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Abstract—We consider the Noisy MIMO Interference Channel
(IFC) with linear transmitters and receivers and full CSI. The
maximization of the Weighted Sum Rate (WSR) or transceiver
design for Interference Alignment (IA) lead to cost functions with
many local optima. Deterministic annealing is an approach that
allows to track the variation of the known solution of one version
of the problem into the unknown solution of the desired version
by a controlled variation of a parameter called temperature.
When the temperature parameter is chosen as inverse SNR (or
noise power), the transceiver design for maximum WSR is known
at low SNR and can be tracked to any desired SNR, yielding
an elegant technique to find the global optimum. The solution
includes filter design for the progressive switching on of streams
as the SNR increases. For IA on the other hand, IA feasibility is
unchanged when the MIMO crosslink channel matrices have a
reduced rank equal to the maximum of the number of streams
passing through them in forward and dual IFC (this would
correspond to LOS channels in the case of single streams). The
rank reduction simplifies IA design and feasibility analysis, and
allows in particular a counting of the number of IA solutions. By
choosing now the temperature parameter to be a scale factor for
the remaining channel singular values, the solution for reduced
rank channels can be evolved into that for arbitrary channels.

Index Terms—MIMO, MMSE, weighted sum rate, interference
channel, linear transmitter, linear receiver, interference align-
ment, deterministic annealing

I. INTRODUCTION

To achieve higher system capacity in modern cellular com-

munication standards a frequency reuse factor of 1 is used.

This increment in system performances determines, on the

other hand, a drastical reduction of the capacity of the cell-

edge users due to the fact that this aggressive frequency reuse

factor increases the inter-cell interference.

To handle this problem current communication systems

include different interference management solutions. Even if

interference coming from out-of-cell transmission can be re-

duced using careful planning or introducing little cooperation

among neighboring cells, such as smart user scheduling or

soft handover, these techniques are sometimes not enough

to guarantee high performance to cell-edge user. For that

major standardization bodies are now including explicit in-

terference coordination strategies in next generation cellular

communication standards. These techniques are based on more

interference-aware base station cooperation. A systematic

study of the performance of cellular communication systems

where each cell communicates multiple streams to its users

while enduring/causing interference from/to neighboring cells

due to transmission over a common shared resource comes

under the purview of MIMO interference channels (MIMO

IFC). A K-user MIMO-IFC models a network of K transmit-

receive pairs where each transmitter communicates multiple

data streams to its respective receiver. In doing so, it generates

interference at all other receivers. While the interference

channel has been the focus of intense research over the past

few decades, its capacity in general remains an open problem

and is not well understood even for simple cases. In [1] they

show that even for the 2−users system, the most studied case,

to achieve the system capacity within one bit very complicated

transmission schemes are required.

Recently, it was shown that the concept of interference

alignment (IA) [2], allows each receiver to suppress more

interfering streams than it could otherwise cancel in interfer-

ence channels. This can be done using more simple linear

transmitter and receiver filter. This makes IA a very attractive

solution in practical systems. The focus of this paper is on the

K-user frequency-flat MIMO IFC. In a frequency-flat MIMO

IFC, the total number of streams contributing to the input

signal at each receiver are, in general, greater than the number

of antennas available at the transmitter or at the receiver. This

would lead one to believe that, at least in the high-SNR regime,

the network (comprising of K user pairs) performance can

be maximized (i.e, the sum-rate can be maximized) using IA

since aligning the streams at the transmitter will now allow the

maximization of the capacity pre-log factor in a K-user IFC.

The problem of determining whether an IA solution exists or

not for a given antennas and stream distribution among the

users for a K-user MIMO IFC it has been studied in [3] and

[4]. In the former an extensive study of IA feasibility solution

for the single stream case has been proposed. In the latter the

authors propose a systematic method, and less computational

expensive, to check feasibility regardless of the number of

transmitted stream per user.

A distributed algorithm that exploits the reciprocity of the

MIMO IFC to obtain the transmit and receiver filters in a

K-user MIMO IFC was proposed in [5] (a similar algorithm

has been proposed in [6]). It is was shown there that IA

is a suboptimal strategy at finite SNRs. In the same paper,

the authors propose a signal-to-interference-plus-noise-ratio

(SINR) maximizing algorithm which outperforms the IA in



finite SNRs and converges to the IA solution in the high

SNR regime. However, this approach can be shown to be

suboptimal for multiple stream transmission since it allocates

equal power to all streams. In [7] the authors present an

iterative algorithm that finds an IA solution that maximize the

average sum-rate. At each step an IA solution is found using

a technique proposed in [5] and then they move the solution

along the direction of the gradient of the sum-rate w.r.t. the

beamformers in the Grassmann manifold. Even though this

algorithm performs better than traditional IA solutions in the

High SNR regime it is highly sub-optimal, in terms of sum-

rate, in medium SNR ranges. Thus an optimal solution for

MIMO IFC at finite SNR remains an open problem.

Some early work on the MIMO IFC was reported in [8] by Ye

and Blum for the asymptotic cases when the interference to

noise ratio (INR) is extremely small or extremely large. It was

shown there that a ”greedy approach” where each transmitter

attempts to maximize its individual rate regardless of its effect

on other un-intended receivers is provably suboptimal.There

have been some attempts to port the solution concepts of

the MIMO BC and MIMO MAC to the MIMO IFC. For

instance, the problem of joint transmitter and receiver design to

minimize the sum-MSE of a multiuser MIMO uplink was con-

sidered in [9] where iterative algorithms that jointly optimize

precoders and receivers were proposed. Subsequently [10]

applied this algorithm to the MIMO IFC where each user

transmits a single stream. In [11] the authors proposed an

algorithm for finding the beamformer in the single stream K-

user MIMO IFC that attempts to maximize the weighted sum

rate (WSR). The beamforming vectors can be interpreted as a

balance between an egoistic approach, where the transmitter

tries to maximize its own rate and an altruistic approach where

each beamformer put its effort to minimize the interference

that it causes to the non intended receivers. The problem of

a more general multi-stream MIMO IFC has been addressed

in [12] where the objective of the algorithm proposed by the

authors is to design a set of BF matrices in order to maximize

the WSR. The algorithm proposed is based on a previous work

on broadcast channel [13] but extended to a MIMO IFC and

it has been further refined in [14].

The main problem with the maximization of the WSR is the

highly non convexity of the cost function. This implies that

even if it is possible to prove convergence of the proposed

algorithms to a local optimal point convergence to global

optima can not been shown. In addition convergence to local

optimal solution is not a rare event if the initialization point of

the algorithm is not carefully chosen. To avoid this situation

several heuristic approach can be used. In [14] in order to

avoid to converge to a local optima Deterministic Annealing

(DA) has been proposed. DA is an heuristic approach based

on Simulated Annealing (SA) where the basic principle is that

the optimum of a problem in the next value of temperature (in

our case SNR) is in the region of attraction of the solution of

the problem in the previous temperature (more details will be

provided further in the paper). In another independent work

[15] the same principle has been explored but only for single

stream MIMO systems.

The objective of this paper is to further study the concept

of DA applied to WSR maximization in a general K-User

MIMO interference channel where a general number of stream

distribution is assumed. In addition the IA feasibility problem

has been studied, in particular we propose a new approach

to address the problem. It is based on the principle that IA

feasibility is unchanged when the MIMO crosslink channel

matrices have a reduced rank equal to the maximum of the

number of streams passing through them in forward and dual

IFC, then increasing constantly the rank of the channels the

number of IA solutions will not decrease.

II. SIGNAL MODEL
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Fig. 1: MIMO Interference Channel

Fig. 1 depicts a K-user MIMO interference channel with

K transmitter-receiver pairs. The k-th transmitter and its

corresponding receiver are equipped with Mk and Nk antennas

respectively. The k-th transmitter generates interference at all

l 6= k receivers. Assuming the communication channel to

be frequency-flat, the C
Nk×1 received signal yk at the k-th

receiver, can be represented as

y
k

= Hkkxk +

K∑

l=1
l 6=k

Hklxl + nk (1)

where Hkl ∈ C
Nk×Ml represents the channel matrix between

the l-th transmitter and k-th receiver, xk is the CMk×1 transmit

signal vector of the k-th transmitter and the CNk×1 vector

nk represents (temporally white) AWGN with zero mean

and covariance matrix Rnknk
. Each entry of the channel

matrix is a complex random variable drawn from a continuous

distribution. It is assumed that each transmitter has complete

knowledge of all channel matrices corresponding to its direct

link and all the other cross-links in addition to the transmitter

power constraints and the receiver noise covariances.

We denote by Gk, the CMk×dk precoding matrix of the k-

th transmitter. Thus xk = Gksk, where sk is a dk × 1 vector

representing the dk independent symbol streams for the k-th

user pair. We assume sk to have a spatio-temporally white

Gaussian distribution with zero mean and unit variance, sk ∼
N (0, Idk

). The k-th receiver applies Fk ∈ CNk×dk to suppress



interference and retrieve its dk desired streams. The output of

such a receive filter is then given by

rk = FH

k
HkkGksk +

K∑

l=1
l 6=k

FH

k
HklGlsl + FH

k
nk

Note that Fk does not represent the whole receiver but only

the reduction from a Nk-dimensional received signal y
k

to a

dk-dimensional signal rk, to which further (possibly optimal)

receive processing is applied.

III. WEIGHTED SUM RATE MAXIMIZATION FOR THE

MIMO IFC

The stated objective of our investigation is the maximiza-

tion of the WSR of MIMO IFC. In this paper we consider

the weighted sum rate maximization problem for a K-user

frequency-flat MIMO IFC and propose an iterative algorithm

for linear precoder/receiver design. With full CSIT, but only

knowledge of sk at transmitter k, it is expected that linear

processing at the transmitter should be sufficient. On the

receive side however, optimal WSR approaches may involve

joint detection of the signals from multiple transmitters. In this

paper we propose to limit receiver complexity by restricting

the modeling of the signals arriving from interfering trans-

mitters as colored noise (which is Gaussian if we consider

Gaussian codebooks at the transmitters). As a result, linear

receivers are sufficient. For the MIMO IFC, one approach

to linear transmit precoder design is the joint design of

precoding matrices to be applied at each transmitter based on

channel state information (CSI) of all users. Such a centralized

approach [8] requires (channel) information exchange among

transmitters. Nevertheless, studying such systems can provide

valuable insights into the limits of perhaps more practical

distributed algorithms [16] [17] that do not require any in-

formation transfer among transmitters.

A. Per-User WSR maximization

The WSR maximization problem can be mathematically

expressed as follows.

{G⋆
k
, F⋆

k
} = arg min

{Gk, Fk}
R s. t Tr(GH

k
Gk) = Pk ∀k (2)

where R =
∑

k −ukRk

with uk ≥ 0 denoting the weight assigned to the k-th

user’s rate and Pk it’s transmit power constraint. We use the

notation {Gk, Fk} to compactly represent the candidate set

of transmitters Gk and receivers Fk ∀k ∈ {1, . . . , K} and

the corresponding set of optimum transmitters and receivers

is represented by {G⋆
k
, F⋆

k
}. Assuming Gaussian signaling, the

k-th user’s achievable rate is given by

Rk = log |Ek|,
Ek = Ik + FH

k
HkkGk(F

H

k
HkkGk)

H(FH

k
RkFk)

−1
(3)

where the interference plus noise covariance matrix Rk is:

Rk = Rnknk
+
∑

l 6=k

HklGlG
H

l
HH

kl
.

We use here the standard notation | . | to denote the

determinant of a matrix. The MIMO IFC rate region is

known to be non-convex. The presence of multiple local

optima complicates the computation of optimum precoding

matrices to be applied at the transmitter in order to maximize

the weighted sum rate. What is known however, is that,

for a given set of precoders, linear minimum mean squared

error (LMMSE) receivers are optimal in terms of interference

suppression. In addition we can extend this concept saying

that, for a given set of linear beamforming filters applied at

the transmitters, the LMMSE interference-suppressing filter

applied at the receiver does not lose any information of the

desired signal in the process of reducing the Nk dimensional

y
k

to a dk dimensional vector rk. This is of course under

the assumption that all interfering signals can be treated as

Gaussian noise. In other words, the linear MMSE interference

suppressor filter is information lossless and is thus optimal in

terms of maximizing the WSR. Thanks to this property of the

LMMSE Rx filter, we consider a (more tractable) optimization

problem where MMSE processing at the receiver is implicitly

assumed. The WSR maximization problem in (2) that we

consider becomes:

{G⋆
k
}=arg min

{Gk}

K∑

k=1

−uk log |E−1

k
| s. t Tr(GH

k
Gk) ≤ Pk ∀k

(4)

where Ek is given by

Ek = (I + GH

k
HH

kk
R−1

k
HkkGk)

−1. (5)

This problem in non convex and hence finding a solution is a

complex task. In order to obtain the stationary points for the

optimization problem (4), we solve the Lagrangian:

L ({Gk, λk}) =

K∑

k=1

−uk log |E−1

k
| + λk(Tr{GH

k
Gk} − Pk)

Now setting the gradient of the Lagrangian w.r.t. the transmit

filter Gk to zero, we have:

∂J({Gk,λk})
∂G∗

k

= 0

∑

l 6=k
ulH

H

lk
R−1

l
HllGlElG

H

l
HH

ll
R−1

l
HlkGk

−ukHH

kk
R−1

k
HkkGkEk + λkGk = 0

(6)

Our approach to the design of the WSR maximizing transmit
filters for the MIMO IFC is based on introducing an aug-
mented cost function in which two additional optimization
variables appear [13]. The optimization problem that we
consider now is

{G⋆
k, F⋆

k, W⋆
k} =

arg max
{Gk, Fk, Wk}

∑

k

−uk(Tr(WkEk) − log |Wk| − d
max

k ) (7)

s. t
∑

k

Tr(GkG
H

k ) ≤ Pk.

where dmax

k
≤ min{Nk, Mk} represents the maximum num-

ber of independent data streams that can be transmitted to user

k. This cost function is concave or even quadratic in one set of



variables, keeping the other two fixed. Hence we shall optimize

it using alternating maximization. Assuming E{ssH} = Idk
,

the MSE covariance matrix for general Tx and Rx filters is

Ek = E[(s − FH

k
y

k
)(s − FH

k
y

k
)H ]}

= I − GH

k
HH

kk
Fk − FH

k
HkkGk

+ FH

k
HkkGkGH

k
HH

kk
Fk

+
∑

l 6=k FH

k
HklGlG

H

l
HH

kl
Fk + FH

k
Rnknk

Fk

(8)

The corresponding Lagrangian can be written as:

J({Gk, Fk, Wk, λk}) = −
∑

k

λk(Tr{GH

k
Gk} − Pk)

−
∑

k

uk(Tr(WkEk) − log |Wk| − dmax

k
) (9)

This new cost function will be optimized w.r.t. one set of

variables, keeping the other two fixed. The first step in our

optimization process is the calculation of the optimal Rx filters

assuming fixed the matrices Gk and Wk. It can easily be seen

that the optimal Rx filter is an MMSE filter:

FLMMSE

k
= (Rk + HkkGkGH

k
HH

kk
)−1HkkGk (10)

The following step in the optimization procedure is the deter-

mination of the optimal expression for the matrix Wk while

keeping the other two variable sets fixed.

What we get is:

Wk = E−1

k
(11)

The final step is the maximization of the given cost function

w.r.t. the BF matrix. To accomplish this task we derive the

Lagrangian w.r.t. the matrix Gk and equate it to zero:

∂J({Gk,λk})

∂G∗

k

=

ukHH

kk
FkWk − λkGk −∑K

l=1
ulH

H

lk
FlWlF

H

l
HlkGk = 0.

(12)

This leads to the following expression for the optimizing BF:

Gk =

(
K∑

l=1

ulH
H

lk
FlWlF

H

l
Hlk + λkI

)−1

HH

kk
FkWkuk (13)

The only variable that still needs to be optimized is the

Lagrange multiplier λk. First check if Tr(GH

k
Gk) ≤ Pk for

λk = 0. If yes, than λk = 0. If not, the Tx power equality

constraint is active. In this case to determine the optimal value

of the lagrange multiplier λk we consider equation (12) that

for the optimality of the BF matrix it is satisfied. In addition

pre-multiplying the derivative of the cost function w.r.t. the BF

matrix by GH
k and taking the trace the product is still equal

to zero:

Tr

{

GH

k

∂J({Gk, λk})
∂G∗

k

}

= 0

Tr {ukGH

k
HH

kk
FkWk} − λkTr {GH

k
Gk}

−
K∑

l=1

ulTr {GH

k
HH

lk
FlWlF

H

l
HlkGk} = 0. (14)

In equation (14) we impose the power constraint to be satisfied

with equality hence the contribution λkTr {GH

k
Gk} = λkPk.

Using the definition of the MMSE Rx filter we get the

following expression for the Lagrange multiplier:

λk = − 1
Pk




∑

l 6=k

ulTr{WlF
H

l
HlkGk(F

H

l
HlkGk)

H}





+ 1
Pk




∑

l 6=k

ukTr{WkFH

k
HklGl(F

H

k
HklGl)

H}





+uk

Pk

(
Tr{WkFH

k
Rnknk

Fk}
)

. (15)

With this value of the Lagrange multiplier the final expression

for the BF becomes (16). The algorithm proposed in [13]

was developed for a MIMO broadcast channel, where only

an overall Tx power constraint is applied on the system and,

in addition, maximizing the WSR automatically requires to

transmit with full power. On the other hand in the MIMO IFC

the WSR maximization may require some links to transmit

with a power less than the maximum power available at that

links.

At low SNR regime the maximization of the WSR leads to

activate only one stream per link, allocating full power on the

best singular mode of the direct channel Hkk .

For SNR values sufficiently high the maximization of the sum

rate converges to an IA solution. IA feasibility may imply

zero streams for some links. Here we propose to determine

the optimal value of λk ≥ 0 using a linear search algorithm.

Grouping together all the optimization steps that describe

our maximization procedure we have the following two-steps

iterative algorithm to compute the precoders that maximize

the weighted sum rate for a given MIMO IFC (c.f Table

Algorithm 1). Introducing the augmented cost function, for

Algorithm 1 MWSR Algorithm for MIMO IFC

Fix an arbitrary initial set of precoding matrices Gk, ∀ ∈
k = {1, 2 . . .K}
set n = 0
repeat

n = n + 1
Given G

(n−1)
k , compute F

(n)
k and W

(n)
k from (10) and

(11) respectively ∀k

Given F
(n)
k and W

(n)
k , compute G

(n)
k ∀k using (13)

until convergence

the calculation of the optimal BF matrix that maximize the

WSR, we are able to determine an iterative algorithm that can

be easily proved to converge to a local optima that corresponds

also to an extremum of the original cost function (4).

Each step of our iterative algorithm increases the cost function,

which is bounded above (e.g. by cooperative WSR), and hence

convergence is guaranteed. In addition the augmented cost

function once we substitute Wk and Fk with their optimal

values, becomes exactly the original WSR cost function (4).

Finally using matrix inversion lemma1 it is possible to rewrite

1If P and R are positive definite the following relation is true:

PBT (BPBT + R)−1 = (P−1 + BT R−1B)BT R−1



the expression of the MMSE (10) as

Fk = R−1

k
HkkGkEk.

With this representation of the Rx filters it is possible to

interpret some quantities in the gradient of the WSR (6) as

Rx filters and hence the expression that comes out of this

elaboration is the same as the gradient of the augmented cost

function w.r.t. the BF matrix (12). This implies that a stationary

point of the original cost function is also a stationary point of

the augmented cost function.

A final remark can be made about the dimensions imposed

on the beamforming matrix. In particular at high SNR we

can put dk = Mk if we want the algorithm to figure out

the feasible set of {dk}, in this case all IA-feasible solutions

represent local optima. Another possible choice is to use dk

that corresponds to an IA-feasible solution if we want to focus

on that particular stream distribution.

At low or medium SNR regime a possible choice is dk =
max{1, dIA

k } where the set {dIA
k } form a IA-feasible set.

B. Per-Stream WSR maximization

In the algorithm presented so far the stream of each user are

correlated to each other. It is possible to show that modifying

the BF in order to decorrelate the stream of each user does

not reduce the overall sum rate. Using a per-stream approach

leads to a solution in which the MMSE matrix is diagonal.

This property will be explored further later in the paper. The

cost function proposed in this paper for the per-user approach

can be written in the per-stream case as:

O = −
K∑

k=1

uk

dk∑

n=1

(− ln(wkn) − 1

+wkn(1 − fH

kn
Hkkg

kn
)(1 − fH

kn
Hkkg

kn
)H

+wknfH

kn
(Rnknk

+
∑

(im) 6=(kn)

Hkigim
gH

im
HH

ki
)

︸ ︷︷ ︸

Rkn

fkn).

(17)

The optimization problem when we work per stream becomes:

max
fkn,g

kn
,wkn

O

s.t.
∑dk

n gH
kngkn ≤ Pk ∀k

(18)

and the corresponding lagrangian is:

J = O +

K∑

k=1

λk (Pk −
dk∑

n=1

gH

kn
g

kn
) (19)

To solve the given optimization problem we use alternating

optimization. As first step we determine the Rx filter assuming

all the other optimization variables to be fixed. Deriving the

cost function above w.r.t. the Rx filter we obtain an MMSE

receiver per stream:

fkn = (Hkkg
kn

gH

kn
HH

kk
+ Rkn)−1Hkkg

kn
(20)

Given the optimal Rx filter we derive (19) w.r.t. the scalar

weight and we find:

wkn = e−1
kn (21)

where ekn = (1 + gH
knHH

kkR−1

kn
Hkkgkn)−1. The third step is

the optimization of the beamforming vectors:

gkn =





K∑

l=1

dl∑

j=1

ulH
H

lk
fljwljfH

lj
Hlk + λkI





−1

HH

kk
fknwknuk

(22)

To determine the optimal value of the lagrange multiplier λk

we can multiply the derivative of the lagrangian w.r.t g
kn

by

the BF vector hence the following holds true:

dk∑

n=1

[

gH

kn

∂J

∂g∗
kn

]

= 0

solving the equation above w.r.t. the lagrange multiplier we
get:

λk = 1

Pk

[
dk∑

n=1

g
H

kn
H

H

kkfknwknuk

]

− 1

Pk

[
dk∑

n=1

K∑

l=1

dl∑

j=1

ulg
H

kn
H

H

lkfljwljf
H

lj Hlkg
kn

] (23)

The final algorithm (PS-MWSR algorithm in Table Algo-

rithm 2) for the per-stream optimization requires the iteration

of the three steps for the optimization of Rx filters, weights,

Tx beamforming vectors, in the prescribed order, untill con-

vergence.

Algorithm 2 PS-MWSR Per-Stream Algorithm for MIMO

IFC

Fix an arbitrary initial set of precoding matrices Gk, ∀ ∈
k = {1, 2 . . .K}
set n = 0
repeat

n = n + 1
for k = 1 to K do

Given g
(n−1)
i ∀i, compute f(n)

kl
and w

(n)

kl from (20) and

(21) respectively for l = 1, . . . , dk

Given f(n)
kl

and w
(n)
kl for l = 1, . . . , dk, compute g

(n)
kl

for l = 1, . . . , dk using (22)

end for

until convergence

C. Rate Duality in MIMO IFC

In the previous section the expressions of the beamformer

(22) and the MMSE Rx filter (20) are given when we assume

to work per stream. Looking deeper at the expression of

the cost function (17) it is possible to establish a duality

relationship between the DL IFC considered and a dual UL

IFC:

• The DL channel matrix Hkl becomes H̃
H

lk in the dual UL



Gk =

(
K∑

l=1

HH

lk
FlWlF

H

l
Hlk −

1

Pk

((
∑

l 6=k

Tr{WlJ
(k)

l
} − Tr{WkJ(l)

k
}
)

− Tr{WkNk}
)

I

)−1

HH

kk
FkWk (16)

J(k)

l
= FH

l
HlkGkGH

k
HH

lk
Fl; J(l)

k
= FH

k
HklGlG

H

l
HH

kl
Fk; Nk = FH

k
Rnknk

Fk

• The Rx (Tx) filter in the DL (UL) fkn (gkn) becomes the

Tx (Rx) filter in the UL (DL) g̃
H

kn (̃f
H

kn)

• The unit DL Tx signal variance for stream (k, n) becomes

ukwkn in the dual UL channel

• DL noise covariance matrix Rnknk
= σ2

kI becomes λkI

in the UL.

With this relationship we can interpret the BF filter in the DL

as an MMSE Rx filter in the virtual UL IFC.

A similar reasoning can be naturally extended to the per-user

approach discussed in section III-A

IV. DETERMINISTIC ANNEALING TO AVOID LOCAL

OPTIMA

In the previous section we have described an alternating

optimization algorithm that designs BF and RX filters in order

to maximize the WSR in a K-user MIMO IFC. As already

remarked, the WSR cost function is a non convex function and

this makes the optimization troublesome due to the presence

of many local optima. In optimization, a number of heuristic

approaches exist to handle non convex optimization problems.

Some examples of such methods are: genetic algorithms, ant

colony optimization or simulated annealing (SA). We will

describe briefly the SA approach. This method takes its name

from the physical annealing process in which a system is first

“melted” and then slowly cooled down in order to allow the

atoms in the system to find a state with lower energy until the

system is “frozen” in a globally optimum state.

In SA the problem is optimized using a sequence of random

moves, the size of which reduces as a parameter called

temperature decreases. The random moves would allow the

optimization process to get out of local optima. In a certain

sense, the randomness tend sto convexify the problem. Cooling

protocols have been derived to allow ending up in the global

optimum with high probability. Deterministic Annealing (DA)

is a related technique but does not involve any random-

ness, see e.g. [18]. In DA, an increase of the temperature

parameter allows to convexify the problem: the temperature

parameter transforms (deterministically) the originally non-

convex cost function into a convex cost function (convex

should be replaced by concave in the case of maximization).

So, at high temperature, there is no problem in finding the

global optimum. Then gradually the temperature gets reduced,

making the problem increasingly non-convex. However, if the

temperature variation is sufficiently small, the gobal optimum

at the previous higher temperature will be in the region of

attraction of the global optimum at the next lower temperature

and the global optimum remains tracked in this way.

As in physical systems, also in the optimization problem it can

happen that phase transitions occur as the temperature cools

down [18]. A phase transition corresponds to a split of the

trajectory (as a function of temperature) of the global optimum

into several trajectories. From a mathematical perspective

a phase transition is characterized by the Hessian of the

problem becoming singular at a critical temperature (hence

being positive semidefinite instead of postive definite). In our

problem the cost function is the WSR, a highly non convex

function, and the annealing parameter is related to the noise

variance, t ∝ σ2 (or the inverse of the SNR).

Fig. 2: Phase transitions representation

Interestingly also in WSR maximization in a K-user MIMO

IFC, phase transitions can appear. At low SNR (high noise

variance), any interference is negligible compared to the

noise. Hence, all links can be considered decoupled, and,

like in single-user MIMO, rate maximization becomes SNR

maximization for a single stream to which all transmit power

is devoted. Hence in link k, the optimal Tx and Rx filters

correspond to the left and right singular vectors corresponding

to the largest singular value of Hkk. Hence, as the SNR goes

to zero, the globally optimum solution is clear. However, zero

SNR itself is already a phase transition because as soon as

the SNR becomes positive, a multitude of local optima may

exist that we shall interpret below. As the SNR increases

further, at some point another phase transition may occur, at

which point a second stream needs to be introduced in one

of the links. We shall see that at such a phase transition, it

is possible to determine the filters corresponding to the new

stream. However, as soon as the SNR increases further, many

further local optima get introduced due to the appearance of

the additional stream. Then, as the SNR increases further,

another phase transition can occur, with the introduction of

one more stream at one of the transmitters. This process

goes on until a stream distribution is reached, at some higher

SNR, corresponding to a maximal stream distribution for

which interference alignment is feasible. Indeed, at very high

SNR, the Tx and Rx filters coverge to the (max WSR-)IA

solution, and the sum rate prelog is maximized if the number

of streams is maximized (see [14]). This whole process is

depicted schematically in Fig.2. One interesting observation is

that it is fairly straightforward to check that all extrema of the

WSR correspond to local maxima. So, whereas the Hessian is

in general indefinite, reflecting the non-concavity of the WSR

cost function, it turns out that the Hessian is always negative

definite when evaluated at an extremum (or semidefinite at the



phase transitions).

Whereas DA is about tracking of a global optimum, the

tracking of extrema, the zeros of the KKT conditions, is

actually called a homotopy method. So in DA, going from

one phase transition to the next and tracking the (appropriate)

extremum, this could be considered a homotopy method.

A. Homotopy Methods

Homotopy methods [19] are used to find the roots of

a non-linear system of equations F(x) = 0. A homotopy

transformation is such that it starts from a trivial system G(x),
with known solution, and it evolves towards the target system

F(x) via continuous deformations according to the homotopy

parameter t = 0 → 1:

H(x, t) = (1 − t) G(x) + tF(x)

Predicting the solution at the next value of t(i+1) = t(i) + ∆t

is called an Euler prediction step; a solution at t(i+1) can be

refined using a Newton correction step for fixed t. A property

of Homotopy continuation methods for the solution of system

of equation is that the number of solutions in the target system

is at most equal to the number of solutions in the trivial system.

The number of solutions with varying t remains constant as

long as the Jacobian (w.r.t. x and t jointly) is full rank. So as

t reaches 1, it can happen that the Jacobian becomes singular.

B. Homotopy Applied to IA

Homotopy method can be applied to the IA problem, in

particular here it is not really suggested for computing IA

solutions, but for counting number of solutions. The objective

in IA is to design Tx and Rx filters that satisfy the ZF

conditions

FH

k HklGl = 0 ∀l 6= k (24)

and the rank conditions

rank(FH

k HkkGk) = dk ∀k ∈ {1, 2, . . . , K} (25)

which correspond to the traditional single user MIMO con-

straint dk ≤ min(Mk, Nk) for dk streams to be able to

pass over the k-th link. The main constraints are the n ZF

conditions in (24). These conditions are bilinear equations in

the Tx and Rx filters, hence they are of second order. As a

result, the overall order of the ZF conditions jointly is 2n,

which is also the maximum number of solutions. It turns out

that due to the particular structure of the ZF conditions (in

a given ZF condition only one Tx and Rx filter appear), the

actual number of solutions is much more limited. To analyze

the number of IA solutions, the following approach has been

proposed in [20]. Instead of choosing the homotopy parameter

to be related to SNR, we choose it here to attenuate the MIMO

channel singular values beyond the main ones:

Hji =

d∑

k=1

σjikujikvH
jik + t

∑

k=d+1

σjikujikvH
jik .

The IA Jacobian is still full rank if we reduce rank(Hji) to

max(dj , di). Hence we can still count the same number of IA

solutions when t = 0. The case of dk ≡ d = 1 is considered

here. Then finding the IA solutions at t = 0 becomes trivial.

Indeed, IA requires

fHj uji1vH
ji1gi = 0

or hence either fHj uji1 = 0 or vH
ji1gi = 0. The joint Tx-

Rx ZF is achieved by either the Tx or the Rx suppressing

the particular interfering stream. This analysis supports a

suggestion provided in [4] which states that it should be

possible to check IA feasibility and count the number of IA

solutions by verifying if the ZF task can be properly distributed

over Tx and Rx filters. The idea is that a stream transmitted

from TX k and causes interference to the non intended RX j

needs to be suppressed at either the Tx or at the Rx. Denoting

with tkj the size of the subset of streams dk, that are received

at Rx j that the k-th Tx suppresses, and with rkj the size of

the subset of streams dk, that are received at Rx j, that the

j-th Rx suppresses, the sum of these two quantities should be:

tkj + rkj ≥ dk. The total number of streams that Tx k can

suppress is at most Mk − dk and the total number of streams

that the j-th Rx can suppress is not greater than Nj − dj .

Therefore, to check the feasibility of an interference alignment

solution, the following conditions should be satisfied:
∑

j 6=k tkj ≤ Mk − dk
∑

k 6=j rkj ≤ Nj − dj
(26)

∀tkj , rkj ∈ {0, 1 . . . , dk}, and tkj + rkj = dk

maxk 6=j(dj − [Mk − Nj]) ≤ (Nj − dj)∀j ∈ {1, . . . , K}
As before, due to alignment duality, IA must be checked also

when the sets of Mk and Nk are interchanged (the dual chan-

nel case). One possible way to verify if all this inequalities are

satisfied or not is to check all the possible
∏K

k=1(dk +1)K−1

combination of tkj and rkj . So, the homotopy method allows

to substantiate this approach, at least in the single stream per

link case.

More generally, determining IA solutions by continuation

methods can be obtained by perturbing the ZF conditions up

to first order

(FH
j + dFH

j )(Hji + dHji)(Gi + dGi) = 0

Assuming that an IA solution for channel Hji, ∀(i, j) has

already been determined using filters Fj and Gi then consid-

ering only the terms up to first order in the product above we

get:

FH
j HjidGi + dFH

j HjiGi = −FH
j dHjiGi.

To find the IA solution for channel (Hji +dHji) we determine

the matrices dFH
j and dGi ∀i, j by solving linear equations.

C. Homotopy Applied to WSR

As remarked previously, maximizing WSR at very high

SNR corresponds to determining IA solutions, as can be seen

immediately from the augmented WSR cost function. Any IA

solution leads to a local maximum of WSR. Now, consider



again the low rank channels considered above, in which we

can discribe and count the number of IA solutions. Instead of

increasing the channel rank first, we shall lower the SNR (or

increase the noise variance). Note that we can even consider

linear homotopy here by using t to multiply the transmit

powers or the noise variances, since the augmented WSR cost

function is linear in transmit powers or noise covariances. By

non-singularity of the Jacobian, the various IA solutions will

each get transformed into a local WSR maximum as the SNR

lowers. Until a phase transition is reached in which some

stream gets switched off. This will eliminate a subset of the

IA possibilities and hence a subset of the local WSR maxima.

This process continues until at low SNR there is one stream

per link. For any given SNR, the low rank channel can also

be transformed until the original full rank channel, without

affecting the number of local maxima.

V. DETERMINISTIC ANNEALING FOR WSR

MAXIMIZATION

What we propose in this paper is to extend the MWSR

algorithm presented before in order to include DA and hence

reduce the probability to be trapped in local optima. So we

consider again DA for the original full rank channels, for SNR

increasing from zero. To modify the algorithm proposed in

Table Algorithm 1 to include DA we only need to run the

algorithm for each SNR point initializing the algorithm with

the optimal beamformers found at the previous SNR iteration.

However, this does not handle phase transitions, corresponding

to the introduction of a new stream. Hence, at every SNR

increment, we need to try adding a stream to each of the

K links (one at a time). It is possible to find the proper

initialization for the Tx and Rx filters of the new stream

analytically.

A. Initialization at Phase Transitions

To find the direction of the BF vector corresponding to the

new stream, indexed as (k, n), we need to optimize our per-

stream cost function (17) w.r.t. the quantities corresponding

to the new allocated stream. Note that the new stream, if it

should be switched on, will be switched on with very small

power. Hence the new stream will barely perturb the existing

streams.

For the moment we do not include in the optimization function

the power constraint, so we need to find the Tx and Rx filter

that minimize the MSE for stream (k, n). The derivative of

the MSE w.r.t. the Rx filter is:

∂O
∂fkn

= −gH

kn
HH

kk
+ fH

kn
Hkkg

kn
gH

kn
HH

kk
+ fH

kn
Rkn (27)

considering only the terms up to first order in g
kn

the ex-

pression for the receiver is fkn = R−1
kn

Hkkg
kn

that has an

expression like matched filter (MF) in colored noise. Consider

a parametrization of the BF vector in direction vector and

power allocation like: g
kn

= g
kn

√
pkn and define xkn =

gH

kn
HH

kk
Hkkg

kn
. Substituting the Rx filter with its expression

in function of the BF, the MSE cost function can be written

as:

ekn = 1 − pknxkn + (pknxkn)2

Considering only the contribution up to first order in xkn the

minimization of the MSE leads to the maximization of xkn

and hence the optimal BF vector direction is

g
kn

= vmax(HH

kk
R−1

kn
Hkk) (28)

where vmax(A) represents the eigenvector corresponding to the

maximum eigenvalue of matrix A. Once we have the direction

of the BF associated to the new stream we need to determine

the corresponding power.

Consider Gk the BF matrix obtained untill the current SNR

point for link k and its decomposition as Gk = GkP
1/2
k , where

Gk has normalized columns and P
1/2
k is the power allocation

matrix. For the per-stream approach the MMSE is diagonal

and hence:

E−1
k = I + GH

k HH
kkR−1

k
HHGH

k = I + DPk

Introducing the additional stream we obtain the following
matrix :

X = [Gk g
kn

]HH
H

kkR
−1

k
H

H

kk[Gk g
kn

] =

[
DPk

√
pknu√

pknuH apkn

]

where u = GH
k HH

kk
R−1

k
Hkkg

kn
and a = gH

kn
HH

kk
R−1

k
Hkkg

kn
.

The corresponding rate for user k is

ln |E−1

k | = ln |I + X| = ln |I + DPk| + ln(1 + pkndkn)

dkn = a − uH(I + DPk)−1u.

Finally to find the power allocation among different streams

of user k we propose the following.

1) Jammer Water-Filling (JWF) algorithm: Include in the

matrix Pk the power allocated to the new stream pkn and in

the diagonal matrix D include the element dkn associated to

the new stream. To find the power allocation matrix we take

the original per-stream cost function (17) and optimize it with

respect to (and then eliminate) the weights wkn for link k.

After this, the terms in the WSR affected by Pk are

O = ln |I + DPk| − Tr{Pk∆} − λk(Tr{Pk} − Pk)

where Tr{Pk∆} takes into account the interference power

generated to the non intended receivers (for this reason we

called this algorithm Jammer WF):

Tr{Pk∆} =
∑

i

pki

∑

l 6=k

ul

uk

dl∑

m=1

wlm|fH

lm
Hlkg

ki
|2

︸ ︷︷ ︸

∆ki

.

Deriving the cost function above w.r.t. pki the expression for

the power allocation is:

pki =

[
1

λk + ∆ki

− 1

dki

]

+

(29)

where [(.)]+ = max((.), 0). To find the optimal value of λk

we first check if the power constraint is inactive. In particular

we determine the powers using (29) assuming λk = 0 and



we verify if the transmitted power is less then the power

constraint. If the power constraint is not satisfied we determine

λk using a bisection method. Consider the following function

of the lagrange multiplier

T (λk) =
∑

i

[
1

λk + ∆ki

− 1

dki

]

+

− Pk

as we can see T (λk) is a decreasing function of λk. In

particualr for λ0
k

= 0 T (λk) > 0 while for λ1
k
, determined

as water-level of a tradition WF algorithm on T (λk) when

∆ki = 0, ∀i, the function T (λk) < 0. The optimal value λ⋆

k

can be found using a bisection algorithm to solve T (λk) = 0.

The final extended BF matrix Gk = [Gk gkn] obtained using

the procedure described so far is used as initialization of the

DA-WSR for the following SNR point.

Algorithm 3 DA-MWSR Algorithm for MIMO IFC

set t = 0
Fix the initial set of precoding matrices Gk, ∀ ∈ k =
{1, 2 . . .K}
repeat

increment SNR: t(i+1) = t(i) + δt

Augment G

repeat

Given Gk compute Fk and Wk, ∀k

Given Fk, Wk, compute Gk ∀k

until convergence

until target SNR is reach

A remaining open question is now the following: at a phase

transition, even if we are able to determine the solution analyt-

ically, the global maximum splits up into a whole set of local

maxima trajectories. The question is whether the algorithm

above will in fact track the global maximum. The answer

is yes. Indeed it turns out that an alternating optimization

approach as the one considered here (or also the one used in

[15]), in spite of the non-concavity of the problem, optimizes

(globally) the WSR up to second order in transmit power

(or SNR). Indeed, we are able to determine analytically the

optimal Tx and Rx filters up to zeroth order in Tx power,

the one iteration of an alternating optimization approach will

provide the optimal Tx and Rx filters up to first order in

Tx power, which maximize WSR up to second order in Tx

power. In other words, the alternating optimization approach

inherently sets course on the trajectory of the global optimum.

VI. SIMULATION RESULTS

We provide here some simulation results to compare the per-

formance of the proposed max-WSR algorithm (DA-MWSR)

where we deterministic annealing is used to avoid local

optimal point. i.i.d Gaussian channels (direct and cross links)

are generated for each user. For a fixed channel realization

transmit and receiver filters are computed based on IA algo-

rithm and DA-MWSR algorithm over multiple SNR points.

The resulting sum rate (SR) is averaged over 50 channel
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Fig. 3: WSR for K = 3, Mk = 2, Nk = 2

realizations. In Fig. 3 we compare the SR obtained using

three different algorithms. In particular we compare our al-

gorithm DA-MWSR with IA algorithm proposed in [5] and

another WSR algorithm recently proposed in [15] where also

a numerical continuation method is used to find the BF to

maximize the WSR. This algorithm works only for single

stream transmissions. As we can see both algorithms that

maximize the WSR outperform IA in all SNR regimes. On

the other hand there is no difference between the proposed

algorithm and the one in [15].
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Fig. 4: WSR for K = 3, Mk = 3, Nk = 3

In Fig. 4 we report the SR for a K = 3 users IFC where

each Tx and Rx are equipped with Mk = Nk = 3 antennas.

According to IA the total maximum number of streams that

can be transmitted in the system is d = 4. We determine the

IA beamformers and receiver filters using the algorithm in [5]

for a stream distribution d1 = 2, d2 = d3 = 1. We compare

the performance of IA with our algorithm where the annealing

parameter, noise variance, has been increased of δt = 0.5 dB.

As we can see the proposed algorithm outperforms IA even at

high SNR regime. The slope of the sum rate obtained using

our algorithm is the same of the IA curve. This shows that the

correct number of streams has been sent.
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Fig. 5: WSR for K = 3, M1 = N1 = 5, Mi = Ni = 4, i =
2, 3, dk = 2 ∀k

Finally Fig. 5 depicts the performances of the proposed

algorithm, WSR DA, in comparison with IA for a K = 3
user IFC with an asymmetric antennas distribution. We assume

that M1 = N1 = 5, Mi = Ni = 4 i = 2, 3, the stream

distribution, according to IA is dk = 2 ∀k. As we can see also

in this case the proposed algorithm outperform IA keeping the

same slope in the high SNR regime.

VII. CONCLUSIONS

In this paper we addressed maximization of the weighted

sum rate for the MIMO IFC. We introduced an iterative algo-

rithm to solve this optimization problem that is characterized

by the presence of several possible local minima. To avoid

to be stack in one suboptimal stationary point we propose to

introduce Deterministic Annealing. This approach allows to

track the variation of the known solution of one version of the

problem into the unknown solution of the desired version by a

controlled variation of a parameter called temperature. In our

problem the temperature is related to the inverse of the SNR.

The proposed algorithm include filter design for the progres-

sive switching on of streams as the SNR increases

In the second part of the paper we study IA feasibility.

Exploring the fact that IA feasibility is unchanged when the

MIMO crosslink channel matrices have a reduced rank, equal

to the maximum of the number of streams passing through

them we propose a new way to study the problem using

numerical continuation method. The rank reduction simplifies

IA design and feasibility analysis, and allows in particular

a counting of the number of IA solutions. In this approach

the temperature parameter is a scale factor for the remaining

channel singular values, the solution for reduced rank channels

can be evolved into that for arbitrary channels.
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