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Abstract—Opportunistic networks use human mobility and
consequent wireless contacts between mobile devices, to dissem-
inate data in a peer-to-peer manner. To grasp the potential and
limitations of such networks, as well as to design appropriate
algorithms and protocols, it is key to understand the statistics
of contacts. To date, contact analysis has mainly focused on
statistics such as inter-contact and contact distributions. While
these pair-wise properties are important, we argue that structural
properties of contacts need more thorough analysis. For example,
communities of tightly connected nodes, have a great impact on
the performance of opportunistic networks and the design of
algorithms and protocols.

In this paper, we propose a methodology to represent a
mobility scenario (i.e., measured contacts) as a weighted contact
graph, where tie strength represents how long and often a pair
of nodes is in contact. This allows us to analyze the structure
of a scenario using tools from complex network analysis and
graph theory (e.g., community detection, connectivity metrics).
We consider four mobility scenarios of different origins and sizes.
Across all scenarios, we find that mobility shows typical small-
world characteristics (short path lengths, and high clustering
coefficient). Using state-of-the-art community detection, we also
find that mobility is strongly modular. However, communities are
not homogenous entities. Instead, the distribution of weights and
degrees within a community is similar to the global distribution of
weights, implying a rather intricate intra-community structure.

To the best of our knowledge, this is the most comprehensive
study of structural characteristics of wireless contacts, in terms
of the number of nodes in our datasets, and the variety of metrics
we consider. Finally, we discuss the primary importance of our
findings for mobility modeling and especially for the design of
opportunistic network solutions.

I. INTRODUCTION

The rapid proliferation of small wireless devices creates
ample opportunity for novel applications [1], as well as for ex-
tending the realm of existing ones. Opportunistic or Delay Tol-
erant Networking (DTN) [2] is a novel networking paradigm
that is envisioned to complement existing wireless technolo-
gies (cellular, WiFi) by exploiting a niche performance-cost
tradeoff. Nodes harness unused bandwidth by exchanging data
whenever they are within mutual wireless transmission range
of each other (in contact).

Since every contact is an opportunity to forward content
and bring it probabilistically closer to a destination (or a
set of destinations), understanding statistical properties of
contacts is vital for the design of algorithms and protocols
for opportunistic networks. To this end, a number of efforts
have been made to collect mobility traces at various scales
using different methods [3], [4], [5], [6].

Analysis of such traces has led to several important findings:
On an individual level, mobility patterns exhibit time-of-day

periodicity and strong location preference [7]. The amount of
regularity observed implies high (statistical) predictability of
these patterns [8]. On a pairwise level, most trace analysis
research has focused on inter-contact and contact duration
statistics [9], [10] and it is still debatable whether these
distributions are power-law, have exponential tail, or have
qualitatively different behavior from on pair to another. More
recently, studies have focused on the macroscopic structure
of contacts such as tightly knit communities of nodes that
meet each other frequently. Such community structure is
generally assumed because of the social nature of human
mobility. In fact, some state-of-the-art mobility models [11]
explicitly model community structure, and most recent DTN
routing protocols [12], [13] exploit structural characteristics.
However, there are few studies that systematically measure the
macroscopic structure of mobility. Notable exceptions are [12],
reporting high modularity of contacts (i.e., strong community
structure), [14] finding short average path length in oppor-
tunistic networks, and [15] analyzing the time-dependence of
communities.

In this paper, we provide a thorough and extensive analysis
of the structural properties of contacts. To do so, we represent
contacts in a compact and tractable way as a weighted contact
graph, where the weights (i.e., tie strengths) express how
frequently and how long a pair of nodes is in contact. Given
such a contact graph, we can use tools and metrics from social
network analysis and graph theory (e.g., connectivity metrics,
community detection, etc.) to quantify the amount of structure
in the underlying mobility scenario. Our main findings and
contributions can be summarized as follows:

i) Our study is based on 4 contact traces ranging in size
from ∼ 100 to ∼ 1000 nodes, hence, we add one order of
magnitude compared to prior works (which have only analyzed
contact graphs of ∼ 100 nodes). We also present a completely
new trace reporting the whereabouts of users using a popular
location-based smartphone application (Sec. II).

ii) We provide thorough evidence that the structure of
mobility has small-world properties typically observed in
social networks. While previous work [14] has only shown
that there exist short space-time paths (possibly formed by
random, unpredictable contacts), our methodology allows to
conclude that the strong and predictable structure is small-
world (Sec. III).

iii) We show that contacts are strongly modular, i.e., that
there are close-knit communities of people with strong mobil-
ity ties. We study and compare the distributions of tie strengths
and node degrees within and across communities. We find high



Fig. 1: Contact Graph of DART trace.

variance and heavy tails on both levels, implying that com-
munities are by no means homogenous entities. In all traces,
we find surprisingly similar distributions within communities
and on a global level, suggesting that a community itself has
properties similar to the entire network (Sec. IV).

iv) We discuss the implications of these findings for the de-
sign of opportunistic routing protocols and mobility modeling
(Sec. V).

II. DATASETS AND CONTACT GRAPH

In this section, we detail the mobility scenarios we use in
our study, and how we derive contact traces from them (II-A).
Finally, we explain our methodology of creating an aggregated
contact graph from such a contact trace (II-B).

A. Mobility Scenarios and Contact Definition
We define a contact as the period of time during which

two devices are in mutual radio transmission range and can
exchange data. For our analysis, we use four mobility traces
collected in different contexts and with different methods:
WLAN Access Point associations from the Dartmouth and
ETH Zurich campuses, Bluetooth contacts from the MIT cam-
pus and self-reported “check-ins” from a popular geographic
social network, Gowalla. In the following we describe these
scenarios and how we derive contact traces from them.

Dartmouth (DART) We use 17 weeks of the WLAN
Access Point (AP) association trace [3], between Nov. 2nd
2003 and Feb. 28th 2004. We choose the 1044 nodes which
have activities at least 5 days a week on average i.e., the nodes
have associations at least 5 × 17 = 85 days. The trace is
preprocessed to remove short disconnections (< 60s) which
we attribute to interference and other non-mobility related
effects, as well as the well known ping-pong effect where
devices jump back and forth between different APs in reach.
We assume that two nodes are in contact when they are
associated to the same AP at the same time.

ETH Campus (ETH) Using the same methodology as for
Dartmouth, we process a trace collected at the ETH campus [4]
during almost 15 weeks between Oct. 25th 2006 and Feb. 3rd

2006. Similarly, we choose 285 nodes which connect to the
WLAN AP network at least 5 days a week (i.e., 75 days).

Gowalla (GOW) Gowalla1 is a location-based service
where users check-in to close-by spots (e.g., restaurants, office
buildings), thereby logging their position. We use the publicly
available location data of 473 heavy-users who, during the 6
months from Apr. to Sept. 2010, check-in at least 5 days a
week somewhere in the State of Texas in the United States.
Since users only check-in and do not check-out, we cannot
infer the stay duration at a spot. Therefore, we assume users
are in contact when they check-in less than 1 hour apart at the
same spot. As we do not know the duration of a contact, we
assume all contacts have the same duration (1 hour2).

MIT Reality Mining (MIT) The MIT trace [6] logs
contacts between 92 campus students and staff, detected by
Bluetooth scans with a scanning interval of 5 minutes. We
take a 3 months long piece of the trace. It is the only trace
we use where contacts are measured directly (and not inferred
from location). However, supposedly, many short contacts are
not registered due to the relatively long scanning interval.

Note that these traces differ vastly in their nature, and
different traces capture different aspects of mobility. For
instance the Gowalla trace, by the nature of the application,
mainly captures the mobility of users while they go out and
socialize. The DART trace captures students and staff at home
and at the university, whereas the ETH trace captures only
work behavior, since there are no APs in residential buildings.
MIT is the smallest trace but captures work, home and leisure
equally. We believe that due to the variety of the traces,
our results are general even though individual traces may be
biased. Details about all these traces are listed in Table I.

B. Aggregation of Contact Traces to Contact Graphs
Contacts happen due to the mobility of the people carrying

the devices and reflect the complex structure in people’s
movements: meeting strangers by chance, colleagues, friends
and family by intention or familiar strangers because of
similarity in their mobility patterns. Our goal is to represent
the complex resulting pattern of who meets whom, how often
and for how long, in a compact and tractable way. This allows
us to quantify structural properties beyond pairwise statistics
such as inter-contact and contact time distributions.

To represent the structure of a mobility scenario, we
aggregate the entire sequence of contacts of a trace to a
static, weighted contact graph G(N,W) with weight matrix
W = {wij}. Each device (or rather person carrying a device)
is a node of this graph and a link weight wij represents the
strength of the relationship between nodes i and j.

A key question is how to derive the tie strength between
two nodes, i.e., what metric to use for wij , based on the
observed contacts. This weight should represent the amount of
mobility correlation (in space and time) between two nodes.
Various metrics, such as the age of last contact [16], contact
frequency [12] or aggregate contact duration [12] have been
used as tie strength indicators in DTN routing.

1http://gowalla.com
2With the tie strength described in Sec. II-B the chosen duration does not

affect the contact graph if all contacts have the same duration.



DART ETH GOW MIT
# People and context 1044 campus 285 campus 473 Texas 92 campus
Period 17 weeks 15 weeks 6 months 3 months
Type AP associations AP associations Self-reported location Bluetooth scanning
# Contacts total 4′200′000 99′000 19′000 81′961
# Contacts per dev. 4′000 350 40 890

TABLE I: Mobility traces characteristics.

In our study, we consider both, contact frequency and ag-
gregate contact duration. They capture different aspects, both
of which are important for opportunistic networking (e.g., for
data dissemination). Frequent contacts imply many meetings
and hence many forwarding opportunities (short delays) and
long contacts imply meetings where a large amount of data
can be transferred (high throughput)3.

Since most network analysis metrics require one-
dimensional tie strengths, we map these two features to a
scalar weight. We first assign each pair of nodes {i, j} a
two-dimensional feature vector, zij =

(
fij−f̄
σf

,
tij−t̄
σt

)
, where

fij is the number of contacts in the trace between nodes i
and j, and tij is the sum of the durations of all contacts
between the two nodes. f̄ and t̄ are the respective empirical
means, and σf and σt, the empirical standard deviations. We
normalize the values by their standard deviations to make
the scales of the two metrics comparable. We then transform
the two-dimensional feature vector to a scalar feature value,
using the principal component, i.e., the direction in which the
feature vectors of all node pairs Z = {zij}, i, j ∈ N has
the largest variance. This is the direction of the eigenvector
v1 (with the largest corresponding eigenvalue) of the 2 × 2
covariance matrix of frequency and duration. We then define
the tie strength between i and j as the projection of zij on
the principal component wij = v1

T zij + w0, where we add
w0 = v1

T
(
− f̄
σf
,− t̄

σt

)
(the projection of the feature value for

a pair without contacts) in order to have positive tie strengths.
The obtained weight is a generic metric that combines the
frequency and duration in a scalar value and captures the
heterogeneity of node pairs with respect to frequency and
duration of contacts4.

III. SMALL-WORLD STRUCTURE

Fig. 1 shows as an example the DART contact graph. We
observe that there is strong non-random structure. To quantify
this structure, we first measure some standard metrics such as
average shortest path lengths and clustering coefficients.

The graphs of all scenarios are connected, i.e., there is a
path between all node pairs. However, they vary in terms of
density (the density D being the percentage of node pairs for
which wij > 0):
DDART = 0.12, DETH = 0.09, DGOW = 0.04, DMIT = 0.68.
We first compute average path lengths and clustering coef-

ficients. With these properties we can examine the graphs for

3Note that the age of last contact is not suitable for our purpose, since we
need aggregate properties over the trace duration.

4Note that this framework implicitly assumes stationarity of the underlying
mobility process, which is not always true in some traces. In practice (e.g.,
for protocol design), one can implement a sliding window mechanism.

Clustering Coefficient Avg. Path Length
1% 2% 3% 4% 1% 2% 3% 4%

DART 0.71 0.63 0.57 0.54 7.4 3.7 2.9 2.6
ETH - 0.66 0.57 0.53 - 6.1 5.6 4.0
GOW 0.28 0.27 0.27 0.26 4.5 3.4 3.0 2.8
MIT - - 0.56 0.57 - - 4.6 3.8

TABLE II: Clustering Coefficients and Average Path Lengths
using different graph densities. Missing values in cases where
there is no giant component.

small-world characteristics. Small-world networks, according
to [17], manifest short paths between nodes (a typical property
of random, Erdős-Rényi graphs) and high clustering coeffi-
cient (tendency of relations to be transitive). The clustering
coefficient of node i is defined as (e.g., [17])

Ci =
number of triangles connected to i
number of triples connected to i

.

It ranges from 0 to 1, indicating the percentage of triangles
which are “closed”. The clustering coefficient of a graph is the
average of the nodes’ clustering coefficients. The average path
length is the shortest path length, averaged over all connected
node pairs.

While clustering coefficient and average path length pro-
vide meaningful and comprehensible information about the
structure of a binary graph, their respective generalizations
(e.g., [18]) to weighted graphs are much less easily inter-
pretable. To maintain the interpretability, we dichotomize our
contact graphs by using a threshold to extract the strongest ties
(i.e., set them to one and the rest to zero). By doing so, we
extract the regular and predictable “backbone” of the contact
graph, and dismiss the random unpredictable part (c.f. [19]).
To ensure that our results are not distorted by the threshold, we
show that the qualitative relations of path length and clustering
coefficient stay the same with different thresholds.

Table II shows the average clustering coefficients for dif-
ferent weight thresholds, chosen such that the binary graph
densities are fixed to 0.01, 0.02, 0.03 and 0.04. Note that
for a random graph (Erdős-Rényi), the clustering coefficient
increases linearly with density from 0 to 1. Thus, in a graph
where 10% of the node pairs are connected, the expected
clustering coefficient is 0.1. The values show that all scenarios
are considerably more clustered, strongly suggesting non ran-
dom connectivity. We observe that the clustering coefficient
of DART, ETH and MIT are very high and strikingly similar,
whereas the GOW trace is a bit less clustered. We attribute this
to the different nature of the traces: Transitivity of ties in work
and home environments is stronger than in social activities
captured by Gowalla.



Trace/Model # Comm. Q
DART 23 0.84
ETH 21 0.81
GOW 29 0.7
MIT 6 0.52

TABLE III: Number of communities and modularity (Q).

Looking at the average shortest path length, we see that
paths are only few hops long on average. Thus, we observe
the small-world behavior, typical for social networks, also in
the network of physical encounters.

This finding is related to the report of short opportunistic
paths by Chaintreau et. al. [14]. However, there are two main
differences to this study which we discuss in the following.

i) [14] measures path length in terms of number of relays
using epidemic dissemination (i.e., messages are copied at
every encounter). Their result means that short paths exist,
when accounting for both, strong and weak ties (pairs which
meet often and ones that only meet randomly). Here, we limit
the edges to strong ties, and find that paths are still short.
This is an important distinction for designing dissemination
protocols, where forwarding decisions must be made based on
regular encounters and not random, unpredictable ones [19].

ii) The scenarios in [14] are one order of magnitude smaller
in number of nodes (MIT, which we also consider, is the
largest trace considered there). It is not obvious that the results
in [14] would also hold for networks with more nodes (DART)
and broader geographic range (GOW).

Note also, that [14] does not account for clustering.

IV. COMMUNITY STRUCTURE

Additionally to the described small-world characteristics,
we are interested in the existence of communities [20] in the
contact graph. Communities, informally defined as subsets of
nodes with stronger connections between them than towards
other nodes, are typical for the structure of social networks5.

The existence of strong communities in the contact graph
has various implications for opportunistic networks: On one
hand, it implies high potential for node cooperation and
community-based trust mechanisms. On the other hand, it may
also imply high convergence times for distributed algorithms
since there may be strong bottlenecks between communities.

A. Community Detection Results
To detect communities in the contact graph, we apply the

widely used Louvain community detection algorithm [22]6. To
measure how strongly modular the resulting partitioning is, we
use Newman’s Q function [20]:

Q =
1

2m

∑
ij

(
wij −

didj
2m

)
δ(ci, cj),

5Note that the existence of community structure is related to a high
clustering coefficient, however, strong clustering can have origins other than
community structure. For instance in the ring lattice (where the nodes are
arranged in a ring and connected to their K (with constant, small K,
K ≥ 2) neighbors on the left and right side), without re-wiring, the clustering
coefficient is 3

4
[21], even though there is no community structure.

6Since the partitioning of communities depends on the algorithm, we used
spectral clustering as a second algorithm for detecting communities. The
results are very similar, hence we do not report them here.
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Fig. 2: Community sizes.

where di =
∑
j wij is the degree7 of node i and m = 1

2

∑
j dj

is the total weight in the network. ci denotes the community
of node i thus, the Kronecker delta function δ(ci, cj) is one if
nodes i and j share the community and zero otherwise. Q = 0
is the expected quality of a random community assignment.
[20] reports modularities of above Q = 0.3 for different
networks (social, biological, etc.).

The number of identified communities and the respective
Q values are reported in Table III. We observe that in all
cases, we get high modularity values between 0.52 and 0.84.
Note that high modularity values of the graph of aggregate
contact durations have also been reported in [12] (for smaller
traces and different community detection algorithms), thus
our findings are in agreement. Relating the modularities to
clustering coefficients (see Table II), we observe on one
hand that for DART and ETH, where we measure high
clustering coefficients, also modularities are strong. On the
other hand, MIT having similarly high clustering coefficient,
has the lowest modularity, and GOW has a high modularity
despite having the lowest clustering coefficient among all
traces. This confirms that clustering coefficient and modularity
measure different aspects of clusteredness: While the social
nature of the GOW contacts makes them less transitive in
terms of forming triangles, they are still grouped into larger
communities.

To get an impression of the sizes of such communities, we
show two examples of community size histograms in Fig. 2.
In both, ETH and GOW we observe that the majority of
communities are small (≤ 10 nodes), yet, there are few very
large communities. The same observation holds for DART,
which we do not show due to space limitations. MIT is,
with only 6 communities, too small to draw conclusions on
the community size distribution. These large communities,
some of which have 100 and more nodes, raise the question
about the community internal structure: Are communities
homogenous entities within which all nodes have similarly
strong connections to all other community members, or do
they manifest more complex internal structure?

B. Intra-Community Structure

A community, by definition, is a strongly connected sub-
group of nodes. Hence, we expect intra-community weights
(where intra-community weights wij are those, for which
ci = cj) to be stronger on average than the average of all

7This metric is sometimes also called node strength, to distinguish it from
the degree (number of edges of a node) in binary graphs.



DART ETH GOW MIT
Density Global 0.12 0.10 0.04 0.68

Community 0.65 0.47 0.13 0.92
Median Global 0.02 0.16 0.24 0.1

Community 0.74 0.34 0.24 0.94
Coeff. of Variation Global 3.4 2.7 7.2 2.5

Community 1.8 2.2 5.9 1.4
Skewness Global 8.7 5.8 33 7.3

Community 5.1 4.5 21 4.5
Kurtosis Global 188 54 1431 105

Community 72 34 607 44

TABLE IV: Weight statistics, comparing weight distributions
of intra-community weights to distributions of all weights in
the network.

DART ETH GOW MIT
Median Global 0.10 0.09 0.02 0.41

Community 1.7 0.7 0.08 1.8
Coeff. of Variation Global 0.9 1.2 1.9 0.7

Community 0.9 1.5 3.5 0.7
Skewness Global 2.2 2.1 5.0 1.0

Community 2.6 2.3 6.3 1.4
Kurtosis Global 11.5 9.0 37 4.2

Community 15.1 9.1 52 6.4

TABLE V: Statistics for all normalized global and intra-
community degrees.

weights. Indeed, Table IV reports that the median8 of the
weights is much stronger within communities than globally.
However, we also notice that communities are not completely
meshed entities: The density (we define the community density
as the percentage of intra-community weights > 0) is far from
1. This suggests high heterogeneity of weights within commu-
nities, which is confirmed by the complementary cumulative
distribution function (CCDF) plots of the global and intra-
community weights in Fig. 3.

We also observe that the distributions differ between the
traces. The straight line in log-log scale implies a power
law distribution of the GOW weights. For the other traces,
the plots suggest a somewhat thinner tail with two regimes
or log-normal shape. Yet, note that the distribution of the
global weights is in all cases qualitatively very similar to the
distribution of the intra-community weights9. This is an impor-
tant observation, as it suggests that there is no fundamental
difference between community weights and global weights,
other than intra-community weights being stronger on average.

To confirm this visual conclusion, and to characterize the
distributions further, we report statistics related to their second
(Coefficient of Variation), third (Skewness) and fourth (Kur-
tosis) moments [23] in Table IV. The high Coefficients of
Variation (> 1 means more variation than an exponential dis-
tribution) confirm high heterogeneity of weights, both within

8Because of the heavy tail of weight distributions (see below), we use the
robust median as an average.

9Notice that the intra-community weights are subsets of the global weights,
containing 29% (DART), 59% (ETH), 42% (GOW) and 26% (MIT) of the
weight values. However, because these subsets are not picked randomly but
such that the weights must fall within a community, it is not obvious that the
subsets should have the same distribution as the total sets of weights.

communities and globally. Further, we notice high Skewness
values (2 for exponential, higher positive values imply higher
asymmetry towards the right of the mean) and high Kurtosis
values (9 for exponential, higher values imply flatter distri-
butions) implying a “fat” tail of weight distributions, both
globally and within communities.

Even if a node does not meet all of its community peers,
there must still be a reason that it is placed in a certain
community: We expect it to have a high average weight
towards other nodes in its communities. To verify this, we
define the normalized global degree of node i as its node
degree di =

∑
j∈N wij , divided by the number of nodes in the

network |N |. Similarly, we define the normalized community
degree of node i as the sum of its weights to other nodes of
its community dcii =

∑
ci=cj

wij , divided by the number of
nodes in community ci.

Table V indeed shows that the median is significantly higher
for community degrees. Fig. 4 further plots the CCDFs of the
normalized degrees in log-linear scale (notice the difference in
scale from Fig 3). From the almost straight lines (particularly
in DART and ETH), we visually conclude that the distributions
are close to exponential. This is confirmed with the Coeffi-
cients of Variation, Skewness and Kurtosis values reported in
Table V, which (except for GOW) are close to the values for
exponential distributions. Note also that the statistics for global
and community degrees follow each other closely, suggesting
that the distributions are of the same type. We will discuss the
implications of these findings in the following section.

V. DISCUSSION AND CONCLUSION

We have presented an extensive measurement study of struc-
tural properties of contact traces collected in different mobility
scenarios. In the following, we summarize our findings and
discuss the implications for mobility modeling and for routing
protocols for opportunistic networks.

Small-world: Short average path lengths and high clus-
tering coefficients show that the graph of wireless contacts
has small-world structure. Unlike [14], which only proves
the existence of short space-time paths (possibly formed by
random, unpredictable contacts), our findings suggest that
short paths can in fact be found by complex network analysis
based routing protocols [12], [13] that can only infer and
exploit strong mobility ties and predictable contacts. This
result suggests that the contact graph has good navigability
properties [24], an aspect we plan to analyze in the future.

Heterogenous weights: Weight distributions show high
variance and heavy tails, both, globally and within com-
munities. While this result for global weights is related to
heavy tailed inter-contact times reported before [9], [10], it
is more surprising for the intra-community weights. Such
heterogeneity within communities should be considered when
modeling social (group) mobility. Further, it has implications
for opportunistic routing protocols: It is not enough to find
the community of the message destination. Intra-community
routing could help to find a node within a community.

Degree distributions: Heterogeneity of degrees is much
smaller than heterogeneity of weights and the degree distribu-
tions are clearly not scale-free. This raises some questions as
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Fig. 3: Weight CCDFs, global and intra-community weights in log-log scale.
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to the efficiency of intra- and inter-community routing schemes
based on increasing degree centrality of the relay (as a typical
search strategy for networks with scale-free degrees). In future
work, we intend to quantitatively investigate, whether such
approaches can efficiently navigate the contact graph.

Similarity of global and community scale: The similarity
of the weight and degree distributions, globally and within
communities, suggests that similar routing strategies could be
applied on both levels. This finding also hints towards a self-
similar structure of the contact graph across different scales, a
property which has already been reported for different complex
networks [25]. We plan to further investigate the similarity of
global and intra-community weight and degree distributions.

Further, we plan to compare the characteristics we found
here to those of contact graphs created from synthetic mobility
models. Since opportunistic networks research is heavily based
on simulation, it is important to have models that accurately
reproduce realistic contact structure.
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