signal and the a posteriori Kalman gain of the downdate part. Applying the MIL to
(11) gives

R�1
L0;k = R�1

L0+1;k +
fDH
N;L0;k�N;L0(k)fDN;L0;k ; (15)

with fDN;L0;k = �XH
N (k�L

0)R�1
L0+1;k and ��1N;L0(k) = ��1��L

0

� fDN;L0;kXN (k�L0) respectively
the Kalman gain and the likelihood variable associated with the downdate part. Now, it is
straigthtforward to �nd that DN;L0;k = ��1��L

0

�N;L0(k)fDN;L0;k and that the a posteriori error
is �N;L0(k) = d(k�L0) +WL0;kXN (k�L

0) = ��1��L
0

�N;L0(k)�pN;L0(k).
Finally, by associating the update part, the GSW RLS algorithm is given by

eCN;L0;k = ���1XH
N (k)R

�1
L0;k�1


�1N;L0(k) = 1 � eCN;L0;kXN (k)
�pN;L0(k) = d(k) +WL0;k�1XN (k)
�N;L0(k) = �pN;L0(k)
N;L0(k)

WL0+1;k = Wk�1;L0 + eCN;L0;k�N;L0(k)

R�1
L+1;k = ��1R�1

L0;k�1 �
eCH
N;L0;k
N;L0(k) eCN;L0;k

fDN;L0;k = �XH
N (k�L

0)R�1
L0+1;k

��1N;L0(k) = ��1��L
0

� fDN;L0;kXN (k�L0)
�pN;L0(k) = d(k � L0) +WL0+1;kXN (k�L0)

�N;L0(k) = ��1��L
0

�N;L0;k�
p

N;L0(k)

WL0;k = WL0+1;k + ��L
0fDN;L0;k�N;L0(k)

R�1
L;k0 = R�1

L0+1;k +
fDH
N;L0;k�N;L0(k)fDN;L0;k

(16)

The set of equations (16) constitute the complete time update of the algorithm. The algorithm
is initialized with RL0;0 = �I where � is a small scalar quantity. The GSWRLS shows a
computational complexity of O(N2). One must notice that the GSWRLS algorithm has the
same structure and complexity as the SWCRLS algorithm.

4 Performance analysis

For the purpose of analysis, we consider the following classical identi�cation model for the
desired signal

d(k) = W o
N;k�1XN (k) + �(k) (17)

where �(k) is a centered Gaussian i.i.d. sequence with variance �2� (�(k) � N(0; �2�) and W o
N;k

is the unknown �lter that is time-varying according to a random walk

W o
N;k =W o

N;k�1 + Z(k) ; Z(k) i.i.d. � N(0; Q) (18)

The normal equations can be rewritten as

WN;k = �

 
1X
i=0

!id(k�i)X
H
N (k�i)

!
R�1
N;k (19)
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with the sample covariance matrix

RN;k =
1X
i=0

!iXN (k�i)X
H
N (k�i) ; (20)

and the !i are the coe�cient of the window to be considered, for example, when the WRLS
algorithm is used: !i = �i.

The unknown �lter can be written as follows

W o
N;kRN;kR

�1
N;k =

 
1X
i=0

!iW
O
N;kXN (k�i)XN (k�i)

!
R�1
N;k (21)

hence, the deviation �lter fWN;k = WN;k +W o
N;k can be expressed as:

fWN;k =

 
1X
i=0

!i(W
o
N;kXN (k�i)� d(k�i))XH

N (k�i)

!
R�1
N;k (22)

using the random walk equation (18), we easily �nd that:

W o
N;kXN (k�i)� d(k�i) =

kX
i=k�i

Z(k)XN (k�i)� �(k�i) (23)

�nally, the deviation �lter is given by

fWN;k =

0@ 1X
i=0

!i

0@ 1X
j=k�i

Z(j)

1AXN (k�i)XN (k�i)
H �

1X
i=0

!i�(k�i)XN (k�i)

1AR�1
N;k (24)

let's CN;k be the covariance matrix of the deviation �lter: CN;k = E
�fWN;k

fWH
N;k

�
Using the

Bayes rule E
�fWk

fWH
k

�
= EXE�;ZjX

�fWk
fWH
k

�
and assuming that k is big enough so that:

RN;k � ERN;k =

 
1X
i=0

!i

!
R, we get after some manipulations

CN;k = �2�

 
1X
i=0

e!2
i

!
R�1
N;k +

 
1X
i=0

$2
i

!
Q ; (25)

where

e!i = !i

0@ 1X
j=0

!j

1A�1 (26)

and

$i =

0@ 1X
j=i

!j

1A0@ 1X
j=0

!j

1A�1 = 1�
i�1X
j=0

e!j (27)

We see that (25) is divided into two parts: the �rst one is the estimation noise. the second
one is the lag noise and comes only for a random echo path response, it shows the error that
comes with the variation of the echo path response (Q), i.e. the tracking. Now, assuming the



6 4 PERFORMANCE ANALYSIS

statistical independence between fWN;k and XN (k�1) the variance of the a priori error signal
is

var(�pN(k)) = �2� + tr (RCk�1)

= �2� +N

0@ 1X
j=0

e!2
j

1A�2� +

0@ 1X
j=0

$2
j

1A tr (RQ)
(28)

Now we can compute the noise ampli�cation in the 3 cases: RLS, SWC RLS and GSW RLS:

RLS : �2�
�
1 +N 1��

1+�

�
GSWRLS : �2�

�
1 +N 1��

1+�
1+�(��2)�2L

0

(1���L0)2

�
SWCRLS : �2�

�
1 + N

L0

� (29)

We recognize the RLS and the SWC RLS case as particular cases of the GSW RLS: SWC
RLS for � = 1 and �! 1, RLS for � = 0.
It is normal that the SWRLS is an intermediate case between RLS and SWCRLS. The RLS
is the best in term of noise ampli�cation. the results for the tracking part are

RLS : N�2X�
2
Z

1
1��2

GSWRLS : N�2X�
2
Z
1�2��L

0

(1+���L
0
+1)+�2�2L

0

(1+L0�L0�2)

(1��2)(1���L0)2

SWCRLS : N�2X�
2
Z
(L0+1)(2L0+1)

6L0

(30)

This time the RLS gives, of course, the worst results: the noise is � 1=(1 � �2), with � close
to 1. On �gure (1), we show curves made from the computation made before: �rst we �x the
value of the estimation noise for SWC RLS (N

L0
), then for this value, we vary � and � in GSW

RLS in order to keep the same noise estimation in GSW RLS while minimizing the lag noise
in GSW RLS. This shows that for the same value of the noise ampli�cation, GSW RLS has
a lower lag noise than SWC RLS, moreover GSW RLS has the same complexity than SWC
RLS, so we can conclude that the GSW RLS algorithm is truly better than the SWC RLS
algorithm.

Figure 1: Comparison of SWCRLS and GSW RLS algorithms (N = 50).
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5 The GSW FTF algorithm

The GSW FTF algorithm can be described in the following way, which emphasizes its rota-
tional structure: 266666664

h eCN;k 0
i

AN;k

BN;khfDN;k 0
i

[WN;k 0]

377777775 = �k

266666664

h
0 eCN;k�1

i
AN;k�1

BN;k�1h
0 fDN;k�1

i
[WN;k�1 0]

377777775
epN;L0(k) = AN;L0;k�1XNp(k)

eN;L0+1(k) = epN;L0(k)
N;L0(k�1)


Np;L0(k) = 
N;L0(k�1)�eHN;L0

p
(k)��1N;L0

p
(k)eN;L0

p
(k)


N;L0(k) =
�
1+
Np;L0(k) eCN

Np;L0;kr
p
N;L0(k)

��1

Np;L0(k)

rpN(k) = ���N(k�1) eCN H
Np1;k

��1N (k) = ��1��1N(k�1)�
eC0H
Np1;k


s
Np1(k)

eC0
Np1;k

rN;L0

p
(k) = rpN;L0(k) 
N;L0(k)

�N;L0

p
(k) = ��N;L0(k�1) + rpN;L0(k) rHN;L0+1(k)

aN;L0+1(k) = AN;L0

p1;kXNp(k�L
0+1) (31)

asN;L0(k) = aN;L0

p
(k)�N;L0

p
(k�1)

�N;L0(k) = �N;L0

p
(k)� ��L

0

asN;L0(k)as
H

N;L0(k)

�N+1;L0

p
(k) = �N;L0

p
(k�1)�aHN;L0

p
(k)��1N;L0

p
(k)aN;L0

p
(k)

bN;L0

p
(k) = ��N;L0

p
(k)fDNH

Np;Lp;k

�N;L0(k) =
�
1+�Np;L0(k)fDN

Np;L0;kb
p
N;L0(k)

��1
�Np;L0(k)

bsN;L0(k) = bN;L0

p
(k)�N;L0

p
(k)

�N;L0(k) = �N;L0

p
(k)� ��L

0

bsN;L0(k)bs
H

N;L0(k)

where L0p = L0+1 and Np = N+1. AN;L0;k and BN;L0;k are the forward and backward prediction
�lters that are used in the update part, epN;L0(k) and eN;L0(k) are the a priori and a posteriori
forward prediction errors, rpN;L0(k) and rN;L0(k) are the a priori and a posteriori backward

predition errors, eCN+1;k =
h eC0

N+1;k � � �
eCN
N+1;k

i
and �N;L0(k) and �N;L0(k) are the forward and

backward prediction error variances. �k is a 5 � 5 rotation matrix given by

�k = �6
k �

5
k �

4
k �

3
k �

2
k �

1
k (32)

where the 5� 5 matrices �i
k i = 1; 2; 3; 4; 5; 6 are

�6
k=

26666664
1 0 0 0 0
0 1 0 0 0
0 0 1 a 0
0 0 0 1 0
0 0 0 b 1

37777775 �5
k=

26666664
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 c 1 0
0 0 0 0 1

37777775
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�4
k=

26666664
1 0 0 0 0
0 1 0 d 0
0 0 1 0 0
0 e 0 1 0
0 0 0 0 1

37777775 �3
k=

26666664
1 0 0 0 0
0 1 0 0 0
f 0 1 0 0
0 0 0 1 0
g 0 0 0 1

37777775

�2
k=

26666664
1 0 h 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

37777775 �1
k=

26666664
1 i 0 0 0
j 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

37777775 (33)

with a = �bsN;L0(k), b = ��L
0

�N;L0(k), c = �fDN
N;L0+1;k, d = �asN;L0+1(k), e = �aHN;L0+1(k)�

�1
N;L+1(k),

f = rN;L0+1(k), g = �N;L+1(k), h = � eCN
N;L0+1;k, i = �pN;L0(k)��1N;L0(k) and j = eN;L+1(k).

In order to compute the rotation matrices, one must obtain the a priori errors epN (k) ; rpN (k)
and �pN (k) which are the outputs at time k of the �lters AN;k�1; BN;k�1 and WN;k�1.

6 The GSW FTF-Schur Algorithm

Now we introduce subsampled updating and from the �lters at time instant k�L, we want to
obtain the �lters at time instant k. This will require the rotation matrices and hence the a
priori errors in that time range. We shall show that these quantities can be computed without
generating (completely) the intermediate �lter estimates using a SFTF-Schur algorithm. Let
us introduce the negative of the �lter output

bd p
N (k) = d (k)� �pN (k) ; bdN (k) = d (k) � �N (k) : (34)

Consider now the following set of �ltering operations

FL (k)
4
=

2666666664

�HN;L;k

ep HN;L;k

rp HN;L;k
�HN;L;k

� bd p H
N;L;k

3777777775
4
=

266666664

h
0 eCN;k�L

i
AN;k�L

BN;k�Lh
0 fDN;k�L

i
[WN;k�L 0]

377777775
XH
N+1;L;k (35)

where
XN+1;L;k = [XN+1(k�L+1) � � �XN+1(k)]

H (36)

is the L � (N+1) Toeplitz input data matrix. FL(k) is a 5 � L matrix, the rows of which
are the result of the �ltering of the data sequence fx(j) ; j = k�N�L+1; : : : ; kg by the �ve
�lters of the GSW FTF algorithm. �N;L;k and �N;L;k are the output of the Kalman gains

corresponding to the update and downdate parts, epN;L;k and r
pf
N;L;k are respectively the vectors

of forward and backward prediction errors

e
p

N;L;k=

264 eHN (k�L+1jk�L)
...

eHN (kjk�L)

375 ; r
p

N;L;k=

264 r HN (k�L+1jk�L)
...

r HN (kjk�L)

375 (37)
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The last row of FL(k) corresponds to the (multi-step ahead predicted) adaptive �lter outputs

bd p

N;L;k = dL;k � �pN;L;k =

2664
bd H
N (k�L+1jk�L)

...bd H
N (kjk�L)

3775 : (38)

The �rst column of FL (k) is

FL (k) uL;1 =

2666666664

1 � 
�1L! (k�L)

epN (k�L+1)

rpN (k�L+1)

1 � ��1L!(k�L)

� bd p
N (k�L+1)

3777777775
(39)

where uL;n is the L � 1 vector with 1 at the nth position and 0 elsewhere.
So with the quantities in FL (k) uL;1 and the recursions (31) and (??), it is possible to
construct �k�L+1. Now we rotate both expressions for FL(k) in (35) with �k�L+1 to obtain
�k�L+1FL(k) which equals2666666666666666664

h eCN;k�L+1 0
i

AN;k�L+1

BN;k�L+1hfDN;k�L+1 0
i

[WN;k�L+1 0]

3777777777777777775

XH
N+1;L;k =

266666666666666664

�HN;L�1;k �

eN(k�L+1) ep HN;L�1;k

rfN (k�L+1) rpf HN;L�1;k

�HN;L�1;k �

� bdN (k�L+1) � bd p H
N;L�1;k

377777777777777775
: (40)

Or we can write more compactly

S (�k�L+1 FL(k)) = FL�1(k) (41)

where the operator S(M) stands for: shift the �rst row of the matrix M one position to the
right and drop the �rst column of the matrix thus obtained. Now this process can be repeated
until we get F0(k) which is a matrix with no dimensions. So the same rotations that apply to
the �lters at times k�l; l = L�1; : : : ; 0, also apply to the set of �ltering error vectors Fl(k)
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over the same time span. Furthermore, at each rotation instance, the rotation parameters
can be calculated from the �rst column of Fl(k), the recursions (31) and (??). Inner products
(�ltering operations) are only needed for the initialization (computation of FL(k)). This is
the SFTF-Schur algorithm, which contrasts with the Levinson-style SFTF algorithm in (31).

7 The FSU GSW FTF Algorithm

Once we have computed the L consecutive rotation matrices with the SFTF-Schur algorithm,
we want to apply them all at once to obtain the �lters at time k from the �lters at time k�L.
Due to the shift of the Kalman gains in (31), we need to work in the z-transform domain. So
we shall associate polynomials with the �lter coe�cients as follows

26666664

eCk (z)
Ak (z)
Bk (z)fDk (z)
Wk (z)

37777775 =
266666664

h eCN;k 0
i

AN;k

BN;khfDN;k 0
i

[WN;k 0]

377777775

266664
1
z�1

...
z�N

377775 : (42)

Hence (31) can be written in the z-transform domain as26666664

eCk (z)
Ak (z)
Bk (k)fDk (z)
Wk (z)

37777775 = �k

26666664
z�1

1
1

z�1

1

37777775

26666664

eCk�1 (z)
Ak�1 (z)
Bk�1 (z)fDk�1 (z)
Wk�1 (z)

37777775 : (43)

It appears natural to introduce

�k (z) = �k

26666664
z�1

1
1

z�1

1

37777775 : (44)

Now, in order to adapt the �lters at time k from the ones at time k�L, we get straightforwardly26666664

eCk (z)
Ak (z)
Bk (k)fDk (z)
Wk (z)

37777775 = �k;L (z)

26666664

eCk�L (z)
Ak�L (z)
Bk�L (z)fDk�L (z)
Wk�L (z)

37777775 (45)

where
�k;L (z) = �k (z)�k�1 (z) � � ��k�L+1 (z) : (46)

As mentioned before, the successive rotation matrices can be obtained via the GSW FTF-
Schur algorithm with a computational complexity of 5L2 operations, which takes into account
the fact that a rotation matrix in factored form as in (33) only contains �ve non-trivial entries.
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Table I: the FSU GSW FTF Algorithm

# Computation Cost per L samples

1

2666666664

�HN;L;k
ep HN;L;k
rp HN;L;k
�HN;L;k
� bd p H

N;L;k

3777777775
=

2666666664

h
0 eCN;k�L

i
AN;k�L

BN;k�Lh
0 fDN;k�L

i
[WN;k�L 0]

3777777775
XH
N+1;L;k (6 + 5N+1

L
)FFT (2L) + 10N

2 GSW FTF-Schur Algorithm:

Input: �N;L;k; e
p
N;L;k; r

p
N;L;k; �N;L;k; �

bd p
N;L;k

Output: �k�i (z) ; i = L�1; � � � ; 0 5L2

3 �k;L (z) =
L�1Y
i=0

�k�i (z) 20L2

4

2666666664

eCk (z)

Ak (z)

Bk (z)fDk (z)

Wk (z)

3777777775
= �k;L (z)

2666666664

eCk�L (z)

Ak�L (z)

Bk�L (z)eCk�L (z)

Wk�L (z)

3777777775
5(4 + N+1

L
)FFT (2L) + 40N

Total cost per sample (26 + 10N+1
L

)FFT (2L)
L

+ 50N
L
+ 25L
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Now also remark that �k;L (z) has the following structure

�k;L (z) =

26664
� � � � 0
� � � � 0
� � � � 0
� � � � 1

37775 (47)

where the stars stand for polynomials in z�1 of degree at most L. Taking into account
these two remarks, the accumulation of the successive rotation matrices to form �k;L (z)
takes 20L2 operations. As a result of the structure displayed in (47), the product in (45)
represents 16 convolutions of a polynomial of order L with a polynomial of order N . These
convolutions can be done using fast convolution techniques. In the case we consider, in
which the orders of the polynomials are relatively large, we will implement the convolutions
using the FFT technique. In that case the complexity for the update of each one of the
four �lters is 3(1 + 2N+1

L
)FFT (2L) + 2 (N + 1)) (multiply/add) operations plus 6 (N + 1)

additions (FFT (m) denotes the computational complexity for computing a FFT of length
m, and we assume that L is a power of 2 and that N+1

L
is an integer). The computation of

FL(k) in (35) can also be done with the FFT and one should compute the FFTs of the �lters
only once. In the Overlap-Save method, the data matrix is decomposed into N+1

L
blocks of

L�L Toeplitz matrices, which are then embedded into 2L� 2L Toeplitz matrices. Note that
at time k, only the most recent 2L samples of the input signal, corresponding to the new
L � L block in the data matrix, have to be Fourier transformed. The other parts have been
computed at previous instants (see [16] for more details). The resulting FSU SFTF algorithm
is summarized in Table I.

8 Concluding Remarks

The complexity of the FSU SFTF is O((10N+1
L

+26)FFT (2L)
L

+50N
L
+25L) operations per sam-

ple. This can be very interesting for long �lters. For example, when (N;L) = (4095; 256); (8191; 256)
and the FFT is done via the split radix (FFT (2m) = mlog2(2m) real multiplications for real
signals) the multiplicative complexity is respectively 2:2N and 1:4N per sample. This should
be compared to 14N for the GSW FTF algorithm and 2N for the LMS algorithm. The num-
ber of additions is somewhat higher. The cost we pay is a processing delay which is of the
order of L samples. We have simulated the algorithm and have veri�ed that it works.
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