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Abstract

We propose a new discriminative confidence measure-
ment approach based on an evolution strategy for spoken
term detection (STD). Our evolutionary algorithm, named
evolutionary discriminant analysis (EDA), optimizes classi-
fication errors directly, which is a salient advantage com-
pared with some conventional discriminative models which
optimize objective functions based on certain class encod-
ing, e.g. MLPs and SVMs. In addition, with the intrinsic
randomness of the evolution strategy, EDA largely reduces
the risk of converging to local minimums in model train-
ing. This is particularly valuable when the decision bound-
ary is complex, which is the case when dealing with out-of-
vocabulary (OOV) terms in STD. Experimental results on
the meeting domain in English demonstrate considerable
performance improvement with the EDA-based confidence
for OOV terms compared with MLPs- and SVMs-based con-
fidences; for in-vocabulary terms, however, no significant
difference is observed with the three models. This confirms
our conjecture that EDA exhibits more advantage for tasks
with complex decision boundaries.

1. Introduction

The ever increasing volume of audio data available on
the web or in huge multimedia repositories promotes the
research on automatic indexing and retrieval methods for
spoken documents. Spoken term detection (STD) is a fun-
damental task towards this direction [8], and was defined by
the NIST as ‘searching vast, heterogeneous audio archives
for occurrences of spoken terms’. A multitude of research
has been reported in this line [6, 12, 13, 7, 9].

The standard STD architecture, as depicted in Figure 1,
consists of three main components: a speech recognition
component that converts input speech to word or subword
lattices; a term detector that searches the lattices for po-
tential occurrences of search terms, and a decision maker

which evaluates the found occurrences and hypothesizes re-
liable ones as output. In STD, a hypothesized occurrence is
called a detection; if the detection corresponds to an actual
occurrence, it is called a hit, otherwise it is a false alarm
(FA). If an actual occurrence is not detected, this is called
a miss. The NIST tool is used to measure the STD perfor-
mance in terms of average term weighted value (ATWV)
and detection error tradeoff (DET) curves [8].

Within the STD subsystem, the decision maker plays
an important role in determining eligible detections, which
is usually based on certain confidence measures. Term-
dependent confidence measures derived from discrimina-
tive models, e.g. multi-layer perceptron (MLP) or support
vector machine (SVM), have been shown to outperform
the commonly used lattice-based confidence [15]. Gener-
ally speaking, this discriminative approach treats the hit/FA
decision as a two-class classification problem, and derives
confidence measures from classification posterior probabil-
ities. The classification posterior probabilities can be de-
rived from any discriminative model, though MLPs and
SVMs are the most commonly used. A possible disadvan-
tage of the MLP and SVM, however, is that their cost func-
tions are based on some intermediate distances instead of
on the classification error rate itself. For example, MLPs
take likehood on training data as their objective function,
while SVMs maximize the minimum margin of training ex-
amples to the decision boundary. Another problem, mainly
for MLPs, is that the training process heavily depends on
initialization, and is much more likely to be trapped in a
local minimum. This is particularly critical when the de-
cision boundary is complex. For instance, when dealing
with out-of-vocabulary (OOV) terms, the diverse properties
(pronunciation variation, occurrence rate, confidence distri-
bution, ASR error pattern) among OOV terms, compared
with in-vocabulary (INV) terms, may lead to rather compli-
cated decision boundary and hence to a high risk of local
minimum.

We propose a new discriminative confidence estimation
approach based on an evolutionary algorithm, named evolu-



Figure 1. The standard STD architecture: a speech
recogniser converts speech into word/subword lat-
tices; a term detector searches for potential occur-
rences of the search terms; a decision maker decides
whether each detection is reliable. The NIST tool is
used to evaluate detection performance.

tionary discriminant analysis (EDA). Compared with MLPs
and SVMs that optimize objective functions based on class
encoding and intermediate distance, EDA takes the classifi-
cation error rate as its objective function and therefore opti-
mizes the evaluation metric directly. Moreover, the intrinsic
randomness within the evolution strategy provides a rescue
mechanism for models trapped in local minima. We argue
that these advantages with EDA may lead to a better dis-
criminative confidence estimation than standard MLPs and
SVMs in STD, especially for OOV terms for which the de-
cision boundary is complex. The authors note that EDA has
been already used in other applications [11, 10]. The nov-
elty of this paper from the EDA perspective is that EDA
is extended to provide classification posterior probabilities
instead of hard classification decisions. To our best knowl-
edge, this is the first effort to apply evolutionary approaches
in STD.

The rest of the paper is organized as follows: we first in-
troduce the discriminative confidence estimation in Section
2, and then present the evolutionary algorithm in Section 3.
The experimental settings and results are presented in Sec-
tion 4, and some conclusions in Section 5.

2. Discriminative confidence estimation

The discriminative confidence measurement was pre-
sented in [15] to deal with the highly diverse properties
among OOV terms. The basic idea is to treat the hit/FA
decision as a binary classification task and derive confi-
dence measures from the classification posterior probabil-
ities. Any discriminative model can be employed to derive
the posterior probabilities, such as MLPs and SVMs stud-
ied in the original paper [15]. A particular advantage along
with the discriminative approach is that term-dependent fac-
tors can be involved in model inputs and hence being taken

into account in measuring confidence scores. As it has been
demonstrated [15], the term-dependent discriminative con-
fidence estimation is highly effective and substantially out-
performs the widely used lattice-based confidence, espe-
cially for OOV terms.

Following the notations in [15], we denote a detection as
d, and its discriminative confidence as cp(d). The discrimi-
native approach can be formally represented as a non-linear
mapping f from a set of informative features to cp(d):

f : (cf (d), A, L, T,R0(K), R1(K)) −→ cp(d) (1)

where cf (d) is the lattice-based confidence (i.e., clat) de-
rived from lattice posterior probabilities [16], given by

clat =

∑
πα,πβ

p(O|πα,Kte
ts , πβ)P (πα,Kte

ts , πβ)∑
ξ p(O|ξ)P (ξ)

(2)

where πα and πβ denote any path before and after the term
detected K, with πα starting from the beginning of the
speech and πβ finishing at the end; ξ denotes any complete
path through the lattice. ts is the start time of the term de-
tected K, te is the end time of the term detected K and O
represents the speech. The rest of input features include the
acoustic likelihood (A), the language model score (L), the
duration of the detection T , and two term-dependent fea-
tures R0(K) and R1(K) defined as follows:

R0(K) =
∑
i cf (d

K
i )

T0
(3)

and

R1(K) =
∑
i (1− cf (dKi ))

T0
(4)

where cf (dKi ) represents the lattice-based confidence of
the i-detection of the term K, and T0 is the length of the
audio. Note that R0 and R1 are designed to introduce term-
dependency (occurrence rates here) in the modeling, and are
motivated by the definition of the evaluation metric ATWV
[8]. The mapping function f can be implemented as any
discriminative model, e.g. an MLP or an SVM studied in
[15], or an EDA presented in the next section.

3. Evolutionary Discriminant Analysis for con-
fidence estimation

A potential problem of MLPs and SVMs is that they are
not optimized with respect to the evaluation metric, i.e.,
classification error rate. For MLPs, the objective is maxi-
mum likelihood while for SVMs the objective is maximum
margin. An ideal approach, of course, is to optimize the
classification error rate directly, i.e.,



θ̂ = argmin
θ

∑
d

δ{Hgθ (d), t(d)} (5)

where d is a training exemplar, and t(d) is its class label; gθ
is a projection function depending on parameters θ, Hgθ is
a classification function in the projected space determined
by gθ, and δ(a, b) is an indication function which is equal
to 0 if a = b and equal to 1 otherwise. The main obsta-
cle with such an objective, however, is that the objective
function will never be continuous, failing the conventional
gradient-based training approach. A possible solution is
to exploit the evolution strategy [1] to ‘breed’ some solu-
tions and then choose the optimum. Specifically, an evolu-
tion strategy maintains a group of possible solutions (called
chromosomes) and allows them to evolve in a random way,
called evolution. The evolution process in fact implements
a random-directed search and can hence be used to optimize
non-linear discrete functions. This leads to the evolutionary
discriminant analysis (EDA) [10, 11].

Compared with MLPs and SVMs, EDA possesses sev-
eral advantages. First, the classification error minimization
suggests better performance in classification tasks; second,
the evolution strategy reduces the risk of local minimum
in model training. Finally, the continuous projection func-
tion g and discrete classification function H can be cho-
sen freely, leading to a highly flexible decision strategy. In
this paper we make use of EDA for STD in decision mak-
ing. Different from previous studies where EDA is used to
predict class labels, we extend EDA in this paper to derive
classification posterior probabilities which are then used as
discriminative confidence in decision making.

In this section, we first present how the classification
task is cast to an evolutionary treatment using a certain cod-
ing scheme, and then describe how to represent EDA errors
with a fitness function. This is followed by a presentation
of the evolution procedure and the extension to a posterior
probability estimation.

3.1. Coding scheme

In the EDA objective function represented in Equation
(5), the projection gθ can be chosen freely. In our im-
plementation, we take advantage of an MLP’s non-linear
approximation and reuse the MLP structure to implement
the projection function. It must be emphasized, however,
that the MLP-alike EDA is fundamentally different from an
MLP: the layer structure in EDA is just a projection and the
output does not necessarily relate to classification posterior
probabilities; the objective function is never maximum like-
lihood but minimum classification errors; and the optimiza-
tion is not based on gradient but evolution.

We start from a 3-layer MLP structure (one hidden layer)
that consists of e + 1 input units, h + 1 hidden units and n

output units. The notation +1 here denotes the bias unit in
both the input and hidden layers. Note that n is not nec-
essarily equal to the number of classes as in the case of an
MLP. We denote the weights of the first layer as wij , where
i = 0, . . . , e and j = 1, . . . , h, and the weights of the sec-
ond layer as vjk, where j = 0, . . . , h and k = 1, . . . , n.
A sigmoidal active function ϕ(z) = 1/(1 + exp−z) is ap-
plied to the output of the hidden units. The k-th output of
the function represented by this MLP is then formulated as
follows:

yk(d) =
h∑
j=0

vjkϕ(
e∑
i=0

diwij). (6)

From the EDA perspective, the weights of the MLP com-
prise the EDA model parameters θ, and need to be opti-
mized using the evolutionary approach. From the perspec-
tive of evolutionary computing, the weights are alleles that
comprise chromosomes. We choose a simple way to map
the parameters θ in EDA to the chromosomes in evolution,
where all the alleles are listed one by one as follows:

θ = (. . . , wi1, wi2, . . . , wih, . . . , vj1, vj2, . . . , vjn, . . .).
(7)

where i = 0, . . . , e, and j = 0, . . . , h.

3.2. Fitness function

In order to minimize classification errors, the fitness
value assigned to a chromosome in Equation (7) should be
the number of detections misclassified with the EDA whose
parameters correspond to this chromosome. The classifica-
tion function H is implemented by first projecting a detec-
tion d to the n-dimensional space represented by the output
of the MLP-based projection function, and then assigning it
to the class whose projected mean is closer to the projection
of d. This n-dimensional projection algorithm is sketched
as follows:

• The mean components of the training set (mi
r), where

i = 1, . . . , e and r ∈ [FA, hit] are projected to the
n-dimensional space by gθ where θ represents the pa-
rameters corresponding to the current chromosome:

m̂k
r = gθ(mr) =

h∑
j=0

vjkϕ(
e∑
i=0

mi
rwij) k = 1, . . . , n.

(8)

• Each detection d in the training data is projected ac-
cordingly:



d̂k = gθ(d) =
h∑
j=0

vjkϕ(
e∑
i=0

diwij) k = 1, . . . , n.

(9)

• Each detection d is assigned to the class of the closest
training mean in the projected space:

Hgθ (d) = arg min
r∈[FA,hit]

n∑
k=1

(d̂k − m̂k
r )

2 (10)

• The classification error rate is assigned to the chromo-
some corresponding to θ as its fitness:

J(θ) =
1
N

∑
d

δ(t(d), Hgθ (d)) (11)

where N is the number of detections.

To avoid over-fitting, we divide the training data into a
training set and a validation set. The training set is used to
calculate the class means mr with r ∈ [FA, hit], and the
projected class means m̂r will be used in the classification
function H to compute the errors on both the training and
validation sets. Then, the errors on the training (Jtr(θ))
and validation sets (Jva(θ)) are summed into a single figure
J(θ) = Jtr(θ) + Jva(θ) to compose the fitness value.

3.3. The evolution algorithm

We have mapped the EDA parameters to chromosomes
and the EDA error function to the fitness function in the evo-
lutionary approach. The evolutionary process that searches
for the optimal chromosome will then correspond to EDA
parameter optimization. This leads to the EDA algorithm
given as follows:

• Initialize an MLP structure.

• Choose an evolution strategy (µ, λ|ρ), where µ is the
size of the parent population (group of solutions in the
current step of the algorithm), λ is the size of the off-
spring population (group of solutions obtained from
the parent population by means of evolutionary oper-
ators), and ρ is the size of the family (parents whose
recombination leads to offsprings).

• Choose a mutation step σ, which is the noise level on
alleles when reproducing a new generation.

• Generate the initial population by creating µ MLPs
whose weights are randomly selected in [−0.5, 0.5].

• The following steps are repeated until a prescribed
number of generations, within which no fitness im-
provement is got, is reached:

– Generate λ offspring MLPs by recombining ρ
networks randomly selected from the current
generation. These ρ networks form a parent set,
and each allele (weight of the MLP) of the off-
spring is inherited from one of its parents that is
selected randomly.

– Mutate the generated offsprings by adding inde-
pendent random noise that is drawn from a nor-
mal distribution N(0, σ) to the alleles.

– Form a new generation by selecting µ best indi-
viduals among the λ offsprings. This is called
Comma replacement in the evolution strategy
field and is generally recommended for optimiz-
ing continuous parameters [1].

3.4. Confidence measure

We now employ the trained EDA model to predict dis-
criminative confidence for STD, or posterior probabilities
of a detection belonging to hit or FA classes. This can be
achieved by measuring the relative distance of the projected
detection d̂ to the projected mean of hit and FA classes,
i.e., m̂hit and m̂FA respectively. Figure 2 shows the ap-
proach: first draw a vector between projected class means
(
−−−−−−→
m̂FAm̂hit), and then project the detection image d̂ on to

the vector, obtaining the new image d̈. The posterior proba-
bility of d belonging to the hit class, or the confidence of d,
is then derived by

cp(d) =


0 if d̈ ≤ m̈FA

d̈−m̈FA
m̈hit−m̈FA if m̈FA < d̈ < m̈hit

1 if m̈hit ≤ d̈
(12)

where d̈, m̈hit and m̈FA are the projections of d̂, m̂hit and
m̂FA in the space

−−−−−−→
m̂FAm̂hit respectively.

4. Experiments

Experiments were conducted on the English meeting
domain, recorded using individual headset microphones
(IHM). The same training speech and text data used for
building the AMI RT05s LVCSR system [5] were used to
train the acoustic models (AM) and the language model
(LM). The NIST RT04s dev set was used for parameter tun-
ing, and the evaluation corpus comprised three sub-sets: the



Figure 2. EDA output space with two dimensions (x1

and x2), and projected class means m̂FA and m̂hit. A
projected detection d̂ is again projected (to derive d̈)
over the vector drawn between projected class means
m̂FA and m̂hit, to further compute the confidence
measure.

NIST RT04s and RT05s eval sets, and a new meeting cor-
pus recorded at the University of Edinburgh as part of the
AMIDA project (http://www.amiproject.org/ ).

We first selected 256 terms from the AMI dictionary as
INV terms, which have 2329 occurrences in the evalua-
tion data. Then we compared the AMI dictionary (in active
use and assumed to represent current usage) and the COM-
LEX Syntax dictionary v3.1 (published by LDC in 1996 and
therefore historical from an STD perspective), and selected
412 terms as OOV terms from the AMI dictionary that do
not occur in the COMLEX dictionary. These terms simulate
the evolution of novel terms over time. Additionally, we se-
lected 70 artificial OOV terms that have more occurrences
and are plausible as search terms. In total we have 482 OOV
terms and 2736 occurrences in the evaluation data. To en-
sure the OOV terms in the experiment represent truly novel
terms, we purged all of them from the training speech and
text.

We built a phoneme-based system. It used state-
clustered triphone models, 39-dimensional MFCC features
and a 6-gram phoneme LM. Cambridge University’s HTK
was used to train the acoustic models and perform lat-
tice generation, and the SRI LM toolkit was used to train
the LM. An enhanced Joint-Multigram model [4] trained
with the AMI dictionary was applied to predict pronuncia-
tions for the OOV terms. The Lattice2Multigram tool from
Speech@FIT (Brno University) was used to hypothesize the
detections from the phoneme lattices. More information
about these setups can be found in [14].

We trained an MLP, an SVM and an EDA to estimate the
discriminative confidence. STD experiments were first con-
ducted on the development set, and then detections were
collected with hits and false alarms labelled, which were
employed to train the MLP, SVM and the EDA. A 3-layer
MLP, whose structure is comprised of an input layer with 6
inputs according to Equation 1, a hidden layer with a sig-
moid activation and an output layer with a soft-max acti-
vation which contains 2 output units according to hit/FA
classification, was trained using the standard error back-
propagation algorithm [2]. The number of hidden units,
which was chosen to minimize the number of classification
errors on the development set by cross-validation, is 30 in
our experiments. The SVM was trained with the LIBSVM
toolkit [3] with a radial basis kernel function.The param-
eters, including the error penalty C for classification and
the radius scale γ for the kernel, were again optimized by
cross-validation, giving C = 32 and γ = 0.5 in our experi-
ments. Both MLP and SVM were used as complete hit/FA
classifiers, as in the previous work [15].

For EDA, the MLP structure was chosen to minimize the
fitness value (h = 12 for the hidden units and n = 5 for the
output units). For the number of input units, e = 6 accord-
ing to Equation 1. We pragmatically chose the evolution
strategy (µ = 15, λ = 100|ρ = 2), and the mutation step σ
is fixed to 0.15. The evolution process stops when there is
not a fitness improvement within the last 100 generations.

4.1. Results and discussion

The experimental results are shown in Table 1 in terms
of ATWV [8]. We observe that the EDA outperforms the
MLP- and SVM-based discriminative confidence for both
INV and OOV terms. Paired t-tests show that this improve-
ment is statistically significant (p < 0.001) for OOV terms
compared with the SVM and weakly significant (p < 0.09)
compared with the MLP. For INV terms, the improvement
achieved by EDA is insignificant compared with the MLP
(p ≈ 0.4) and hardly significant compared with the SVM
(p ≈ 0.1). DET curves in Figure 3 show that EDA out-
performs both MLP and SVM considerably for OOV terms
when the FA is low. For INV terms, EDA does not show
obvious advantage over the other two models.

The experimental results suggest that an evolution strat-
egy is more powerful than MLPs and SVMs when dealing
with the OOV terms. This can be explained by the high di-
versity in terms of ASR error pattern, occurrence rate and
confidence distribution of OOV terms. This diversity intro-
duces comprehensive decision boundaries for classification,
leading to a high risk of converging to a local minimum.
The EDA approach, with the classification error rate as its
objective function and the evolution strategy as its rescue
mechanism, is able to ameliorate the local minimum prob-



ATWV
Confidence estimator INV terms OOV terms
MLP 0.5466 0.2952
SVM 0.5434 0.2920
EDA 0.5500 0.2994

Table 1. STD system performance with discrimina-
tive confidence estimated by the MLP, SVM and EDA
for INV and OOV terms.

lem and therefore provides with a better treatment for the
OOV diversity.
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Figure 3. DET curves of the STD system with the
MLP, SVM and EDA confidence estimators for INV
and OOV terms.

5. Conclusions

This paper has proposed an evolutionary algorithm for
confidence estimation in an STD system. We have shown
the potential of the evolutionary algorithms in confidence
estimation for putative detections. For INV terms our evo-
lution strategy provides with similar performance to that
of other classification techniques such as MLP and SVM.
For OOV terms, significant performance improvement is
obtained, confirming our conjecture that the evolutionary
approach is powerful in handling complex decision bound-
aries introduced by the high diversity of OOV terms.

Future work will investigate new features for EDA and
other classifiers to enhance the STD performance. In addi-

tion, new fitness functions will be investigated, particularly
the one that optimizes the ATWV metric directly.
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