
IMPLEMENTING NETWORK PROTOCOLS IN JAVA - A
FRAMEWORK FOR RAPID PROTOTYPING

Matthias Jung, Ernst W. Biersack
Institut Eurecom, 06904 Sophia-Antipolis, France,fjung,erbig@eurecom.fr

Alexander Pilger
Siemens AG, 81730 Munich, Germany, alexander.pilger@mchp.siemens.de

In Proceedings of ICEIS’99, Estubal, Portugal

Keywords: protocol implementation, rapid prototyping, java, portability, configurability, module

Abstract: This paper presents JChannels�, a framework to support the implementation
of network protocols in Java. The goals of JChannels are the rapid development
of structured, reusable, and configurable protocol stacks profiting from Java
features like incorporate concurrency, portability, and runtime class loading.
We present the JChannels architecture show how to work with JChannels, give
an example implementation of a simple transport protocol, and provide some
performance results.

1 MOTIVATION

The communication requirements of upcom-
ing distributed applications foster the develop-
ment of new specialized communication proto-
cols. Unfortunately, protocol implementations
are software of high complexity. Implementing
new protocols from scratch is therefore a difficult
and cumbersome task. Protocol frameworks are
meant to simplify protocol development by pro-
viding libraries supporting the basic functions of
protocols and imposing a structure on protocols
to support reuse and maintainability of protocols.
Besides, they are a good playground for testing
new protocols.

Various protocol frameworks already have
been developed. Each one has a special focus and
different features. The best known frameworks
are X-Kernel (Hutchinson & Peterson 1991) and
STREAMS (Unix 1990) both residing in the ker-
nel of the operating system, or Conduits+ (Hüni,
Johnson & Engel 1995) running in user-space.

All these systems suffer from their lack of
portability. This made us examine if Java (Sun

�For more information see the JChannels Homepage
http://alpes.eurecom.fr/˜projava

Microsystems 1995) is suitable for protocol im-
plementation. Besides being highly portable,
Java supports modular programming in an object
oriented fashion, allows for asynchronous thread
handling, and comes along with a comfortable
library. Wherever Java is supported, communi-
cation protocols written in Java may profit from
Java protocol development frameworks. This
may apply in the future also for Embedded Java
Systems and Java Cards.

Protocols implemented in Java running inside
the Java Virtual Machine (JVM) on top of an op-
erating system (OS) suffer from a performance
penalty compared to protocols implemented in
the OS kernel. However, we think that in many
situations performance is not the primary goal.
For rapid prototyping, testing, and monitoring it
is more important that protocols can be modified,
extended and configured easily.

HotLava (Krupczak, Calvert & Ammar 1998)
is one of the first protocol frameworks in Java. It
basically served to evaluate the performance of a
special protocol suite in Java compared with a C
implementation without considering re-use and
flexibility. iBus (Maffeis 1997) is a Java frame-
work that is meant to mainly support multicast

communication protocols on transport level.
The re-implementation of the Conduits+

framework (Hüni et al. 1995) in Java is the work
closest to JChannels with regard to the design
goal of re-usability. However, it differs widely
with regard to the architectural approach: Con-
duits+ heavily makes use of design patterns to
re-use the infrastructure of protocols. It seems to
transfer the complexity of network protocols into
the framework instead of simplifying implemen-
tation.

JChannels is the first completely portable
framework that reduces the complexity of pro-
tocol implementation to support rapid prototyp-
ing of structured, re-usable and flexible protocol
stacks for any kind of communication protocols.

2 DESIGN

2.1 Design goals

JChannels is not only a framework to implement
and run communication protocols in user space.
It is first of all a proposal to structure protocol im-
plementations. Protocols developed with JChan-
nels have the following attributes:

� Rapid prototyping: module programming
is simplified by providing communication
specific classes. Once protocol modules are
programmed, it is easy to link them to a new
protocol stack without major efforts.

� Re-usability: protocols are divided in small
parts (modules), which can be used in dif-
ferent protocol stacks.

� Maintainability: protocols are obliged to be
programmed in a way that they can be easily
maintained, modified, and extended.

� Flexibility: it is possible to customize and
configure protocols following the specific
needs of applications1.

1Note that tailoring in JChannels (the dynamic modifi-
cation of protocol graphs at run-time) is possible in princi-
ple due to the Java facility of dynamic class loading. But it
is not supported explicitly by JChannels, i.e. there are no

� Portability: JChannels profits thereby from
the Java concept of the virtual machine, i.e.
an interpreter of machine independent Java
code.

JChannels claims to support the implementa-
tion of all kind of network protocols up from the
network layer and provides a generic interface to
access lower layers.

2.2 JChannels Overview

JChannels provides a set of classes to guide
the programmer through implementation. We
thereby profit of Java’s object-oriented de-
sign principles of inheritance, data encapsulation
and polymorphism. A protocol suite is repre-
sented by the class Stack and consists of a set
of protocol functions implemented each in the
class ProtocolModule (e.g. Error Control,
Flow Control, Fragmentation, etc). The class
Message represents the messages exchanged
between protocol entities and is responsible for
the validity of the data. The programmer must
inherit new messages, modules, and stacks from
their super classes.

In order to simplify programming, JChan-
nels provides a library of classes often
needed for protocol implementation. The class
ProtocolGraph helps to build new stacks out
of modules, the class Timer allows modules
to use asynchronous timer. Other examples are
SeqNr (access to sequence numbers), Buffer
(buffer handling) or Data (manipulation of ar-
rays).

A transparent sub-system assures that the
programmer does not need to care about how
messages are transported. He is only concerned
about the correctness of modules and stack.
This subsystem follows the thread-per-message
paradigm, i.e. each message arriving gets its
own thread, which calls all modules one after the
other with the message as the argument (see Fig-
ure 1). A thread handler controls the number of
threads running at the same time. This concept

mechanisms of controlling inter-operability and providing
security

reduces context switches and has shown to be
more efficient than a thread-per-module model
(Hutchinson & Peterson 1991). JChannels pro-
vides a generic NetDriver interface to hide
implementation details of the network access to
the programmer.

When multiple applications share the same
input port, de-multiplexing is necessary, which
has shown to be costly (Tennenhouse 1989). We
introduced a new design element called network
anchor, where all demultiplexing functionality is
concentrated (see Figure 2). That way, we ensure
that every application has its own stack entity
(Roca, Braun & Diot 1997). A network anchor
can be seen as a daemon process within a small
network operating system where applications can
register a new stack while running as an inde-
pendent process. Java’s Remote Method Invoca-
tion (Sun Microsystems 1999) is used for inter-
process communication between application and
stack. An anchor is only needed when applica-
tions share a service access point. If an applica-
tion is running above a TCP socket, for example,
they can run a stack in stand-alone-mode, which
means it has direct access and runs it in the same
process.

In order to re-use protocol modules in dif-
ferent contexts they must implement only a sin-
gle function that is part of a more complex pro-
tocol and they must be autonomous. Auton-
omy is guaranteed in JChannels by using an
event model for communicating control calls
between modules. The stack thereby serves
as the event handler and is responsible to map
events of one module to the right function of an-
other (e.g. AckArrivedEvent, BufferFullEvent).
Events may also change global state variables in
the stack.

2.3 JChannels classes

2.3.1 The classes Message, MessageThread,
StackManager

The class MessageThread represents an own
thread within a Java virtual machine escorting
an instance of the class Message through the

Module

Msg
Thread

Msg
Thread

Msg
Thread

Msg
Thread

StackManager

StackManager

Application

NetDriver/Anchor

Stack

Module

Module

Module

Module

Module

data flow

thread

function call

Msg

Msg

Figure 1: Thread handling and message traversal

JVM JVM JVM

JVM

RMI RMI RMI

Application Application Application

Stack Stack Stack

Anchor

Network

NetDriver

Figure 2: The JChannels anchor system

protocol graph by calling one module after the
other. A protocol graph is a linear list of
protocol modules defining an order. By default,
every stack contains two protocol graphs, one
defining the way from application to network, the
other from network to application. The main idea
of a stack manager is to limit the number of
running message threads2. Message threads can
only be created and started upon requesting the
StackManager3 . If the current thread is run-
ning, the request is put in a queue and processed
as soon as the thread returns. Protocol modules
can demand a priority for a thread request. When
a message thread is no longer used, a protocol
module should give it back to the stack manager
in order to make it available for other threads.

2.3.2 The class ProtocolModule

The idea of a protocol module is to implement
a part of a protocol, ideally just a single func-
tion. The core of each module is represented
by the method callModule() that is the en-
trance point for all message threads to process
their data4. Protocol modules don’t know other
modules and therefore don’t call methods of
other modules. This avoids dependencies and
improves the re-usability of modules. Instead,
event driven indirect communication is used:
A protocol module informs the stack about an
event, which causes the stack to call other mod-
ules that are concerned by this event. In order to
indicate an event, the method throwEvent()
calls the method Stack.eventCall() and
hands information in form of an instance of the
class Event to the stack. This information can
be used as parameter for other modules or global

2A stack manager can manage more than one message
thread. However, on a single CPU computer there is no
value to run several message threads in parallel. For our
system, only one single thread per thread manager is run-
ning at the same time

3There are two stack managers per stack, one for mes-
sages from the application, one for messages from the net-
work.

4Note that protocol modules have by default only one
entrance point for a message thread. There is no up-call or
down-call as it would be for a more layer oriented approach

state information. Every module can define its
own events, the stack is responsible to process
them in the right way. For See Figure 3 for how
events are triggered.

Module2Module1

Stack

EventA

eventCall(Event e)

func()

if e isOfType(EventA)
---handleEventA(e)

if e isOfType(EventB)
---handleEventB(e)

....

handeEventA(EventA e)

---getParameter(e)
---call Module1.func()
---set variable 1
...

handeEventB(EventB e)

---getParameter(e)
---call Module2.func()
---set variable 2
...

var1 var2 ...

Figure 3: Event handling

In order to use timers, a protocol module must
implement the abstract method timerCall()
of the interface TimerCompatible.

2.3.3 The class Stack

A stack is instantiated either by an Anchor
within the JChannels anchor system (see below)
or as a stand-alone-stack by an application. The
stack has to main tasks:

First, it acts as a glue to put together the var-
ious independent modules in order to let them
work together as an integral whole. There-
fore, the stack instantiates all necessary mod-
ules and builds the protocol graph. In the
method eventCall() it implements an event
dispatcher that calls methods to handle all events
that are indicated by the various modules by call-
ing the right method of another module or updat-
ing global state variables. See Figure 3 to get an
impression about how event handling works.

Second, it serves as an interface for applica-
tion and network. If the stack should work with-

out an anchor, it is started as an own thread look-
ing if data is arriving at the network. The appli-
cation has access to all public functions of the
stack. When a stack works within a system with
an anchor, network access becomes the task of
the anchor and no stack thread is needed. In the
latter case, when application and anchor/stack
are running in different Java virtual machines, the
mechanism of remote method invocation (RMI)
is used to give the application access to the stack.
The main standard methods of interactivity be-
tween stack and application are the functions
acceptPacket() and deliverPacket()
to write and read packets, respectively. For data
exchange with the network, the stack provides
the function acceptFrame() to receive mes-
sages from the network anchor. Besides its meth-
ods for application and network, each stack con-
tains instances of special modules called proxy
modules to write a message to the application
output queue or to the network by calling the an-
chor or the network driver to write it physically
to the network.

2.3.4 The class Anchor

Besides providing network access, the network
Anchor class has two main tasks.

The first task is to register and de-register
stacks demanded by an application, which means
loading their code in the virtual machine and in-
stantiate them. JChannels hereby profits from
the Java facility of dynamic class loading at run-
time. An application registers a stack by sending
data over a well known port that is observed by
an instance of the class RegDriver. The regis-
tration message is containing information about
the name of the stack and the keyword5 to ac-
cess the stack as a remote object. The registration
driver is called periodically by the anchor to see
if a registration message arrived. De-registration
is performed by the stack itself when it will be
deactivated.

The second task is to demultiplex incoming
messages to the right stack instance. Each stack

5see Java RMI specification

that has registered must indicate its own address
mask applied for demultiplexing. For that pur-
pose, the class AddressMask is provided. An
address mask consists of two byte arrays: the first
array specifies positions of bytes within an in-
coming message, the second contains the value
that these bytes should have. A special mecha-
nism guarantees that a stack is started only when
its address mask is unique and unambiguous.

2.3.5 The class NetDriver

Messages are read from and written to the
network by calling an object of the class
NetDriver. The purpose of this class is to
run the anchor or the stack on different plat-
forms without changing its functionality. Anchor
or stack do not know if its network drivers are
running over UDP, TCP, AppleTalk, Ethernet or
Token-Ring. They just use the drivers given to
access the network.

2.3.6 The class TimerPool

To handle many timers at the same time with-
out creating a new thread each time a timer is
required, a global Timerpool is used. This
TimerPool is accessible for all subclasses of a
protocol module. Each module using timers
needs to implement the method timerCall()
of the interface TimerCompatible.

3 WORKING WITH JCHAN-
NELS

We briefly describe what must be done to imple-
ment a protocol in JChannels and present an ex-
ample protocol realized with JChannels.

The main steps to implement a protocol in
JChannels are

� Analyze a protocol and identify all func-
tions to be performed and map each func-
tion to a module

� Distinguish if the modules are processing
data in direction from application to net-

work (output direction) or from network to
application (input direction)

� Build the protocol graph for both direc-
tions by connecting the modules to uni-
directional chains

� Identify the information that every module
needs and the information that every module
provides

� Map the relation between information
source and sink by events and implement an
event handler in the stack class

� Make sure that the stack defines a valid ad-
dress mask and terminates correctly

As a first test for JChannels, we implemented
a connection oriented transport protocol that
guarantees reliable data transfer. A server ap-
plication is waiting for connection requests and
sends a file to the client. In the stack on the server
side, packets taken from the application are cut to
a configurable size.

The protocol stack for the server consists
of the following modules. We start with the
modules working in the output direction. A
Fragmentation module forwards incoming
messages when they are smaller than the size
configured by the stack. Larger messages
are split into two or more messages. An
Addressing module adds the destination ad-
dress to the message header. The destination
address must be handed to the module by the
stack. A module Retransmission adds a se-
quence number to the header, buffers every pass-
ing message, and starts a timer for each message
sent. When the timer expires the message is re-
transmitted. Acknowledgments indicated by the
stack lead to freeing the retransmission buffer.
A ConnectionOutput module is conceived
to send control messages that concern the con-
nection (requests,confirm,error). For testing we
added two modules ErrorSimulation and
Logging that can be switched off.

For the input direction the server stack
consists of the following modules. A

ConnectionInput module is conceived
to process incoming connection control mes-
sages and indicate the stack the corresponding
events (destination address changed, con-
nection opened/closed, error, ...). A module
AckHandler identifies incoming acknowledg-
ments and informs the stack, which then informs
the Retransmission Module.

The stack of the client consists for the
input direction of the following modules:
ConnectionInput is the same module as
for the server (is conceived to work for server
and client). Reassembly manages the receive
buffer. A message is thrown away when it does
not fit in the buffer. The message is buffered
when it is not the next message expected (se-
quence number), but fits into the buffer. The
message is forwarded to the neighbour when it
is the right message. In the case that a buffered
message succeed the last delivered message, this
message is delivered, too. Besides, this module
signals events to the stack that contain buffer in-
formation and indicate if the message could be
delivered, had to be buffered, or must have been
thrown away. A module RemoveAddress
strips off the address header, i.e. it just removes
the data bytes in the header that represents the
address of its own stack.

For the output direction we have a
Feedback module sending acknowledgments
upon arriving data messages and another
ConnectionOutput module as for the server.

This is only a simple example for a transport
protocol. We recently implemented a complete
TCP plus the IP functionality that is needed on
end-to-end basis. The complete design and im-
plementation process was accomplished in less
than three man-months. We therefore claim that
even the implementation of highly complex pro-
tocols is not only possible but also extremely
simplified following the modular design princi-
ples of JChannels.

4 DISCUSSION

Our design principle of autonomous modules has
some implications that must be payed attention
to. A module does not know anything about an-
other module. It is therefore not able to make
demultiplexing decisions. Processing of an in-
coming6 message therefore will happen as fol-
lows: the module checks if the message is des-
tined for it and either processes the message
(when it is destined for the module) or forwards
it to its neighbour otherwise. A module should
throw a message away only when it can iden-
tify it (e.g. an acknowledgement in input direc-
tion that should not any longer be forwarded after
it triggered a buffer deallocation). Another ap-
proach would be to extend the message class by
functions to check the correctness of the data that
will be processed.

The access to the message information can
be made more comfortable by providing conver-
sion functions from byte arrays to integers, floats
or even more complex data types. The message
could even define fields (like sequence number,
source address, etc.) and provide functions to ac-
cess them. That way, message manipulations de-
scribed in Section 2 can be widely replaced. A
message then would be responsible for assigning
a byte array correctly to its defined fields and to
transform all fields back into a byte array.

Since no demultiplexing within the stack is
done, the protocol graph consists of an uni-
directional chain of modules for each direction.
Nevertheless is it possible to support multiple
protocol graphs, which would imply an addi-
tional de-multiplexing step performed by the
stack.

In order to allow protocol modules to be used
in different contexts, i.e. different protocol stacks
with different header formats, information about
the relevant data in the message (relevant header
fields, length of the payload, or flags) should
be given to the protocol modules at instantiation

6as output direction we refer to a message going from
application to network, as input direction we refer to a mes-
sage coming from the network

time or even at runtime by the stack.
In our model, each connection is represented

by an own stack. In our example stack, connec-
tion state is handled by special modules. An al-
ternative approach would be to run a connection
server which registers new stacks at the network
anchor.

Clark and Tennenhouse identified Applica-
tion Level Framing (ALF) as a key architec-
tural principle and Integrated Layer Processing
(ILP) as a key engineering principle of modern
communication protocols (Clark & Tennenhouse
1990). JChannels confirms with application level
framing since it allows the application to con-
figure easily all communication parameters and
to specify the data unit given to the stack. By
contrast, ILP is not only not supported by JChan-
nels, it contradicts the whole design philosophy.
Clarc/Tennenhouse identified as possible draw-
backs of ILP the complex design that may com-
plicate maintainability and overall utility of pro-
tocol software. We aim at doing exactly the op-
posite.

5 PERFORMANCE

To get an idea about the performance of JChan-
nels, we made a simple measurement using the
stack described above running it stand-alone
(without an anchor system and RMI) over a UDP
socket. We measured the total transmission time
of a file of size 1 Megabyte using Sparc Ultras 1
over a 10MBit Ethernet. The highest through-
put achieved for a file of 1 Megabyte was 60

KByte/s. The same protocol implemented in
a monolithic C program reached a throughput
of 800 KByte/s. That means, the performance
penalty due to Java and modularization is around
a factor of 10-15.

A further analysis showed that using a just in
time compiler (JIT) could speed up the perfor-
mance by approximately 30 percent. This is not
very much since JITs have a potential to speed
up Java programs by a factor of up to 25. The
frequent creation of new objects and threads pro-
vokes the Java garbage collector to free variable

space. Since garbage collection is already opti-
mized for the interpreter, the performance gain
of the JIT stays rather low. The reuse of threads
and a message object pool may speed up perfor-
mance significantly, especially for compiled Java
code.

6 CONCLUSION

JChannels is a protocol environment conceived
to support rapid and structured protocol devel-
opment by producing reusable and maintainable
code. We propose to take advantage of fea-
tures of the object-oriented programming lan-
guage Java to improve and refine existing proto-
col environments. Java comes along with a com-
fortable library, provides an easy way to integrate
code during runtime, supports thread handling,
and is platform independent.

The focus of JChannels is on good structur-
ing of protocols that allows to reuse, extend and
configure protocols easily. We therefore replaced
the conventional layer model and defined pro-
tocol modules by a smaller unit of functional-
ity that does not use up- and down-call, but just
processes incoming data, accesses resources, and
sets state variables accordingly. In order to al-
low a protocol module to be reused in different
contexts (stacks), an event model was introduced
that avoids direct communication between mod-
ules, and de-multiplexing was concentrated on
the lowest level.

Development of protocols is considerably
simplified by JChannels. The implementation of
TCP in less than three man months shows that
JChannels is able to cope with complex protocols
and is well suited for rapid prototyping, testing
and monitoring of network protocols.

Acknowledgment

The authors like to thank Stephan Röösli and
Marie-Noëlle Sauvayre who were involved in the
design and implementation process of JChannels.

This work was sponsored by Siemens, Munich.

References

Clark, D. D. & Tennenhouse, D. L. (1990), Ar-
chitectural considerations for a new gen-
eration of protocols, in ‘Proc. ACM SIG-
COMM 90’, Phildelphia, PA, pp. 200–208.

Hüni, H., Johnson, R. & Engel, R. (1995), A
framework for network protocol software,
in ‘Object-Oriented Programming Systems,
Languages and Applications Conference
Proceedings (OOPSLA’95)’, ACM Press.

Hutchinson, N. & Peterson, L. (1991), ‘The x-
kernel: an architecture for implementing
network protocols’, IEEE Transactions on
Software Engineering 17(1), 64–76.

Krupczak, B., Calvert, K. & Ammar, M. (1998),
Implementing protocols in java: The price
of portability, in ‘IEEE Infocom ’98’.

Maffeis, S. (1997), ibus - the java intranet soft-
ware bus.

Roca, V., Braun, T. & Diot, C. (1997), ‘Demul-
tiplexed architectures: a solution for effi-
cient streams based communication stacks’,
IEEE Networks Magazine.

Sun Microsystems (1995), The java virtual ma-
chine specification, Technical report.

Sun Microsystems (1999), ‘The java re-
mote method invocation specification’.
http://chatsubo.javasoft.com/current/doc/rmi-
spec/rmi-spec.ps.

Tennenhouse, D. L. (1989), Layered multiplex-
ing considered harmful, in H. Rudin &
R. Williamson, eds, ‘Proc. IFIP Workshop
on Protocols for High-Speed Networks’,
North-Holland Publ., Amsterdam, The
Netherlands, Zurich, Switzerland, pp. 143–
148.

Unix (1990), ‘Streams programmer’s guide’,
Unix System V Release 4.

