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The multipath components of superwideband (2–17.2 GHz) nonline-of-sight channel responses measured inside several buildings
are stable along sections that are 27 cm long on average with a standard deviation of 16 cm. The stability regions of multipath
components have an approximately log-normal histogram. An analysis of measured channels that explicitly includes finite spatial
areas of visibility of the multipath components is superior to the classic analysis that attributes spatial dynamics to interference
of the multipath. The spatial stability of measured responses, that is, the size of the typical area of visibility of each multipath
component, decreases as the carrier frequency increases but does not depend on bandwidth. The results offer insight into the
nature of the diffuse part of the radio channel.

1. Introduction

The temporal dynamics of radio channels are intimately
related to their variation in space. Temporal channel
variation is usually attributed either to movement of the
terminals, as in the case of a mobile telephone held while
walking, or movement of objects in the environment of the
communications system.

The analysis of measured or simulated wideband chan-
nels is normally carried out in the time domain, that is,
in the form of impulse responses. The angle of arrival of
each multipath component, together with the motion of
the receiving antenna, determines the shift in path arrival
time as the receiver moves. The Doppler shift of a multipath
component is a frequency-domain concept; it is manifested
in the impulse response by a location-dependent time of
arrival of the multipath components. The spread of Doppler
shifts of the different components that constitute a whole
channel response is often thought to be the main cause of
channel variation in space or time.

The classical description of channel dynamics in time is
the coherence period that characterizes the typical period
where the channel tends to be more or less constant. In
the classic channel model, the coherence period is inversely
related to the Doppler spread of the response. Channel
analysis that is based on the Doppler spread implicitly
assumes that each, multipath component is received over

the entire region of receiver locations [1]. We test this
assumption using a large measurement campaign to find that
it is not realistic even for decimeter scale regions.

The common view of multipath channels assumes that
spatial dynamics are caused by the interference of multipath
components. We tested this assumption by comparing
two reconstructions of measured impulse responses based
on extracted multipath components; in the “unbounded”
reconstruction each component was present along the
entire (one-meter) range of receiver locations, and in the
“bounded” reconstruction they had finite areas of visibility.
The results indicate that interference of stable multipath
components gives a significantly inferior reconstruction of
the channel when compared with a reconstruction that
attributes to each path a limited area of visibility.

The results show a clear decrease, in the average and in
the standard deviation of the length of the visibility area,
as the carrier frequency increases in the range from 2 GHz
to 17 GHz. We conclude that the channel is spatially more
stable at lower bands. The apparent stability of the multipath
components is unaffected by variation of the bandwidth
between 100 MHz and 1.5 GHz.

A possible explanation follows the idea of “wideband
Fresnel zones” suggested in [2–5]. In particular, in [5] a
Fresnel zone analysis that predicts effective areas of scattering
off objects that decrease in size as the carrier frequency
increases is suggested. The reduction in the effective area
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of scattering causes a reduction in the range of receiver
locations where each multipath component is apparent.

Channel stability has significant implications on various
aspects of system design. In particular, multiple antenna
(MIMO) systems benefit from small-scale channel variation
over space, because variations in the channel mean that the
different links (between one transmiting antenna and one
receiving antenna) are uncorrelated even if the antennas at
each terminal are close to each other.

Our analysis shows average multipath component visi-
bility lengths on the order of a few decimeters. Results from
[6] measured correlation lengths of 5–15 cm; other related
work has concentrated on the correlation of path amplitudes
[7, 8] as they vary along space and on the predictability of
path amplitude values [9]. Our work is unique as it focuses
on the existence of individual paths in adjacent areas in space.
Instead of assuming that paths are stable and investigating
the evolution of their amplitudes in space, we analyze the
appearance of paths as the receiver moves.

Recent MIMO channel models that rely on indoor
channel measurements include the spatial dynamics of
multipath clusters via birth and death processes. A model
based on measurements with a bandwidth of 80 MHz [10] is
presented in [11] this bandwidth does not allow inspection of
the dynamics of individual multipath components. Another
MIMO model that includes cluster birth and death dynamics
is presented in [12]. The measurements used to validate this
model were taken with a bandwidth of 200 MHz.

Most models of radio channels, that is, the 3GPP Spatial
Channel Model [13], IEEE 802.11n [14], and the WINNER
model [15–17], do not include the effects of movement
of the terminals in space. The models describe the spatial
dependence of the channel via angles of departure and angles
of arrival of the propagating waves from the transmitter
and to the receiver. The spatial dynamic aspect is sometimes
described via correlations or coherence distances of various
channel parameters.

The COST 259 model [18, 19] describes “visibility
regions” for clusters of multipath components in macrocell
(outdoor) environments. The model indicates the proba-
bility distribution function of the location of the visibility
regions. A separate set of visibility regions is randomly
generated for each cluster.

For picocell (indoor) environments the COST 259 model
describes the birth and death of multipath components
using the Poisson process following the work of Zwick and
collaborators [20]. The spatial dynamics of indoor radio
channels were measured with a 120 MHz bandwidth and
modelled by Chong et al. [21, 22] and Herdin [23], and with
a 30 MHz bandwidth by Nielsen et al. [24]. Spatial dynamics
due to blocking of the LoS by people are discussed in [25],
and spatial variations of shadowing are shown in indoor-
outdoor channels in [26].

2. Measurement Environment and Equipment

2.1. The System. The measurement setup was based on an
Agilent N5230 network analyzer, connected to two omni-

directional antennas (Electro-Metrics EM-6865) in the 1–
18 GHz band with suitable amplifiers. The receiving antenna
was placed on a meter long linear motorized positioner with
submillimeter accuracy that was moved between measure-
ments but was kept immobile during the collection of each
channel response. The transmiting antenna was placed on
a cart that was moved to different locations for different
measurements but was immobile during each measurement.
Measurements were normally performed during nights,
when movement of people around the system was minimal.
One antenna was characterized in an anechoic chamber to
verify its response.

Calibration was performed using measured responses
of the cables and amplifiers that is, their responses were
removed from the channel responses used for analysis. The
(mild) frequency-dependent responses of the antennas were
also removed, but we could not compensate for the slight
deviation of the antenna patterns from the nominal omni-
directional pattern. We also did not attempt to compensate
for the vertical pattern of the antennas.

We tested the effect of the metallic receiver cart in two
ways: (1) by comparing measurements with the cart covered
with absorbing material to measurements taken with the cart
exposed and (2) by comparing measurements with the cart
direction reversed (rotated by 180◦). No significant effects
were seen.

2.2. The Measurement Environment. The 50 measurements
used in this paper were collected between 2006 and 2008
in four office buildings in the Givat Ram campus of the
Hebrew University in Jerusalem and in the Holon Institute
of Technology; these buildings have a standard cement and
cement block construction. We kept the equipment in a
single floor of each building in most of the measurements,
and separated them to adjacent floors in five measurements.
Transmitter-receiver separation ranged from 2 to 30 meters.
All measurements were non-line-of-sight (NLoS).

3. Analysis

The analysis is based on estimating the individual multipath
components, and it focuses on their spatial area of visibility.
A measurement in this work is a collection of responses
measured with a stationary transmitter and a receiver located
at positions that were uniformly spread over a one-meter
rail in steps of 2 to 10 mm. The receiver was held stationary
during the measurement of each impulse response.

We analyze the measured channel responses using a
raised cosine window with 3 dB points at 2 GHz and
17.2 GHz and β = 0.1 for the full-band results (Section 4.1)
and 3 dB bands of 1 GHz in Section 4.2. After filtering,
the measured responses were converted to the time (delay)
domain with a 28 psec time step, to generate a two-
dimensional real representation of the channel as shown in
the example in Figure 1. The channel measurement matrix
M has rows that span a single channel impulse response the
columns span receiver positions. The delay range was set at
150 nsec around the maximal (absolute) response at one end



EURASIP Journal on Wireless Communications and Networking 3

0

10

20

30

40

50

60

70

R
x

po
si

ti
on

(c
m

)

15 20 25

Delay (ns)

−3

−2

−1

0

1

2

3
×10−5

Figure 1: An example of measured impulse responses. The hori-
zontal axis has delay and vertical receiver positions. The responses
are real with amplitudes that are shown in color. This measurement
was taken with terminal separation of 9.8 m and is typical of near
line-of-sight situations. The color reflects linear amplitude values
that may be negative.

of the rail; this seemed sufficient to include all the significant
parts of the response.

The temporal resolution of 28 psec was maintained in
all our analyses that is, responses with bandwidths of 1 GHz
are heavily oversampled. Due to the oversampling, apparent
multipath components with similar delays are correlated.

All the measurements included in this analysis were of
sufficient SNR, that is, at least dB, and most cases above 20 dB
(42 out of 50 ). To calculate the SNR we used the maximum
(absolute) amplitude among the multipath components, and
normalized its square by the noise variance, calculated from
a late 5 nsec section of the response over all the available
receiver positions.

A significant feature of our measurements is the finite,
and usually short, spatial extent of the multipath com-
ponents. Figure 1 is typical in this sense, this feature
can be seen also in channel responses presented in [27].
The diagonals extend 10–60 cm over receiver positions in
Figure 1. Line of sight (LoS) measurements have more
stable direct components that extend beyond the one meter
measured length.

Our analysis is based on a software tool designed to
extract the multipath components from the measurements.
This tool received measured impulse responses of the type
shown in Figure 1 and returned a list of diagonals, each
defined by its endpoints its width and a constant real
(possibly negative) amplitude. A brief overview of multipath
extraction tools follows and then a description of our
multipath extraction tool.

3.1. Wideband Multipath Extraction. The CLEAN algorithm
was introduced from radio astronomy into the analysis of
UWB measured channels by Cramer [28] and coauthors
[29, 30]. CLEAN is essentially an iterative search for the
strongest multipath component in channel responses from

a single transmitter measured at an array of receivers. The
algorithm receives (temporal) impulse responses as input
it searches over delay and angles of arrival and iteratively
removes the strongest MPC from the measurement data until
the remaining data is weak enough.0020Liu et al. [31] suggest
a modification that accounts for distortion, based on the
usage of multiple templates of the received pulse shape.

The SAGE (Space-Alternating Generalized Expectation-
maximization) algorithm was introduced for radio channel
analysis by Fleury et al. [32, 33] for the extraction of
delay and angle of arrival from narrowband and wideband
signals. The extension to UWB and the addition of successive
cancellation into SAGE were suggested by Chong et al. (FD-
SAGE) [34] and Haneda & Takada (UWB-SAGE) [35]. The
FD-SAGE algorithm was further enhanced in [36] from
SIMO to MIMO settings.

RIMAX [37] is an algorithm similar to SAGE in the fact
it iterates over the MPC parameters RIMAX is based on an
improved gradient-based parameter estimation that operates
simultaneously over the entire set of parameters. It iterates
between the specular and the diffuse components of the
channel.

An extension RIMAX that is based on an extended
Kalman Filter was suggested in [38]. The Kalman Filter
utilizes a state-space approach on top of RIMAX and tracks
parameters over successive measurement locations. The
introduction of the state-space approach made it possible to
derive parameters faster than conventional high-resolution
algorithms (including RIMAX) since the parameter estimates
at one terminal location were used as the initial values
for estimates at adjacent terminal locations. This approach
extracts long MPCs sustained over a sufficiently large area of
terminal locations and attributes other parts of the channel
response to the diffuse component.

A high-resolution algorithm of this family for ultraw-
ideband signals was presented in [39], and a path tracking
mechanism was introduced in [40], that says that “significant
paths constantly exist in many (terminal) positions” and
attempts to estimate only such MPCs.

The method used in the current work is based on a
non-parametric search for energetic sections in the two-
dimensional (spatial-temporal) channel response matrix. No
assumptions are made on the channel model, and only two
threshold parameters are used.

Santos, Karedal et al. [41, 42] recently presented a
frequency-based algorithm that searches over reflector posi-
tions and uses successive cancellation it is different from
CLEAN and SAGE in two significant points: (1) each MPC
may be received at delays that can vary nonlinearly over
a linearly spaced receiver array and (2) each MPC may be
received over part of the receiver array.

Our method is similar to that of Santos et al. in that it
allows MPCs that impinge over parts of the receiver array.
The significant new feature is the millimetric resolution that
enables a detailed study of the spatial structure of individual
MPCs. The work offered by Santos et al. investigated
outdoor responses measured with a spatial resolution of
4.8 cm and concentrated on clustered MPCs from distinct
reflectors.
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3.2. A Simple Multipath Extraction Algorithm

Input. The algorithm receives a matrix MNx×Nt of measured
impulse responses, where each row includes a single impulse
response. It also receives two vectors: a vector of receiver
positions {xi}Nx

i=1 with uniformly spaces positions and a
vector of delays {t j}Nt

j=1 with uniformly spaced delays. In

our data the spatial resolution δx varies between 2 mm
and 10 mm for different measurements, and the temporal
resolution δτ equals 28 psec.

In the following description we refer to the (i, j) position
in matrices as the (xi, t j) position, in order to maintain the
physical significance of the indices.

Two control parameters are given: a minimal spatial
extent of Dmin set to 4 cm and an amplitude threshold Thr
set at 0.1 (−20 dB).

Initialization. Set to zero all points in M with an absolute
value below a threshold set at max abs(M)× Thr. Set to zero
a matrix I with dimensions Nx × Nt that will be used to
indicate which pixels were processed.

MPC Extraction. For each location xi for each delay t j and
if I(xi, t j) = 1, that is, the (xi, t j) pixel in the matrix M was
already checked, continue to the next pixel (next step of the
loop). If M(xi, t j) = 0, continue to the next pixel.

Set I(xi, t j) = 1 to indicate that the current pixel was
checked. Collect an environment of pixels around (xi, t j)
where M is nonzero and has the same sign as M(xi, t j).
Pixels are collected iteratively by searching over adjacent
neighbors (in position or delay) for pixels already collected.
For every pixel checked, set to zero the corresponding cell in
the matrix I.

After having collected a set of pixels around (xi, t j),
approximate it by a parallelogram (over delay and receiver
positions) and calculate its effective amplitude. If the
resulting parallelogram extends at least Dmin over receiver
locations, save it as an estimated MPC. Otherwise reject it.

Output. A list of parallelograms over receiver position and
delay, each with a signed amplitude.

4. Results

Section 4.1 compares full-band (2–17.2 GHz) measurement
matrices to their reconstruction based on the multipath
components extracted from them. The motivation is a
comparison of two types of reconstruction, one of them
incorporating multipath components with bounded areas of
visibility at the receiver. Section 4.2 investigates the apparent
visibility of the multipath components in responses with
different carrier frequencies.

Investigation of the measured channel responses versus
bandwidth, with different carriers, and bandwidth between
100 MHz and 1.5 GHz showed no significant dependence of
the visibility length of MPCs on bandwidth.
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Figure 2: Bounded multipath components reconstruction of the
measurement from Figure 1. In this reconstruction, multipath
components are represented by diagonals with a fixed amplitude
and a finite extent in the delay domain and in receiver locations.
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Figure 3: Unbounded multipath components reconstruction of
the measurement from Figure 1. In this reconstruction, multipath
components are represented by diagonals with a fixed amplitude
that extend along the entire range of receiver locations. Note the
interference between multipath components over the later delays.

4.1. Full-Band Results. We compare two types of reconstruc-
tion of measured impulse responses, both based on the
multipath components extracted from them. The Bounded
Multipath Component Reconstruction, as the example in
Figure 2, is a reconstruction of a measurement matrix
based on multipath components that are present over finite
areas of space. The Unbounded Multipath Components
Reconstruction, as the example in Figure 3, is a recon-
struction of a measurement matrix that includes multipath
components present over the entire range of receiver loca-
tions. The unbounded reconstruction corresponds to the
classic viewpoint that attributes the spatial dynamics of the
channel to the space-dependent delay of the components
and to interference among multipath components that are
individually stable.



EURASIP Journal on Wireless Communications and Networking 5

0

0.2

0.4

0.6

0.8

1

Sq
u

ar
ed

er
ro

r

0 5 10 15 20 25 30

Terminal separation (m)

Unbounded reconstruction
Bounded reconstruction

Figure 4: Performance of channel reconstruction based on the
extracted multipath components. The exes show squared error
results of the unbounded multipath components reconstruction.
The stars show results of the bounded multipath components
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The amplitude of each multipath component in the
unbounded reconstruction was calculated from the ampli-
tude given by the extraction software tool using AUB =
AB(LB/LUB), where AB is the amplitude returned by the
extraction tool (see Section 3.2), LB is the spatial extent of
the diagonal, and LUB is the length of the entire receiver
range, usually one meter. This choice of amplitude is best
in the sense that the square error between the two types of
reconstruction is minimal. v

The figure of merit we use to appreciate the two types
of reconstruction is the normalized squared error (SE), that
is, the squared difference between a measurement and its
reconstruction, summed over receiver locations and delay
values and normalized by the energy (sum of squares) of the
measured data:

SE=
∑

Rx Positions
∑

delay

(
meas′dresponses− reconstruction

)2

∑
RxPositions

∑
delay

(
meas′dresponses

)2 .

(1)

Figure 4 presents the squared error of the entire set of
measurements with the two types of reconstructions. The
unbounded reconstruction is inferior to the bounded one in
terms of squared error, and the difference averages (over the
set of measurements) to 0.25.

The results are based on the multipath components
accounting for 80% of the energy of the bounded recon-
struction. We calculated the per-measurement mean and
standard deviation of the length of these components, and
the results, averaged over the entire set of measurements,
show an average path visibility of 16.0 cm, with a standard
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Figure 5: A histogram of the length of extracted MPCs that account
for 80% of the channel response energy, shown with the best
fit log-normal distribution, that has mean 13.6 cm and standard
deviation 7.1 cm. The visibility length statistics (mean and standard
deviation) over all extracted MPCs are different from the statistics
averaged over individual measurements.

deviation of 26.5 cm. The average number of significant
multipath components visible from each receiver location
is 42.5 (We corrected the apparent number of multipath
components to account for the over-sampling in the data, by
multiplying the number of diagonals by 28 psec × 15.2 GHz.
28 psec is the sampling period and 15.2 GHz is the 3 dB
bandwidth of the data.)

A histogram of the visibility length of the MPC extracted
from all the measurements that account for 80% of the
channel energy is shown in Figure 5. The log-normal
distribution is a very good fit, with mean 13.6 cm and
standard deviation 7.1 cm.

4.2. Subband Results:Carrier Dependence. The investigation
described in this section focuses on the apparent size of
the visibility areas of the multipath components, where the
measured responses were filtered to different 1 GHz-wide
bands. We show that the visibility areas tend to shrink as the
carrier frequency increases.

The measured channel responses were filtered using a
raised cosine window with 3 dBbandwidth of 1 GHz and β =
0.1. The responses measured per each receiver location along
the rail were then converted to the time (delay) domain, to
generate a two-dimensional representation of the channel
as shown in the example in Figure 6. Figure 7 shows the
measurement from Figure 6 in a different band.

An example of the average diagonal length against
subband center frequency is shown in Figure 8, along with
the standard deviation. This example is typical in the sense
that it shows a reduction of the mean and standard deviation
of the size of the visibility areas of the multipath components
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Figure 6: An example of measured impulse responses in the
5-6 GHz band. This example is non-line-of-sight, with terminal
separation of about 6.8 meters the terminals were located at
different floors of the same building. The figure shows passband
impulse responses measured over a one-meter rail with receiver
positions separated by 2 mm. The vertical axis represents positions
along the rail, and the receiver was located closer to the transmitter
at the top part of the picture than at its bottom. The carrier
frequency (5.5 GHz in this case) was not removed in order to not
lose the angle of arrival information, so the impulse response is real
and shows a strong 5.5 GHz oscillation.
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Figure 7: An example of measured impulse responses in the 2-
3 GHz band, higher bands of the same measurement, is shown
in Figure 6. Note that the diagonal features (that correspond to
multipath components) are longer in this band than in the higher
band. See comments below Figure 6.

with carrier frequency increase. The reduction of both
parameters is clearer in the lower bands (2–7 GHz) over the
entire set of measurements; the behavior of higher bands is
less consistent.

In order to appreciate the behavior of the mean diagonal
length and the standard deviation against sub-band carrier
frequency, we fitted them to a linear trend. Figure 8 shows
one example of a linear fit of the average length of the
diagonals. All of the 50 measurements show a negative slope
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Figure 8: The average spatial length of multipath components
accounting for 80% of the measured response energy from a single
typical measurement and the standard deviation, plotted (a) against
sub-band carrier frequency. The signal-to-noise ratio (SNR) is
indicated (b).

of the average diagonal length and a negative slope of the
standard deviation of diagonal lengths. These negative slopes
indicate the reduction in the size of the visibility areas as the
carrier frequency increases. More negative (steeper) slopes,
which indicate a fast decrease of the size of the visibility
areas, are apparent for some measurements with terminal
separations below 10 meters and SNR above 40 dB.

5. Summary and Significance

This paper offers analysis of measured wideband radio
channel responses, with an emphasis on the visibility of the
multipath components across space. The analysis of full-
band (2–17.2 GHz) measurements extracted the significant
multipath components from each measurement using a
simple software tool designed for this purpose and compared
two simplified representations of the channel to the original
measurements. The simplified measurement reconstructions
were performed in two ways: (1) by considering spatially
limited multipath components, i.e. paths that are seen by the
receiver over limited areas in space, and (2) by considering
multipath components that are seen over a fixed (one
meter) range of receiver positions. The second (spatially
unbounded) channel representation corresponds to the
accepted philosophy of channel models, that is, the implicit
assumption that multipath components are stable over a
range of receiver motion. The range of receiver positions
where the multipath structure is assumed to be stable is
sometimes termed “small-scale” without a quantitative char-
acterization. Our results indicate that multipath components
are stable over areas of space on the order of 20–30 cm.
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Line-of-sight components are more stable than nonline-
of-sight ones in fact, they are seen across the entire one-
meter range of our measurements. The spatial dynamics of
nonline-of-sight radio channels appear to be dominated by
the appearance and disappearance of multipath components.

The analysis of the responses with a bandwidth of 1 GHz
showed that the size of the areas of visibility of the multipath
components decreases as the carrier frequency is increased
in the range of 2 GHz–17 GHz. We did not see a significant
effect of the bandwidth on the visibility radius of multipath
components.

This work is an initial step towards a spatially dependent
channel model that will enable better design of indoor
MIMO system and systems with terminal mobility. It offers
a step in understanding the diffuse multipath component, a
concept recently under investigation, that has been measured
and characterized with lower bandwidths. Salmi et al. [43]
propose to model diffuse scattering, also named diffuse
multipath component (DMC), as a continuous distribution
of channel response across delays, using a multivariate
Gaussian variables with given correlation properties. The
diffuse components of the response are understood in this
model as essentially different from the specular components,
that have a delta-like effect on the channel response. The
spatiotemporal characteristics of the DMC are described in
[44], and the work in the angular spread of the DMC is
shown to be significantly correlated with the main arrivals.
And the work in [44] indicates that distinguishing the DMC
from “regular” arrivals is difficult.

The physical processes causing paths to appear stable
over small areas also need to be investigated the connection
between carrier frequency and the average size of the areas of
visibility is especially interesting in this respect. A possible
explanation follows the idea of “wideband Fresnel zones”
suggested in [2–5, 45], defined as the area of scattering at
each interaction that corresponds to the maximum carried
energy from the transmitter to the receiver. Each scattering
event in a path from the transmitter to the receiver is
accompanied by a Fresnel zone about its center. The radius of
this zone is directly related to an equivalent wavelength of the
impinging wave and to the transmitter-receiver separation,
and it decreases as the carrier frequency increases. The
effective wavelength is estimated [4] by the mean wavelength
included in the propagating waves

λc ∼ (λmin + λmax)
2

= c

fc − B2/4 fc
. (2)

Thus, a system with a high carrier frequency experiences
smaller effective scattering areas and as a result smaller areas
of visibility of each multipath component.
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[15] P. Kyösti, J. Meinilä et al., “WINNER II channel models
part I,” Tech. Rep. IST-4-027756 WINNER II D1.1.2 V1.2,
Information Society Technologies, September 2007.
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