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ABSTRACT

Blind channel estimation techniques were developed and usually

evaluated for a given channel realization, i.e. with a deterministic

channel model. On the other hand, in wireless communications the

channel is typically modeled as Rayleigh fading, i.e. with a Gaussian

(prior) distribution expressing variances of and correlations between

channel coefficients. In this paper we explore a Bayesian approach

to blind channel estimation, exploiting a priori information on fading

channels. We mainly focus on joint ML/MAP estimation of channels

and symbols on one hand, and on ML/MAP estimation of channels

with elimination of symbols on the other hand. As a consequence,

a unified framework in addition to three new Bayesian estimators

are introduced where their performance is compared by simulations

to three existing non-Bayesian estimators. In the same context, we

provide an insightful discussion of the accurate way of deriving the

Bayesian Cramer Rao bound (BCRB) with an emphasis on its sin-

gularity.

1. INTRODUCTION

In the context of blind channel estimation, our main goal is to es-

timate the channel at the receiver and feed it to a certain equal-

izer (Linear, Decision Feedback ..) to detect the symbols. To ac-

complish this task blindly at the receiver we should exploit every

piece of information exists related to any element of the transmis-

sion system. Moreover, sometimes assumptions are made and con-

sequently the accuracy of the estimated parameters depends on how

close those assumptions are for the reality. We will focus in this pa-

per on the second order statistics and specifically on the maximum

likelihood (ML) and/or maximum a posteriori methods (MAP). Two

approaches exist in the literature on how to tackle the problem. The

first approach is based on the fact that the symbols are considered

as deterministic unknowns to be jointly estimated with the channel.

Such algorithm is called Deterministic (or conditional) Maximum

Likelihood (DML) method [1]. The second approach is based on

treating the symbols as random quantities with known prior infor-

mation to be eliminated or jointly estimated. When the symbols are

eliminated, the method is called Gaussian (or unconditional) Max-

imum Likelihood (GML) [2] see also [3] for its implementation in

sensor array processing. While when they are jointly estimated, the

method is called GMAP-ML [4]. This is because we use maximum

a posteriori (MAP) for symbols and ML for channels and noise vari-

ance. Furthermore, in all these approaches the channel was con-
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sidered as deterministic unknown however, in wireless communica-

tions the channel is typically modeled as Rayleigh fading, i.e. with

a Gaussian (prior) distribution expressing variances of and correla-

tions between channel coefficients. The concept of Bayesian blind

channel estimation was introduced in [5], with in particular some

considerations on identifiability issues. However, in [6] we dis-

cussed briefly some classical Bayesian algorithms and introduced

the concept of variational Bayesian in the context of MIMO OFDM.

Apart from the variational Bayesian techniques, we develop in this

paper classical Bayesian algorithms that treat the channel as ran-

dom with known prior information rather than deterministic. Once

the channel is treated as random, we are within the framework of

Bayesian blind channel estimation and there are are three cases to

be handled. In the first case the symbols are considered as deter-

ministic unknowns to be jointly estimated with channel. We call this

method as ML-GMAP, for a similar reasoning discussed above. In

the second case, the symbols are again to be jointly estimated with

the channel but this time they are considered as random with known

prior Gaussian distribution. We call this method GMAP-GMAP.

In the third case, the symbols are again random with known prior

Gaussian distribution but they are going to be eliminated rather than

estimated. We call this method GMAP-Elm-GMAP where ”Elm”

stands for elimination of symbols. Consequently, in section 3 we

revisit three already existing deterministic estimators and develop

three new Bayesian ones. Therefore, with the introduction of the

Bayesian blind channel estimation algorithms the picture is broad-

ened considerably and to sum up we depict the current picture in

Table 1.

Algorithm Symbols Channel Elm Novel

of Sym

ML-ML (DML) Det Det No No

GMAP-ML Gaussian Det No No

GMAP-Elm-ML Gaussian Det Yes No

ML-GMAP Det Gaussian No Yes

GMAP-GMAP Gaussian Gaussian No Yes

GMAP-Elm-GMAP Gaussian Gaussian Yes Yes

Table 1. Summary of all algorithms

2. SIMO FIR TX SYSTEM MODEL

In blind channel identification, a multichannel framework can be ob-

tained from oversampling a received signal and leads to a Single

Input Multiple Output (SIMO) vector channel representation. The

multiple FIR channels we obtain in this representation can also be

obtained from multiple received signals from an array of antennas or

from a combination of both. To further develop the case of oversam-

pling, consider a linear digital modulation over a linear channel with



additive noise so that the received signal y(t) has the following form

y(t) =
∑

k

h(t− kT )a(k) + v(t). (1)

In (1) a(k) are the transmitted symbols, T is the symbol period and

h(t) is the channel impulse response. The channel is assumed to be

FIR with length NT . If the received signal is oversampled at the rate
m
T

(or if m different samples of the received signal are captured by

m sensors every T seconds, or a combination of both), the discrete

input-output relationship can be written as:

y(k) =

N−1∑

i=0

h(i)a(k−i) + v(k) = HAN (k) + v(k) (2)

where y(k) = [yH
1 (k) · · · yH

m(k)]H ,h(i) =
[
hH
1 (i) · · ·hH

m(i)
]H

,

with hm(i) denotes the ith tap of the mth receiving antenna,

v(k) = [vH1 (k) · · · vHm(k)]H , H = [h(N−1) · · ·h(0)], AN (k) =[
a(k−N+1)H · · · a(k)H

]H
and superscript H denotes Hermitian

transpose. Let H(z) =
∑N−1

i=0 h(i)z−i = [HH
1 (z) · · ·HH

m(z)]H be

the SIMO channel transfer function, and h =
[
hH(N−1) · · ·hH(0)

]H
.

Consider additive independent white Gaussian circular noise v(k)
with rvv(k−i) = Ev(k)v(i)H = σ2

vIm δki. Assume we receive

M samples:

YM (k) = TM (h)AM+N−1(k) + V M (k) (3)

where YM (k) = [yH(k−M+1) · · ·yH(k)]H and similarly for

V M (k), and TM (h) is a block Toeplitz matrix with M block rows

and [H 0m×(M−1)] as first block row. We shall simplify the

notation in (3) with k = M−1 to

Y = T (h)A+ V = Ah+ V . (4)

where A is a block Toeplitz matrix filled with the elements of A. We

assume that mM > M+N−1 in which case the channel convo-

lution matrix T (h) has more rows than columns. If the Hi(z), i =
1, . . . ,m have no zeros in common, then T (h) has full column rank.

3. A UNIFIED FRAMEWORK FOR DIFFERENT

ALGORITHMS

As we have shown in Table 1 there are six possible estimators that

can be classified into two categories. In the first category the subject

of the estimators is to estimate the channel and the symbols jointly

by making some assumptions on the channel and the symbols. If we

denote by θ the unknown parameters to be estimated then it is given

by:

θ = [AH ,hH ]H (5)

The likelihood function is given by:

f(Y, θ) = f(Y/θ)f(θ) (6)

where f(θ) stands for the probability density function (pdf) of θ,

f(Y, θ) stands for the joint probability density function of Y and θ
and f(Y/θ) stands for the pdf of Y conditioned on θ is given or

known. Once we substitute θ in (6) by its elements we get:

f(Y,A,h) = f(Y/A,h)f(A)f(h) (7)

Since the symbols and the channel are a priori independent of each

other we can write f(θ) = f(A)f(h). Of course on the basis of how

we treat the symbols and the channel both f(A) and f(h) differs

from one estimator to another as we shall see in the sequel. Knowing

that the cost function for the estimator is derived by maximizing the

log-likelihood function, hence we apply the log function on both

sides of (7) to get:

ln[f(Y,A,h)] = ln[f(Y/A,h)] + ln[f(A)] + ln[f(h)] (8)

However, in the second category the subject of the estimators is to

estimate the channel and the noise variance only while the symbols

are supposed to be eliminated during the estimation process. Thus

θ = [hH , σ2
v]

H
(9)

Once we substitute θ in (6) by its elements we get:

f(Y,h, σ2
v) = f(Y/h, σ2

v)f(h)f(σ
2
v) (10)

Again, since the cost function for the estimator is derived by maxi-

mizing the log-likelihood function, hence we apply the log function

on both sides of (10) to get:

ln[f(Y,h, σ2
v)] = ln[f(Y/h, σ2

v)] + ln[f(h)] + ln[f(σ2
v)] (11)

We will develop in the following sections the cost functions of all

the estimators that belong to both categories and provide a closed

form formula for both the estimated channel and symbols where it is

possible. It is worthy to note here that since the channel is treated as

random rather than deterministic in some of the above mentioned es-

timators (ML-GMAP, GMAP-GMAP, GMAP-Elm-GMAP) in both

categories, these estimators are considered as an example of the

Bayesian blind channel estimation.

3.1. ML-ML (DML)

We start with ML-ML or what is called DML in the literature [1].

In this case both the symbols and the channel are considered as

deterministic unknowns to be estimated. Hence it belongs to the

first category and consequently the log-likelihood function is given

by (8). Moreover, since both are deterministic we have f(h) =
hoδ(h−ho) and f(A) = Aoδ(A−Ao) where ho and Ao represent

respectively the true values of the channel and the symbols. As the

pdfs of both symbols and channel are constant, this means that they

have no influence on the maximization of (8). Hence, we can de-

rive the cost function by maximizing ln[f(Y/A,h)] directly where

f(Y/A,h) = 1
(πσ2

v
)Mm exp[− 1

σ2
v

(Y − T (h)A)H(Y − T (h)A)].

Thus the cost function is given by:
min
A,h

||Y − T (h)A||2 (12)

The joint optimization of this cost function in both the channel (h)

and the symbols (A) is difficult. Fortunately, the observation is lin-

ear in both the channel and the symbols. In other words, we have a

separable nonlinear LS problem, which allows us to reduce the com-

plexity considerably. The nonlinear LS optimization can be done by

iterating between minimization with respect to A and h. By doing

so, we get the following estimates:

ĥ = (AHA)−1AH
Y (13)

Â = (T H(h)T (h))−1T H(h)Y (14)

3.2. GMAP-ML

In this estimator [2],[4] we treat the symbols as random with Gaus-

sian distribution while the channel is considered deterministic to be

jointly estimated with the symbols. This estimator also belongs

to the first category, thus the log-likelihood function is given by

(8). Moreover, f(A) = 1
(πσ2

a
)M+N−1 exp[−

AHA
σ2
a

] and f(h) =

hoδ(h− ho). It is obvious here that ln[f(h)] can be omitted with-

out affecting the maximization of the log-likelihood function in (8).

Hence, the cost function is given by:

min
A,h

1

σ2
v

||Y − T (h)A||2 +
||A||2

σ2
a

(15)

Following the same methodology used in ML-ML estimator we get:

ĥ = (AHA)−1AH
Y (16)

Â = (T H(h)T (h) +
σ2
v

σ2
a

ImN )−1T H(h)Y (17)



3.3. GMAP-Elm-ML (GML)

This estimator belongs to the second category [2], hence we are

interested in estimating the channel and the variance of the noise

only while the symbols are supposed to be eliminated during the es-

timation process. Furthermore, the log-likelihood function is given

by (11) where we consider the channel and the noise variance to be

deterministic while the symbols have a Gaussian distribution. Here

again, ln[f(h)] and ln[f(σ2
v)] have no influence on maximizing

(11). Substituting f(Y/h, σ2
v) = 1

(π)Mm|RY Y |
exp[−Y HR−1

Y Y Y )]

where RY Y = E YYH = σ2
aT (h)T (h)H + σ2

vIMm in (11) after

omitting ln[f(h)] and ln[f(σ2
v)] we get:

min
h,σ2

v

ln |RY Y |+ tr (R−1
Y Y R̂Y Y ) (18)

This cost function can be minimized by resorting to the method

of scoring [7]. This method consists in an approximation of the

Newton-Raphson algorithm which finds an estimate θ(i) at iteration

i from θ(i− 1), the estimate at iteration i− 1, as:

θ(i) = θ(i−1) − µ
[
F

′′

|θ(i−1)

]−1

F
′

|θ(i−1) (19)

where F(θ) is the cost function in (18), F
′′

is the hessian, F
′

is the gradient of the cost function and µ is the step length that

should be appropriately chosen to guarantee convergence to a lo-

cal minimum. The method of scoring approximates the Hessian by

its expected value, which is here the Gaussian Fisher Information

Matrix (FIM). This approximation is justified by the law of large

numbers as the number of data is generally large. In our case, the

FIM is singular, and as a consequence formula (19) cannot be ap-

plied directly so we take the Moore-Penrose pseudo inverse of the

FIM. On the other hand, it can be easily shown that this estimator

is less sensitive to the common zeros problem. In fact by apply-

ing the matrix inversion lemma we can readily prove that R−1
Y Y =

1
σ2
v

[I − T (h)(T H(h)T (h) +
σ2
v

σ2
a

ImN )−1T H(h)].Therefore, even

if T H(h)T (h) is rank deficient, the cost function may not blow

up thanks to the regularization parameter
σ2
v

σ2
a

ImN introduced by the

prior information on the symbols.

3.4. ML-GMAP

This is our first novel estimator where we introduce the concept of

blind Bayesian channel estimation by treating the channel as random

with Gaussian distribution f(h) = 1
(π)mN |Co

h
|
exp[−hHCo−1

h h].

However, the symbols are considered as deterministic unknowns to

be jointly estimated with the channel hence this estimator belongs to

the first category where the log-likelihood function is given by (8).

Moreover, here again ln[f(A)] has no effect on maximizing (8) so it

can be omitted. Therefore, the cost function is given by:

min
A,h

1

σ2
v

||Y − T (h)A||2 + h
HCo−1

h h (20)

Once again here, following the same methodology used in ML-ML

estimator we get:

ĥ = (AHA+ σ2
vC

o−1
h )−1AH

Y (21)

Â = (T H(h)T (h))−1T H(h)Y (22)

3.5. GMAP-GMAP

This is our second novel estimator where both the channels and the

symbols are assumed random with Gaussian distribution and are

supposed to be estimated jointly. Hence, this estimator in its turn

belongs to the first category and its log-likelihood is given by (8).

By substituting the terms in (8) by their corresponding functions we

deduce the cost function as follows:

min
A,h

1

σ2
v

||Y − T (h)A||2 +
||A||2

σ2
a

+ h
HCo−1

h h (23)

Also here, following the same methodology used in ML-ML esti-
mator we get:

ĥ = (AHA+ σ2
vC

o−1
h )−1AH

Y (24)

Â = (T H(h)T (h) +
σ2
v

σ2
a

ImN )−1T H(h)Y (25)

3.6. GMAP-Elm-GMAP

This is our third novel estimator and it belongs to the second cate-

gory since the symbols are supposed to be eliminated. It can be con-

sidered as an extension to GMAP-Elm-ML by exploiting the prior

information exists about the channel. Its log-likelihood function is

given by (11) but this time ln[f(h)] can’t be omitted. Substituting

the terms in (11) by their corresponding functions we get the cost

function as follows:

min
h,σ2

v

ln |RY Y |+ tr (R−1
Y Y R̂Y Y ) + h

HCo−1
h h (26)

This cost function can be minimized using the scoring method dis-

cussed in case of GMAP-Elm-ML estimator.

4. BAYESIAN CRAMER RAO BOUND (BCRB)

It is well known that the channel can be estimated blindly up to a

scalar ambiguity ρejφ where ρ stands for the amplitude and φ stands

for the phase. In [8] the Bayesian CRB in the context of cooperative

OFDM was derived where the authors claimed (section III-B) that

the knowledge of the prior information of the channel eliminates the

ambiguity of the blind channel estimation. We will show in this short

discussion that the prior information of the channel doesn’t provide

any information about the phase while it provides only a very lim-

ited information about the amplitude. Consequently, the ambiguity

is not totally removed and the singularity persists. From the pdf of

the channel shown before, we can easily notice that the prior Fisher

information Matrix (FIM) is given by Co−1
h . Usually the total FIM

is the sum of the prior FIM and the FIM of the data. The latter is sin-

gular while the former has usually a full rank. Hence, the total FIM

has a full rank. At the first glance this will lead to the same conclu-

sion that was drawn in [8] namely, the prior information eliminates

the blind channel ambiguity. However, a closer look at the problem

will prove that this result is inaccurate at all.

Suppose we have a channel h
′

= ρejφh then the FIM of this

channel is given by 1
ρ2
C0−1

h where we note that φ has been com-

pletely absorbed. This result shows that the prior FIM has no capa-

bility to provide any piece of information regarding the phase. If so,

then the question is why the prior FIM has a full rank and doesn’t

admit any singularity? In order to answer this question and show

that the prior FIM is singular we should reparametrize the prob-

lem between our hands. Moreover, we should also resort to splitting

the complex channel parameters into their real and imaginary parts.

When we accomplish the two previous steps and derive the FIM for

the new reparametrized prior we will find it singular for sure. To

commence with this task, lets take the first tap of the channel as a

common factor we get h = ρejφh
′

where h
′

= [1 h̄
H
]H . Denote

by θ = [h̄
rT

, h̄
sT

, ρ, φ] the set of parameters to be estimated where

h̄
rT

and h̄
sT

denotes respectively the real and the imaginary parts

of h̄. Due to the lack of space we will not go into the detailed deriva-

tion nevertheless we will show below the resulting prior FIM (2mN

x 2mN)which is given by:



FIMpriro = 2





Co
h(1, 1)C̄

o
h

−1
0 0 0

0 Co
h(1, 1)C̄

o
h

−1
0 0

0 0 Co
h
−1(1, 1) 0

0 0 0 0





(27)

where Co
h(1, 1) denotes the element that lies in the first row and first

column of Co
h and C̄o

h

−1
can be obtained from Co

h
−1 by omitting the

first row and the first column. It is evident now that the prior FIM

admits one singularity that corresponds to the phase and it provides

only the variance of the ambiguous amplitude Co
h(1, 1) and not the

amplitude itself. Hence, this information is considered limited and

incomplete. Now to pursue the derivation of the BCRB we should

play the same game with the FIM of the data. Doing so, we can show

that the latter admits two singularities, one corresponds to the ampli-

tude and the other corresponds to the phase. However, the total FIM

which is the sum of the prior and the data FIMs will admit only one

singularity that corresponds to the phase. This is because the prior

FIM ameliorate only the singularity that corresponds to the ampli-

tude which results from the FIM of the data. Therefore, the prior

FIM only contributes to fix one singularity while it has no means to

deal with the other. As a consequence, the resulting BCRB which is

defined as the inverse of the total FIM is still singular and needs an

additional constraint to fix the phase ambiguity.

5. SIMULATIONS

In this section we try to shed light by means of MonteCarlo simu-

lations on the advantages of blind Bayesian compared to the blind

non-Bayesian channel estimation. In each MonteCarlo simulation

we generate a Rayleigh fading channel with exponentially decaying

power delay profile (PDP)(assumed known) for the channel between

each transmitting and receiving antenna pair as follows: e−wn where

n = 0 : N − 1 and w is a constant that controls how steep is the de-

caying of the PDP. Hence, Co
h is the diagonal matrix Co

h = Im ⊗ C
where C = diag {e−wn, n = 0 : N − 1}. As for the sym-

bols, we generate random 8PSK symbols to reflect the real world

case. The performance of the different channel estimators is evalu-

ated by means of the Normalized MSE (NMSE) vs. SNR. The SNR

is defined as: SNR = ||T (h)A||2

mM σ2
v

while The NMSE is defined as

avg ||h−
ˆ̂
h||2

avg ||h||2
where

ˆ̂
h =

ˆh
H

h
||
ˆh||2

h is the channel estimate adjusted

by the least squares constraint to fix the scalar ambiguity that re-

sults from the blind channel estimation. All the simulations are ini-

tialized by the Subchannel Response Matching (SRM) estimate [9].

In Figure 1, we take a look at the considerable gain (4dB) offered

by both GMAP-GMAP and GMAP-Elm-GMAP over GMAP-ML at

high SNR. Moreover, these two novel Bayesian estimators that we

have introduced have the potential to exceed even GMAP-Elm-ML

by couple of dBs. This emphasizes the indispensable role of exploit-

ing the prior information of the channel in enhancing the estimation

quality at the receiver. It is worthy to note that in simulating GMAP-

Elm-GMAP and GMAP-Elm-ML in Figure 1, we consider σ2
v to

be known hence, we only estimate the channel. This permits us to

make a fair comparison between joint estimation of the channel and

the symbols (GMAP-GMAP, GMAP-ML) and the estimation of the

channel with marginalization of the symbols (GMAP-Elm-GMAP,

GMAP-Elm-ML). Taking a close look at Figure 1 shows that, in

such a scenario, the estimation of the channel with marginalization

of the nuisance parameters (symbols) outperforms a little bit the joint

estimation of the channel and the symbols. This holds true what-

ever is the assumption made for the channel namely, deterministic or

Bayesian although it is more evident in the deterministic case.
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Fig. 1. NMSE vs. SNR for different estimators.

6. CONCLUSION
After we have introduced previously the concept of blind Bayesian
channel estimation without providing any specific algorithm, the
main message of this paper is to prove that there is yet a classi-
cal way to implement the blind Bayesian channel estimation apart
form the variational Bayesian techniques introduced recently. This
concept has been shown by augmenting the cost functions of some
ML/MAP estimators that already exist in the literature. Moreover,
the novel Bayesian estimators that we have derived in this paper
show a considerable performance gain compared to the determin-
istic ones. Another aspect that has been addressed in this paper is
the limited contribution of the prior information of the channel in
fixing the ambiguities that result from the blind channel estimation
problem. We have derived the reparametrized prior FIM of the
channel showing that it is singular and is not capable of providing
any information related to the ambiguous phase while it provides a
limited information to fix the amplitude ambiguity.
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