
EURECOM

Department of X

2229, route des Crêtes

B.P. 193

06904 Sophia-Antipolis

FRANCE

Research Report RR-11-251

Time-dependent Priority Disciplines:
A Heavy Traffic Analysis

March 2th, 2011

Last update March 2th, 2011

Damiano Carra, Pietro Michiardi

Tel : (+33) 4 93 00 81 00

Fax : (+33) 4 93 00 82 00

Email : michiard@eurecom.fr

1EURECOM’s research is partially supported by its industrial members: BMW Group, Cisco,

Monaco Telecom, Orange, SAP, SFR, Sharp, STEricsson, Swisscom, Symantec, Thales.

Time-dependent Priority Disciplines:
A Heavy Traffic Analysis

Damiano Carra, Pietro Michiardi

Abstract

In this work, we revisit the theory underlying a range of time-dependent

priority disciplines, and extend it to include the requirements of a class of

applications that has not been studied in the past. Specifically, we target ap-

plications and services in which a scarce resource, or a fraction thereof, has

to be awarded to a large number of concurrent requests. We thus consider an

heavy traffic regime, and derive closed form expressions to evaluate the rela-

tive difference – in terms of average waiting times – of requests that belong

to different priority classes.

Our analysis allows to derive the expected waiting time of requests in sin-

gle server queueing systems, under the assumption of finite buffers for both

non-preemptive and preemptive cases. Additionally, we extend our results to

a distributed scenario composed of an interconnected set of a large number

of unreliable single server queueing systems.

We then describe a number of applications and illustrate how to use our

theoretic foundation to analyze and tune their performance. The accuracy of

our analysis is validated through a set of experiments that we performed in a

synthetic setting.

Index Terms

Dynamic Priority, Finite Buffer, Closed Systems, Fundamental Results

Contents

1 Introduction 1

2 Background and Related Work 2

2.1 Fixed Priority . 3

2.2 Time-Dependent Priority . 4

2.3 Related Work . 5

3 Time-dependent disciplines 5

3.1 Proportional Scheme . 6

3.1.1 Service without Preemption 6

3.1.2 Service with Preemption 7

3.2 Additive Scheme . 8

3.3 Distribution of the Waiting Times: Results From a Numerical Anal-

ysis . 9

4 Distributed Systems 11

5 Applications 14

5.1 File-sharing Applications . 14

5.2 Operating Systems Scheduling 16

6 Numerical Results 17

6.1 Methodology . 18

6.2 Settings . 19

6.3 Results . 20

7 Conclusion 21

A Proofs 23

A.1 Proof of Theorem 1 . 23

A.2 Proof of Theorem 2 . 25

A.3 Proof of Theorem 3 . 26

v

List of Figures

1 Examples of the evolution of the priority in case of proportional

and additive schemes. 5

2 PDF of the waiting times for different priority schemes. 10

3 Mean download time for different buffer sizes, scheduling policies

and priority groups. 14

4 Mean waiting time for different buffer sizes, proportional priority

scheme (no churn). 18

5 Mean waiting time for different buffer sizes, additive priority scheme

(no churn). 18

6 Mean download time for different buffer sizes, proportional prior-

ity scheme (with churn). 18

vi

1 Introduction

Service differentiation in the Internet has been a fertile area of research and

commercial activity in the past two decades (see for instance [1, 2] and the refer-

ences therein). The quest to design scalable resource management and admission

control mechanisms [3–6] to handle Internet traffic has contributed to a large num-

ber of approaches that have been extensively studied and debated [7–9]. Motivated

by the sensitivity of absolute differentiation schemes to small variations in the load

distribution of the traffic to differentiate, a more recent approach to service dif-

ferentiation has considered the concept of relative differentiation [10]. Network

traffic is divided into priority classes that are ordered such that class i is better (or

at least no worse) than class i − 1 in terms of delay or packet loss.

In this work, we revisit the theory underlying a range of priority disciplines

that achieve differentiation and extend it to include the requirements of a class of

applications that go beyond the transport of network traffic. Specifically, we target

applications and services in which a scarce resource, or a fraction thereof, has to

be awarded to a large number of concurrent requests. The ability to predict the

performance of applications deployed in scenarios ranging from desktop environ-

ments to large scale distributed systems, is of crucial importance, especially when

the resources that come into play are scarce and the demand to access them is high.

We thus consider an heavy traffic regime and derive closed form expressions to

evaluate the relative performance of customer requests.

In the following, we study a single server queuing system that services cus-

tomers from different priority classes. Our focus is on the analysis of queuing

disciplines in which the priority of a customer is dynamic and determined by the

amount of time it has waited in the queue. First, we analyze proportional differ-

entiation priority disciplines and we derive simple laws that describe the average

waiting time of customer requests in different priority queues. Armed with the re-

alization that the distribution of the waiting times is characterized by heavy tails

that penalize low priority requests, we study an additive differentiation priority

discipline that mitigates this effect, while conserving the desirable property of a

simple formulation to establish the relative performance of requests. Our analy-

sis allows to derive the expected waiting time of requests, under the assumption

of finite buffers for both non-preemptive and preemptive cases. Additionally, we

extend our results to a distributed scenario composed of an interconnected set of a

large number of unreliable single server queueing systems.

There are many practical situations in which the ability to control the prior-

ity of customers through delay-dependent disciplines is important. In this work

we survey peer-to-peer file-sharing and operating systems scheduling disciplines.

Our work helps in understanding how the additional degrees of freedom provided

by delay-dependent disciplines can be used to tune the performance of the differ-

ent groups of requests. In particular, we show where our analytic results can be

used to build relative differentiated services architectures that are predictable and

controllable [10].

1

In summary, the contributions of this work are the following:

• We provide a comprehensive theoretic foundation for the analysis of a range

of time-dependent priority disciplines that operate in an heavy traffic regime,

covering both non-preemptive and preemptive scheduling approaches. Addi-

tionally, we provide the first analytic tractation of an additive differentiation

scheme in heavy traffic, and show that it is not liable to the problem of mis-

treatment of low priority customers;

• We define models of both centralized and distributed applications and ser-

vices, and study their accuracy through experiments performed in a synthetic

environment. Our results indicate a very good match between analytical and

experimental results: as such, our tools allow system designers to focus on

the configuration of a handful set of parameters, and enable them to pre-

dict the relative performance achieved by customer requests that compete to

access the services of a variety of applications.

• We illustrate a broad range of applications of time-dependent priority disci-

plines, going beyond IP networking, including P2P file-sharing applications

and OS scheduling. We show how our analysis can be helpful in understand-

ing how to operate and tune the priority mechanisms implemented in such

applications.

The remainder of the paper is organized as follows. In Sec. 2 we overview

the literature of time-based priority disciplines and position our work with respect

to prior art in Internet traffic differentiation. Sec. 3 and 4 constitute the body of

our work, where we detail our theoretic framework to study proportional and addi-

tive service differentiation schemes, both in a centralized and distributed settings.

Sec. 5 is dedicated to the applications we cover in this work, which are studied

through the lenses of our analytical framework. We validate the accuracy of our

tools in Sec. 6 and conclude in Sec. 7.

2 Background and Related Work

We consider a M/M/1/k + 1 queue, where jobs, which hereinafter we call

requests, arrive according to a Poisson process, and their service times are expo-

nentially distributed. In this work we examine a system composed of a single server

queue and a buffer with k positions. The single server queue allows P different pri-

ority classes (or groups): requests for group i (i = 1, 2, . . . , P) arrive according to

independent Poisson processes with rate piλ, where λ is the total arrival rate and

pi is the probability that the requests belong to group i, with
∑

i pi = 1.

2

The request processing time is exponentially distributed with parameter µi. We

define:

1

µ
=

P
∑

i=1

pi

µi
, ρi =

piλ

µi
, ρ =

P
∑

i=1

ρi =
λ

µ

and W0 =

P
∑

i=1

ρi

µi
,

where W0 is the expected completion time for the request (job) in service.

Differently from the usual convention, we assume that a request i has priority

over another request j if its priority value is bigger than the priority value of request

j.

We consider three different types of queues: (i) infinite buffer (k → ∞), (ii)

finite buffer (k < ∞) and (iii) closed systems. In closed systems, the number of

requests inside the system is constant (equal to k+1), and a new request is accepted

only when the request in service leaves the system. In this case the request arrival

rate equals the service rate, i.e., λ = µ.

We focus on applications that operate in a heavy traffic regime, i.e., the offered

load approaches the service rate. In case of infinite buffer, the heavy traffic regime

translates into λ → µ. In case of finite buffer, we consider as offered load the

traffic that is accepted by the system. It is clear that the finite buffer case under

heavy traffic tends to the closed system case, which is by definition in the heavy

traffic regime.

Finally, we assume that requests do not leave the system until they are served.

The literature is rich of studies that consider M/M/1 or M/G/1 single server

queues that execute a variety of priority queueing disciplines [11–14]. In the re-

mainder of this Section we will briefly review such theoretic results. However,

prior works mainly focus on systems with an infinite buffer size. Instead, in this

work we are interested in studying applications under the more realistic assump-

tion which accounts for a limited buffer and we develop the appropriate tools to

analyze such applications in Section 3.

2.1 Fixed Priority

The simplest priority discipline assumes that the priority of each group of re-

quests is fixed and defined a-priori. Starting from [11], this type of system has been

extensively treated in the literature. The mean waiting time of a class p request in

the queue, denoted by Wp, when the buffer is infinite, can be expressed as [11]:

Wp =
W0

(

1 −
∑P

i=p ρi

)(

1 −
∑P

i=p+1 ρi

) (1)

A closer look at Eq. 1 indicates the main drawback of such a simple priority dis-

cipline. When the system operates in heavy traffic and the buffer is infinite, the

requests that belong to the group with the lowest priority (i.e., p = 1) may suffer

3

from starvation, that results in an infinite waiting time for such customers. In fact,

we have that W1 = W0/(1 − ρ)(1 − ρ + ρ1). When ρ → 1, then we have that

W1 → ∞.

Instead, all the other requests that belong to higher priority groups (1 < p ≤ P)

are characterized by a finite waiting time.

The fixed priority discipline has another limitation: for a generic group p the

mean waiting time of requests that belong to this group depends on the traffic

composition, i.e. the values of ρi, ∀i ∈ P . As such, the mean waiting time cannot

be tuned to provide a differentiated service to priority groups, which is a desirable

property required for a wide range of applications.

The limitations of the simple fixed priority discipline have been overcome by

the time-dependent priority disciplines. With such disciplines, either all or none

groups have an infinite average waiting time. Moreover, the disciplines come with a

set of “knobs” which allow to differentiate the average waiting time among groups.

2.2 Time-Dependent Priority

When a time-dependent discipline is used in a single server queueing system,

the priority of a requests depends both (i) on the specific group it belongs to and (ii)

on the amount of time spent by such requests in the system. As such, these schemes

have the desirable property that request starvation is not present (if ρ < 1): indeed,

as the time progresses, the priority of a request grows, and it is eventually served

by the system. The single server queue executes a simple scheduling process that

selects the next request to be served based solely on its instantaneous priority.

Let Tarrival be the arrival time of a request and let Tleave be the time when the

request leaves the system. We consider a class of priority schemes in which the

priority qi(t) at time t assigned to a request belonging to group i is given by the

following general expression:

qi(t) = bi(t − Tarrival)
r − ai, (2)

with Tarrival ≤ t ≤ Tleave. Each priority group can be identified by the coefficients

bi and ai, with i = 1, 2, . . . , P , 0 < b1 ≤ b2 ≤ . . . ≤ bP and a1 ≥ a2 ≥ . . . ≥
aP ≥ 0.

In Figure 1 we show two different cases. On the left hand side we show the case

where ai = 0 and r > 1: the priority over time of the requests follows a convex

function. In case of r < 1 we have a similar behaviour, with concave functions.

We define this type of priority as proportional scheme.

On the right hand side we show the case where bi = b, ∀i ∈ P and r = 1. The

difference in terms of priority between two requests remains constant over time.

We define this type of priority as additive scheme.

In the next sections we show the results for system in heavy traffic for the

proportional and additive schemes, with finite buffers, and for services with or

without preemption.

4

T1 T2

1
b(t − T) − a

1

2
b(t − T) − a

2

P
ri

o
ri

ty

Additive Scheme

timeT1

b (t − T)
2 2

rb (t − T)
1 1

r

T2

P
ri

o
ri

ty

Proportional Scheme

time

Figure 1: Examples of the evolution of the priority in case of proportional and

additive schemes.

2.3 Related Work

Time-dependent priority disciplines have been studied originally in [12] for the

linear case, and in [15] [13] and [14] for more general cases. None of such works

consider the heavy traffic case, a finite buffer and closed systems, as we do in this

work. Only [16] considered the heavy traffic regime for the linear time-dependent

priority scheme (i.e., r = 1) and infinite buffer, so our results for the proportional

scheme represent a generalization of the results in [16].

The heavy traffic regime for the linear time-dependent priority (i.e., r = 1), and

some of the properties related to the proportional scheme, has been also studied

within the Proportional Delay Differentiation (PDD) framework [10, 17]. In [10]

the authors consider the specific case with µi = µ, ∀i ∈ P , while [17] derives

the conditions under which the proportional delay differentiation is feasible. As

previously pointed out, we consider the general case with any value of r > 0 and

different µi.

Also the authors in [10] study the properties of the additive scheme under heavy

traffic, in the specific case with bi = b = 1: however, they do so using a simulation-

based approach. Instead, we consider the general additive scheme with bi = b and

we provide analytical results of its properties in heavy traffic.

Finally, all the above works consider systems and applications with no preemp-

tion, i.e., a single server queue in which, once a request has been scheduled, it will

be served before any other request will be considered for scheduling. In contrast,

we provide results also for the pre-emptive work conserving case.

3 Time-dependent disciplines

In this Section we analyze in detail a range of time-dependent priority disci-

plines under the single server queue model. Building upon the formulation de-

scribed in Section 2, we consider both a service with and without preemption and

for a generic buffer size k.

In summary, our analysis indicates that it is possible to derive a simple expres-

sion to characterize the average waiting time for requests that arrive at the single

5

server queue. Our finding shows that there exists invariants that depend on the

coefficients of the scheme used (proportional or additive), but not on the traffic

composition.

As such, our results indicate a simple method to tune the relative performance

of each priority class, which consists in setting appropriately the coefficients of

each priority group.

Furthermore, we show that the proportional priority discipline for service dif-

ferentiation, that has been widely explored in the context of IP networking [10,17],

is very sensitive to the absolute values of the coefficients attributed to each prior-

ity class. The distribution of the request waiting times exhibits heavy tails which

imply that requests from low priority groups may require a very long time before

they are served. These effects disappears in case of the additive scheme, which is

also less sensitive to the parameters of each priority group.

In the following, we derive the mean waiting time for customer requests for the

two types of priority disciplines we hinted above: the proportional and the additive

schemes.

3.1 Proportional Scheme

We consider the time-dependent priority discipline defined in Eq. 2 and assume

ai = 0, ∀i ∈ P .

3.1.1 Service without Preemption

As described in Sec. 2, the scheduler of the single server queue selects the

next request to serve by choosing the request with the highest instantaneous prior-

ity qi(t). Once such request has been scheduled, if the server operates in a non-

preemptive way, the next request will be scheduled only once the current request

has been fully served.

The following result holds for systems with both an infinite and a finite buffer,

and for closed systems.

Theorem 1. Given any two priority groups i and j, the mean waiting times Wi

and Wj , in case of non pre-emptive service, in the heavy traffic regime, satisfies the

following condition:

Wi

Wj
→

(

bj

bi

)1/r

(3)

Proof. See Appendix A.1.

In other words, Theorem 1 indicates that, independently from the traffic com-

position (i.e., the values of ρi), a time-dependent priority discipline provides a

proportional differentiated service that depends on r and the coefficients bi and bj .

While this results has been already found in case of r = 1 and infinite buffer, The-

orem 1 states that the result holds also in case of finite buffer and closed system,

and for any r.

6

In the following Corollary, we show a simple way to compute the absolute

values of the waiting times.

Corollary 1. Under the same hypothesis of Theorem 1, the mean waiting times can

be computed as:

Wi =































1

bi

ρ

1 − ρ
W0

1
∑P

i=1
ρi

bi
1/r

infinite buffer

1

bi

k

µ

1
∑P

i=1
pi

bi
1/r

closed system (buffer = k)

(4)

Proof. In case of infinite buffer, by using Kleinrock’s conservation law, we have

a relation between
∑

ρiWi and W0, which can be used to derive the result. For

the closed system, the number of requests in the queue is constant (k) and equal to

the sum of requests belonging to each group, which can be derived from Wi using

Little’s theorem.

Note that, in case of infinite buffer, under heavy traffic regime Wi → ∞; nev-

ertheless, Theorem 1 still holds, i.e., the ratio of the waiting times of two different

classes is constant. Corollary 1 is interesting because it shows the relation between

the mean waiting times and the parameters of the system (k, µ, and bi) that can

be tuned by the system administrator. Actually, the absolute values of the wait-

ing times (in case of infinite buffer) can be computed using the formulas provided

in [12] [15]: nevertheless such formulas imply recursive computations and do not

show the direct influence of the system parameters on the waiting times.

As previously said, in case of finite buffer and heavy traffic regime, the system

tends to behave as the closed system, therefore the results of Corollary 1 can be

used also for approximating the finite buffer case.

3.1.2 Service with Preemption

We now consider a single server queueing system in which the service to any

request can be interrupted by a new request that, as time progresses, has gained a

higher priority than the currently scheduled one. The interrupted request can be

resumed if its priority is the highest one. The preemptive work conserving case

for a system operating in the heavy traffic regime has been rarely considered in the

literature: however, as we will show in Sec. 5, there exist an important class of

applications that operate in the preemptive mode.

In the specific case of proportional scheme with pre-emption, we add a con-

straint, i.e., µi = µ, ∀i. We note that the restrictive assumption of a unique service

rate µ reflects a system in which the requests arriving from different priority classes

concern the same set of “objects”, and thus the service rate is the same, indepen-

dently of class i.

7

Let Ti be the mean time spent in the single server queuing system by a request

belonging to priority class i, i.e., Ti = E[Tleave − Tarrival]. Clearly, we have that

Ti = Wi + 1/µi, where Wi is the mean waiting time for a request in the class i.
The following result holds for systems with both an infinite and a finite buffer,

and for closed systems (in all cases with µi = µ, ∀i).

Theorem 2. Given any two priority groups i and j, the mean times spent in the sys-
tem Ti and Tj , in case of pre-emptive service, in the heavy traffic regime, satisfies

the following condition:

Ti

Tj
→

(

bj

bi

)1/r

(5)

Proof. See Appendix A.2.

To the best of our knowledge, this results has been never found before, not even

in the infinite buffer case. The following Corollary complements Theorem 2, and

indicates a simple way to compute the absolute values of Ti, ∀i.

Corollary 2. Under the same hypothesis of Theorem 2, the mean time spent in the

system can be computed as:

Ti =































1

bi

1

1 − ρ

1

µ
∑P

i=1
pi

bi
1/r

infinite buffer

1

bi

k + 1

µ

1
∑P

i=1
pi

bi
1/r

closed system (buffer = k)

(6)

Proof. The mean number of requests inside the system is equal to the sum of re-

quests belonging to each group, which can be derived using Little’s theorem: for

the infinite case, we use the result from the M/M/1 queue with FCFS discipline,

while for the closed system case the number of requests inside the system is con-

stant and equal to k + 1.

For the finite buffer case, considerations similar to the ones provided in the non

pre-emptive case hold.

3.2 Additive Scheme

We now study an alternative time-dependent priority discipline that can be ob-

tained from Eq. 2 when we set the coefficients bi = b, ∀i ∈ P and r = 1.

For the additive scheme, we are able to find general results which is valid for

both the non pre-emptive and the pre-emptive cases. The result holds for systems

with both an infinite and a finite buffer, and for closed systems.

8

Theorem 3. Given any two priority groups i and j, the mean waiting times Wi

and Wj , for both the non pre-emptive and the pre-emptive cases, in the heavy

traffic regime, satisfies the following condition:

(Wi − Wj) →
ai − aj

b
(7)

Proof. See Appendix A.3.

As for the proportional case, Theorem 3 provides a relation between the mean

waiting times independently from the traffic composition (i.e., the values of ρi).

The absolute values of Wi, ∀i, can be easily computed using the following Corol-

lary.

Corollary 3. Under the same hypothesis of Theorem 3, the mean waiting times can

be computed as:

Wi =



































ai

b
+

1

1 − ρ
W0 −

1

bρ

P
∑

i=1

ρiai infinite buffer

ai

b
+

k

µ
−

1

b

P
∑

i=1

piai closed system

(8)

Proof. The expressions can be obtained following through with almost identical

arguments used in Corollary 1.

As for the proportional case, with Corollary 3 we can easily evaluate the impact

of the system parameters on the waiting times.

3.3 Distribution of the Waiting Times: Results From a Numerical

Analysis

The theoretical results provided in the previous sections consider the mean

waiting time. In this section we are interested in understanding some basic prop-

erties of the complete probability distributions of the request waiting times. Since

it is hard to derive such distributions analytically, we take a numerical approach

which is similar to that developed in [18]. Here we focus on the non-preemptive

case only, assume a finite buffer of size k = 5000 and a heavy traffic regime, and

set µi = µ = 1s−1.

We compare the distribution obtained by three service disciplines: (i) the ba-

sic First Come First Serve (FCFS) discipline, (ii) the time-dependent proportional

scheme (Sec. 3.1) and (iii) the time-dependent additive scheme (Sec. 3.2).

Specifically, for the proportional scheme we generate a large set of requests

whose priority class is uniformly distributed in the interval bi ∈ {1, 50}, with

r = 1 and ai = 0∀i ∈ P . Similarly, we evaluate the additive scheme for a set

9

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
3

10
4

10
5

P
D

F

time

proportional
additive

FCFS

Figure 2: PDF of the waiting times for different priority schemes.

of requests whose priority class is identified by coefficients chosen uniformly at

random in the set ai ∈ {1, 2500}, with r = 1 and bi = 1∀i ∈ P . The results of

our experiments consist in the empirical probability density function (PDF) of the

request waiting times in the system, and are depicted in Figure 2.

Our results indicate that, for the FCFS scheme, the PDF of the waiting times

exhibit a peak around the mean waiting time, as expected. Figure 2 illustrates

that, for the proportional case, the PDF exhibits heavy tails, a result also observed

in [19]. We performed another experiment with bi ∈ {1, 10} to study the sensitivity

of the proportional scheme to the range in which the coefficient bi can take value:

also in this case, the results (that we do not report here for the sake of clarity) show

a PDF with heavy tails.

In [19], the authors consider also the additive scheme: they show that the addi-

tive scheme exhibits heavy tails if the coefficients ai are selected from a probability

distribution that has heavy tails. This means that, if the coefficients are bounded,

i.e., ai < amax, ∀i ∈ P , the waiting time distribution does not have heavy tails,

as our numerical results confirm (see Fig. 2). We note that the PDF is centered

around the mean waiting time of the FCFS scheme, which is due to the uniformity

of the distribution of the coefficients ai, and has a support that is correlated to the

difference between the maximum and minimum values of the coefficients ai.

In summary, proportional and additive differentiation represent a powerful way

to control the resources dedicated to the different priority classes, and thus their

relative performance in terms of waiting times. However, a system based on the

proportional scheme exhibit heavy tails in the distribution of the waiting times. In-

stead, the additive scheme, independently from the coefficients ai, does not exhibit

heavy tails.

In Section 5 we study applications that adopt the proportional and the additive

scheme, and discuss the rationale of the particular choice of the different time-

dependent priority disciplines.

10

4 Distributed Systems

In this Section we extend the single server queue model that we discussed in

Sec. 2 and describe a distributed system involving a number of homogeneous (and

possibly unreliable) entities, each modeled as a single server queue. In our model,

each entity also acts as a customer that issues service requests to the other servers in

the system. In summary, here we study the impact of system dynamics and show

that variations of the system size, due to entities leaving and joining the system,

can introduce a distortion that affect the relative performance differentiation of the

priority classes.

The extended model outlined above, clearly targets a class of applications

known as peer-to-peer (P2P) applications. In the following, our distributed system

materializes as a P2P file-sharing application in which nodes implement a time-

dependent priority discipline to award upload bandwidth resources, i.e., nodes ap-

ply priority scheduling to the requests they receive for uploading the content they

store. In Sec. 5 we study an instance of our model and delve into the details of

the eMule [20] file-sharing application. There we show that eMule uses a propor-

tional scheme for service differentiation, and we discuss the particular choice of

the coefficients that govern its priority discipline.

Usually each server holds objects that may receive a large number of requests,

while the available bandwidth resources are limited. Consequently, such applica-

tions work in the heavy traffic regime. Note that the model presented here is not

limited to file-sharing applications, and it can be easily extended, for example, to

distributed storage applications.

We now describe in detail our distributed system model and focus in particular

on the unreliability of the servers in the system. In practice, our model accounts

for what is generally known as node churn, i.e. the dynamic arrival and departure

of nodes. Our goal is to study the impact of churn on the effective service rate

and on the priority discipline. We suppose that when a node fails, the single server

queue maintained by that node is flushed. As soon as the node come back online,

the queue is initialized into an empty queue.

We now make a number of assumptions that can help in studying the effects of

node churn. Each node in the system tries to download a particular content (that

is, the node behaves as a customer) by sending a request to a single server node

at a time. The client node remains online until the request has been fulfilled. If

the server goes offline before the request has been served, the client node issues a

request to another server uniformly picked at random from the available servers in

the system that hold the desired content.

Let Ts be the session time1 of the server nodes: Ts is a random variable with

cumulative distribution function (CDF), that we label FTs(t). We assume FTs(t)

1We talk about session time of a node i implicitly considering the session time as seen by another

generic node j that contacts node i at a random instant. In the literature, this is usually referred to

as the residual session time. The residual session time can be derived from the session time using

Smith’s formula [21].

11

to be known – see for instance the session time distribution in [22].

The time spent in the system by a request is also a random variable, but in

this case, since we do not know its complete distribution, we consider its mean

value, labeled as Td, to be a deterministic value. Even if this represents a strong

approximation (since the distribution may have heavy tails, as shown in Sec. 3.3),

it is necessary for analytical tractability. In Sec. 6 we study the impact of this as-

sumption with numerical simulations. The value of Td is derived using the analysis

presented in Sec. 3.

Now, assume the client to randomly choose a first server to issue the request

to. The probability that the server session time is larger than the time necessary to

serve the client request writes as:

Pr[Ts > Td] = 1 − FTs(Td) = p.

In this case the total time a request spends in the system is exactly Td.

Instead, the probability that the server session time is smaller than the time

necessary to serve the client request is given by:

Pr[Ts < Td] = FTs(Td) = 1 − p

In this case, the client node is required to find another server in the system and

issue again a request to access the desired content. As such, the mean time that

elapses for a client node that waits to be served is given by the conditional mean

server session time, which writes as T
c
s = E[Ts|Ts < Td]. Hence, the total time

the client request spends in the system, that we label T tot
d , can be computed with

the following expression:

T tot
d = pTd + (1−p)p(Td+T

c
s) + (1−p)2p(Td+2T

c
s) + ...

=

∞
∑

i=0

(1 − p)ip(Td + iT
c
s)

= Td +
1 − p

p
T

c
s. (9)

The conditional mean server session time, T
c
s, can be computed as follows. Let

F c
Ts

(t) = Pr[Ts < t|Ts < Td] be the CDF of the conditional server session time.

Then, the following expression holds:

F c
Ts

(t) =







FTs(t)

FTs(Td)
t ≤ Td

1 t > Td

As a consequence, the conditional mean server session time writes as:

T
c
s = E[Ts|Ts < Td] =

∫ Td

0

(

1 −
FTs(t)

FTs(Td)

)

dt. (10)

12

Finally, we have that the total time a request spends in the system is given by the

following expression:

T tot
d = Td +

FTs(Td)

1 − FTs(Td)

∫ Td

0

(

1 −
FTs(t)

FTs(Td)

)

dt

=
1

1 − FTs(Td)

(

Td −

∫ Td

0
FTs(t) dt

)

. (11)

Now, assuming the CDF of the server session time to be known, it is possible to

compute T tot
d as a function of Td. For the specific case where the server session

time is exponentially distributed, it is possible to express T tot
d in a closed form,

using Eq. 11. Thus, we have that:

T tot
d = Ts

(

eTd/Ts − 1
)

. (12)

As an illustrative example, consider the following setting. Let’s assume server

nodes operate with four priority classes. Also, assume client requests to fall in each

priority group with probability pi = p = 1/4. Let the service rate be uniform and

equal to µi = µ = 1minutes−1 ,∀i ∈ P , and r = 1.

Since we focus on servers implementing the time-dependent priority discipline,

we now define the coefficients in case of proportional or additive scheme. For the

proportional scheme, let bi ∈ {1, 2, 4, 10}. For the additive scheme, let ai ∈
{1, 15, 30, 50} minutes, and bi = b = 1. In both cases, we consider the closed

system scenario, with λ = µ. Finally, let the CDF of the server session time to be

exponentially distributed with mean 500 minutes.

Now, for a given buffer size k, we can use Theorems 1 and 3 to compute the

values of the mean time Ti spent by client requests in the system (recall that Ti =
Wi + 1/µi), for each priority class i.

Fig. 3 illustrates, for different values k of the buffer size, the mean time spent

in the system for the lowest priority requests and for the highest priority requests.

For comparison, we also show the mean waiting time of such requests in case of

FCFS discipline.

The results for the particular numeric example we discuss here are useful to

illustrate the impact of node churn on the mean time spent in the system by client

requests. For example, when k = 250, the ratio between the download time of

the lowest and the highest priority groups is approximately 17, while the ratio of

the coefficients bi is 10. This indicates that node churn introduces a distortion

(+70% in this case) that would not be present in a stable system. This distortion is

present also in the FCFS case: since we are considering a closed system, where the

number of customers is constant and equal to k, the mean waiting time with FCFS

discipline is simply k/µ, i.e., linear with k. We note instead a super-linear growth,

with a 30% distortion. The additive scheme is not immune to the distortion due to

churn: however, the effects of churn (+32%) are closer to those experienced for

servers implementing the FCFS discipline.

13

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 50 100 150 200 250

W
ai

ti
n

g
 t

im
e

(h
o

u
rs

)

buffer size

Propor, Low Priority
Addit, Low Priority

FCFS
Addit, High Priority

Propor, High Priority

Figure 3: Mean download time for different buffer sizes, scheduling policies and

priority groups.

5 Applications

In this Section we overview two applications2 that use time-dependent priority

disciplines akin to the ones we analyzed in Sec. 3. Service differentiation has been

traditionally studied in the context of IP networking [10, 17]: our aim is to show

that our results may be used to analyze a variety of applications that operate in the

heavy traffic regime.

5.1 File-sharing Applications

In this Section we focus on the eMule file-sharing application [20,23] and show

the inner principles of the priority discipline implemented in each eMule peer.

The motivation for eMule peers to use a priority scheme for awarding upload

slots to remote peers stems from the fact that peers may behave selfishly and free-

ride on the system resources. As such, the priority scheme is effectively an incen-

tive mechanism that aims at fostering peer cooperation. However, unlike other

popular file-sharing applications such as BitTorrent [24], which implements an

instantaneous mechanism akin to the tit-for-tat scheme, in eMule time plays an

important role.

Before proceeding any further, we shall note that the eMule system operates in

the heavy traffic regime: the request rate to access content approaches or is larger

than the service rate a peer can offer3. In the following, we will gloss over several

2The heterogeneity of the applications we consider and the implementation details cannot be

studied in depth within the space constraints of this paper.
3We were not able to find in the literature a work to support this statement (which is based on

user experiences): for this reason we are doing a measurement campaign. The preliminary results

confirm the statement.

14

implementation details of the eMule application and focus only on the elements

that are related to the priority discipline we are studying.

Each peer in eMule records the volume of data exchanged (download and up-

load) with every other peer it has interacted with in the past, for a finite amount of

time. The combination of these two values is referred to as credits. Such credits

are used to assign the priority that remote peers will be granted for each content

request. Note that credits are content oblivious, i.e., they are accumulated by each

peer independently of the requested or served content. Furthermore, it should be

noted that credit associated to a peer are never stored on the peer itself. For exam-

ple, if peer A exchanged data with peer B and C , both peer B and C will maintain

a distinct value for the credits of peer A. Credits are “sealed” such that the credit

that peer B holds for peer A cannot be forwarded to peer C .

A peer in eMule implements a variant of the proportional priority discipline

with preemption described in Sec. 3. The time-dependent priority scheme is gov-

erned by an expression similar to that defined in Eq. 2. For a generic request j
received from a remote peer, its priority over time is computed as follows:

qj(t) =
(

t − Tarrival + T30Is(t)
)

· fp · Cj(t)

where Tarrival is the arrival time of the request, t ≥ Tarrival, T30 is a constant equal

to 30 minutes, Is(t) is the indicator function for the service – which takes the value

1 if the request is in service, and 0 otherwise – fp is a constant value associated to

each file, and Cj(t) is the priority coefficient for that specific request (derived from

the credits), which varies over time.

It is crucial to note here that pending requests may change priority class while

they are waiting to be served (or even while they are being served). This is an

important extension to the model presented in Sec. 3.1.2. Indeed, the coefficient

Cj(t) is computed as follows:

Cj(t) = max

(

1,min

(

2D(t)

U(t)
,
√

D(t) + 2, 10

))

where D(t) and U(t) is the total volume of data (expressed in MBytes) respectively

downloaded and uploaded at time t by the peer that issued the request j, as tracked

by the peer currently acting as a single server queue for that particular request j. In

eMule, the constant fp can take one of the following values: 0.2, 0.6, 0.7, 0.9, 1.8.

As a result of the “min” and “max” operations, the value of Cj(t) is lower bounded

to 1 and upper bounded to 10.

The entire distributed system that involves all peers interacting to exchange

some content can be studied through the lenses of our results. Besides the compli-

cated nature of the expression that defines the credit system, it is possible to analyze

the behavior of the proportional priority discipline using the analysis presented in

Sec. 3.1.2.

Let assume, for the sake of clarity, that the term T30Is(t) can be neglected and

the constant fp associated to each file is set to its default value (0.7), which will be

15

equal for all files. In this case, if the mean download time for a request with the

highest possible priority is TH , then the mean download time for a request for the

lowest possible priority will be TL = 10TH (since the ratio between the maximum

possible value and the minimum possible value of Cj(t) is 10).

In summary, in this Section we have delved into the details of the service dif-

ferentiation mechanism implemented in eMule. The time-dependent, proportional

priority scheme adopted by the system designers introduces the notion of the “his-

tory” of past interactions among peers to compute the coefficients that govern the

generic priority law we analyzed in this work.

Despite the additional complexity due to time-dependent tuning of such coef-

ficients, we showed that the mathematical tools we developed in this work can be

effectively used to understand the mean download times of requests belonging to

different classes of priority. We are currently performing some real-life measure-

ments to verify the precision of our model.

Additionally, our analysis hints at a possible drawback of the current propor-

tional scheme currently implemented in eMule: the distribution of the download

times for content requests may exhibit a heavy tail, as discussed in Sec. 3.3. Hence,

a possible direction to improve the performance of the eMule application would be

to adopt an additive scheme based on the lines of what we have presented in this

work.

5.2 Operating Systems Scheduling

The design of an Operating System (OS) scheduler is meant to allocate hard-

ware resources (e.g. CPU) appropriately to all applications. In this Section we

focus on the Linux OS scheduler, which has received great attention from the open

source community.

An OS scheduler (especially for a desktop environment) caters low-latency and

interactive applications. Furthermore, an OS scheduler strives at achieving fairness

in terms of access to hardware resources.

A recent scheduler, that has been deployed on all Linux OSs, is the O(1) sched-

uler, which is the focus of this section. O(1) has been designed with the ultimate

goal of allocating hardware resources to multi-threaded applications. In particu-

lar, the system operating point matches that of the heavy traffic scenario we have

described and studied in Sec. 2.

In the O(1) scheduler, each processor in the system maintains a queue of tasks

that requires to be served. Each queue keeps track of all runnable tasks using 2

arrays: an active array and an expired array. It is outside the scope of this Section

to detail the internals of the scheduler. Here we focus on the way active tasks are

scheduled, and refer the reader to [25] for an in depth analysis of O(1).
The scheduler selects a runnable task with the highest priority from the active

array to execute on the CPU for a pre-determined time slice; ties are broken with a

round robin approach. The O(1) scheduler follows a time-dependent priority dis-

cipline akin to the additive scheme described in Sec. 3. Since in O(1) lower values

16

of qi(t) imply higher priorities – whereas in this paper we consider the opposite

–, we invert the sign of the priority groups, i.e., instead of priorities ranging from

100 to 139, we let the priority range be {−139,−100}. With this notation, we can

express qi(t) as

qi(t)=min
(

(

b(t−Tarrival)−ai

)

,
(

−ai+10
)

,
(

−100
)

)

(13)

where b = 10, ai ∈ {101, 139}.

For the sake of clarity, we omit several technicalities that are used to combine

strict priority and time-dependent disciplines, and focus on the latter. Note also

that the dynamic value of the priority associated is bounded to -100. In Eq. 13 we

can see that part of the law is determined by the additive scheme we studied in

Sec. 3.2.

In summary, time-dependent priority scheduling has been applied to scheduling

tasks in recent OSs, and the ultimate goal of providing fairness in accessing CPU

resources has guided developers to what we have defined in this work as additive

schemes. To the best of our knowledge, no work has provided a model for the O(1)
scheduler. Our results can be used to analyze the relative performance of tasks, as

scheduled by the OS, when an additive priority scheme is used. Furthermore, our

findings can help in determining a more fine-grained tuning of the coefficients that

govern the priority scheme.

6 Numerical Results

The purpose of this Section is to validate the analysis we developed in Sec. 3

and 4. To do so, we use a custom, event-driven simulator4 that implements the

distributed model described in Sec. 4 and study a generic file-sharing application,

both with a static set of peers and with churn. Due to space constraints, here we

present results for the non-preemptive case, but similar findings can be obtained

when considering the preemptive case.

Our results are helpful to assess the accuracy of our model for predicting the

mean waiting time of the requests issued by the peers in the system, for a given

set of parameters that define the behavior of each peer, and for a simple choice of

the coefficients that govern the time-based priority disciplines we analyzed in this

work.

In the following, we first describe in detail the main traits of our simulator and

then move on to illustrate the good match between the experiments we performed

and the theoretic results obtained by applying Theorems 1 and 3, together with

Corollaries 1 and 3.

17

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500

M
ea

n
 w

ai
ti

n
g
 t

im
e

(u
n
it

s)

Buffer size

Group 1
Group 2
Group 3
Group 4

Figure 4: Mean waiting

time for different buffer

sizes, proportional prior-

ity scheme (no churn).

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500

M
ea

n
 w

ai
ti

n
g
 t

im
e

(u
n
it

s)

Buffer size

Group 1
Group 2
Group 3
Group 4

Figure 5: Mean waiting

time for different buffer

sizes, additive priority

scheme (no churn).

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500

M
ea

n
 d

o
w

n
lo

ad
 t

im
e

(u
n
it

s)

Buffer size

Group 1
Group 2
Group 3
Group 4

Figure 6: Mean download

time for different buffer

sizes, proportional prior-

ity scheme (with churn).

6.1 Methodology

The goal of our custom simulator is to be sufficiently general to describe any

distributed system in which each entity holds and requests a set of scarce resources

for which there is a high demand. In particular, our work can be easily described

when the system materializes as a generic P2P file-sharing application in which

each peer holds a set of files that other peers are eager to download.

Each peer in the system implements a time-dependent priority queue of fixed

size k, which we regard as a simulation parameter. Our results cover both the

proportional and the additive schemes described in Sec. 3. However, to simplify

our validation, we do not implement a complex method to set the coefficients that

govern the priority mechanisms we study, such as the one described in Sec. 5.1.

In the following we assume each node to belong to a pre-set priority group, each

characterized by a fixed coefficient, i.e. the bi and ai are time-invariant. In our

simulations, the probability for a peer (and hence its requests) to belong to a pri-

ority group and the coefficients of the priority scheme constitute an input of the

simulator.

We simulate a file-sharing application composed of N peers that are supported

by a centralized lookup service keeping track of the files that exist in the system

and their location. We assume there exist F different files, and that each files is

initially replicated C times in distinct peers of the system.

Upon joining the system, a peer selects uniformly at random a subset of size

S < F of the available files (excluding those files owned locally by the peer) and,

with the help of the lookup service, locates the whole set of remote peers currently

holding a copy of each of them. Then, the peer selects, for each file, a random

remote peer that holds a replica of that file and issues a request.

Upon receiving a request to download a file from a remote peer, the local peer

can be in any of the following two states. If the local peer is idle, then it simply

serves the remote peer. Otherwise, the local peer pushes the received request in its

4The code of our simulator is available for download at [26].

18

queue. When the service of the current request terminates (that is, a particular file

has been completely uploaded to a remote peer), the local peer updates the priority

of all current pending requests using the proportional or additive variant of Eq. 2,

and it selects the next request to serve that holds the highest priority value.

When a request has been served, the peer that has issued the request selects a

new file (not owned) and a peer that holds such file, and it sends the request to this

peer. In this way, there are at most S requests in the whole system for each peer.

We simulate the effects of peer churn as follows. Each peer remains online for

a randomly chosen session time, with a system-wide mean session time equals to

Ts. When a peer goes offline, it removes all the requests from its priority queue. As

a consequence, a peer whose request has been dropped due to churn, immediately

issues the request to another remote peer that may hold a copy of the desired file.

Note that this operation is performed upon receiving an update from the lookup

service on the peers currently holding a copy of the required file. Additionally, if

a peer is serving (or it is supposed to serve) a remote peer that has left, then the

service is terminated (or the request is dropped from the queue).

We note that by properly setting the parameters of the simulator that describe

the system size and resources (N ,F ,S) it is possible to ensure the heavy traffic

regime, which constitutes the operational setting we consider in this work.

6.2 Settings

We consider four different groups of priority. In the proportional scheme we

have r = 1 and bi = {1, 2, 4, 10}, while in the additive scheme we have b = 1
and ai = {5, 20, 50, 100}. We set the number of peers, the number of files and the

number of requests issued by a peer to N = 104, F = 40 and S = 10 respectively.

We study different buffer sizes k: for each buffer size, we perform 5 runs and

compute the confidence interval for a confidence level of 95%. The duration of

each run has been set to reach the steady state for a sufficiently long time [27].

Note that, due to the constraints on the maximum number of requests issued by

a peer, we can not control the arrival process and impose a specific arrival rate: we

can only observe it during the simulation.

The service rate is the same for all groups, and it is exponentially distributed

with rate 1 unit of time, so that the mean waiting time that we measure are ex-

pressed as a multiple of such unit.

In case of churn, we have considered two cases for the session times: expo-

nentially and Weibull distributed. We use the exponential distribution (with mean

500 units) due to the simplicity of the expression of Eq. 12. We use the Weibull

distribution as a representative session time distribution of real systems [22]. Since

in both cases we have obtained a good match between theoretic results and sim-

ulations, in the following we show the results only for the exponential case, to

facilitate reproducibility by the community.

19

6.3 Results

We now present the results of our experiments in terms of the mean waiting

times for requests issued by customers. In our application scenario, this clearly

translates into the mean download times achieved by peers, as imposed by the two

priority schemes we study in this work. As such, in the following we show the

mean waiting time per priority class, and use as a simulation parameter the buffer

size k.

In case of no churn (infinite session time), we consider a generic peer inside the

system and we record all the traffic through such a peer. Our goal here is to com-

pare experimental to theoretic results. In order to do so, we need to compute the

constants defined in Corollaries 1 and 3. Such constants are a function of both the

coefficients of the priority scheme and the traffic composition, i.e., the probability

that a request belongs to the different priority groups. As previously noted, we can

not impose this probability as input, but we can only observe it during the simula-

tion. As such, the following plots are computed “a-posteriori”, i.e., we measure the

effective request arrival rate for each group and use it to compute the constants de-

fined in Corollaries 1 and 3, and the theoretic mean waiting times using Theorems

1 and 3.

Figures 4 and 5 illustrate the mean waiting time for the requests of the four pri-

ority groups, for a variable buffer size k, for the proportional and additive schemes

respectively. In the figures, the continuous lines indicate the theoretic values of the

mean waiting times, while the dashed lines with error bars indicates experimental

results. The confidence intervals (indicated by the error bars) represents 1-2% of

the estimated value, thus it is difficult to see them on the figure.

For the proportional priority scheme, shown in Figure 4, we note a good match

between theoretic and numerical results. Given the constant φ defined in Corollary

1, one would expect that, as k varies, φ should grow linearly. We have a different

behaviour, since φ depends also on the traffic composition, which, we observed,

changes with different buffer sizes.

In case of the additive priority scheme, shown in Figure 5, we have also a good

match between theory and simulations. The traffic composition seems to be less

sensitive to the buffer size, thus the mean waiting times varies linearly with k.

We now turn to the case where peers arrive and leave the system. Since the

requests issued by peers pass through multiple server peers, we can not simply

observe a generic peer and the request it serves. For this reason, we have selected

four different peers (one for each priority group), imposing an infinite session time

for such peers, and we record all the requests issued by these peers.

When we compute the theoretic results using Eq. 12, we need to know the

mean session time of the peers and Td, the mean waiting time for a specific priority

group in case of no churn. The problem is that we can not compute the absolute

value of Td, since it depends on the traffic composition which is not known by the

peer issuing the request.

20

Our approach to solve this problem is to use the properties given by Theorems

1 and 3. For instance, consider the proportional case. If we know Ti (recall that

Ti = Wi + 1/µi, then we can compute Tj = bi
bj

(

Ti −
1
µi

)

+ 1
µj

. In case of churn,

we can measure T tot
i , the mean total download time. Inverting Eq. 12 we obtain Ti

from T tot
i ; from Ti we compute Tj and, using Eq. 12, we can obtain T tot

j , ∀j.

In Figure 6 we show the results for the proportional scheme. For each buffer

size k, we consider the highest priority group as the reference group (T tot
i), and

we compute the theoretic value of the download time T tot
j for all the other groups.

Also in this case, there is a good match between simulation results (dashed lines

with error bars) and theoretic (continuous lines).

In summary, our results indicate a very good match between experimental and

theoretic results: our work represent an effective tool that can help designing sys-

tems (both following the single server queue or the distributed models) that require

service differentiation among classes of requests. Moreover, in the particular case

of a distributed system in which the priority class assigned to a request depends on

the past behavior of the peer issuing the request (e.g. as discussed in Sec. 5.1), our

work provides users with the means to guide their behavior based on the desired

quality of service and their own objective function.

7 Conclusion

The ability to predict the performance of widespread applications, deployed in

scenarios ranging from desktop environments to large scale distributed systems, is

of crucial importance, especially when the resources that come into play are scarce

and the demand to access them is high.

In such context, it is often necessary to differentiate classes of customers by

assigning a priority to the requests they generate when trying to access resources.

Armed with the realization that, to obtain service differentiation, a strict priority

scheme is not sufficiently flexible, in this paper we set off to provide a theoretic

foundation for the analysis of a range of time-dependent priority disciplines.

Our work focused explicitly on the analysis of real systems that could accom-

modate a finite number of customer requests, while operating in an heavy traffic

regime. Our analysis showed that it is possible to derive simple laws that govern

the service differentiation achieved by a range of priority mechanisms. As such,

our tools allow system designers to focus on the configuration of a handful set of

parameters and enable them to predict the relative performance achieved by cus-

tomer requests that compete to access the services of a variety of applications.

Finally, we described a number of popular applications that adopt service dif-

ferentiation, including P2P file-sharing applications and OS scheduling: our results

may help in understanding how to operate and tune their priority mechanisms. As

a consequence, our future research agenda will include a performance evaluation,

complemented by a measurement study, of the described applications with the help

of the results described in this paper.

21

References

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An

architecture for differentiated services,” IETF RFC 2475, 1998.

[2] P. White, “Rsvp and integrated services in the internet: A tutorial,” IEEE

Communication Magazine, pp. 100–106, 1997.

[3] V. Jacobson, K. Nichols, and K. Poduri, “An expedited forwarding phb,” IETF

RFC 2598, 1999.

[4] D. Clark and W. Fang, “Explicit allocation of best effort packet delivery ser-

vice,” IEEE/ACM Trans. on Networking, vol. 6, pp. 362–373, 1998.

[5] A. Charny and J. Le Boudec, “Delay bounds in a network with aggregate

scheduling,” in QOFIS, 2000.

[6] S. Sahu, P. Nain, D. Towsley, C. Diot, and V. Firoiu, “On achievable service

differentiation with token bucket marking for TCP,” in ACM SIGMETRICS,

2000.

[7] I. Stoica and H. Zhang, “Providing guaranteed services without per flow man-

agement,” in ACM SIGCOMM, 1999.

[8] C. Cetinkaya and E. W. Knightly, “Egress admission control,” in IEEE IN-

FOCOM, 2000.

[9] A. Odlyzko, “Paris metro pricing: The minimalist differentiated services so-

lution,” in IEEE/IFIP Int. Workshop Quality of Service, 1999.

[10] C.Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional differentiated ser-

vices: Delay differentiation and packet scheduling,” IEEE/ACM Transactions

on Networking, vol. 10, pp. 12–26, 2002.

[11] A. Cobham, “Priority assignment in waiting line problems,” Operations Re-

search, vol. 2, pp. 70–76, 1954.

[12] L. Kleinrock, “A delay dependent queue discipline,” Naval Research Logis-

tics Quarterly, vol. 11, pp. 329–341, 1964.

[13] A. Netterman and I. Adiri, “A dynamic priority queue with general concave

priority functions,” Ops. Res., vol. 27, pp. 1088–1100, 1979.

[14] U. Bagchi and R. Sullivan, “Dynamic, non-preemptive priority queues with

general, linearly increasing priority function,” Operations Research, vol. 33,

pp. 1278–1298, 1985.

[15] L. Kleinrock and R. Finkelstein, “Time dependent priority queues,” Opera-

tions Research, vol. 15, pp. 104–116, 1967.

22

[16] R. Nelson, “Heavy traffic response times for a priority queue with linear pri-

orities,” Operations Research, vol. 38, pp. 560–563, 1990.

[17] M. Leung, J. Lui, and D. Yau, “Adaptive proportional delay differentiated

services: Characterization and performance evaluation,” IEEE/ACM Trans-

actions on Networking, vol. 9, pp. 801–817, 2001.

[18] A.-L. Barabási, “The origin of bursts and heavy tails in humans dynamics,”

Nature, vol. 435, pp. 207–211, 2005.

[19] P. Blanchard and M. Hongler, “Modeling human activity in the spirit of

barabasi’s queueing systems,” Phys. Review E, vol. 75, p. 026102, 2007.

[20] “The emule project,” http://www.emule-project.net/.

[21] N. Prabhu, Stochastic processes: basic theory and its applications. New

York: Macmillan, 1965.

[22] M. Steiner, T. En-Najjary, and E. Biersack, “Long term study of peer behavior

in the kad dht,” IEEE/ACM Transactions on Networking, vol. 17, pp. 1371–

1384, 2009.

[23] Y. Kulbak and D. Bickson, “The emule protocol specification,” Leibniz Cen-

ter TR-2005-03, School of Computer Science and Engineering, The Hebrew

University, Tech. Rep., 2005.

[24] B. Cohen, “Incentives build robustness in BitTorrent,” in First Workshop on

Economics of Peer-to-Peer Systems, 2003.

[25] C. Wong, I. Tan, R. Kumari, J. Lam, and W. Fun, “Fairness and interactive

performance of o(1) and cfs linux kernel schedulers,” in International Sym-

posium on Information Technology (ITSim2008), 2008.

[26] “PRISM: PRIority SiMulator,” http://www.megaupload.com/?d=

LZ2E0ZOG.

[27] J. Banks, J. Carson, B. Nelson, and D. Nicol, Discrete-Event System Simula-

tion. Prentice Hall, 2004.

A Proofs

A.1 Proof of Theorem 1

We consider a generic request coming from group p, and its mean waiting time,

Wp. We start from the P simultaneous equations used to derive the time spent in

the system defined in [12]. Let Ni be the mean number of requests of group i in the

queue, and let fip be the expected fraction of such requests which receive service

before the newly arrived request from group p.

23

Let Mi be the mean number of requests of group i which arrive during Wp, and

let gip be the expected fraction of such requests which receive service before the

generic request of group p we are considering.

Given these definitions, for a generic class p we have:

Wp = W0 +

P
∑

i=1

Nifip

µi
+

P
∑

i=1

Migip

µi
. (14)

We need to compute the different parameters. In case of Ni, we can use Little’s

theorem, obtaining Ni = E[λi]Ti, where E[λi] is the mean arrival rate for class i.
In case of Mi, when observing the system for Wp seconds, we see Mi = E[λi]Wp

arrivals. In both cases, Ni and Mi, the mean arrival rate for class i has different

meanings depending on the system characteristics: infinite buffer, finite buffer and

closed system. With infinite buffer, λ is the external arrival rate and E[λi] = piλ.

For the closed system, we have E[λi] = piµ. With finite buffer, for notational

simplicity, we use the symbol λ to denote the traffic that has entered in the system,

and E[λi] = piλ. Accordingly, in the following we will use the symbol ρi to

indicate the ratio between the mean arrival rate and the service rate of group i,
independently from the case we consider (infinite buffer, finite buffer or closed

system).

For the parameters fip and gip, we note that the derivation obtained in [12]

and [15] are based only on the Little theorem, which is valid for the finite buffer

and closed system cases5. Therefore, we can use those results and arrive at the

following expressions:

fip =

{

(bi/bp)
1/r i < p

1 i ≥ p

gip =

{

0 i ≤ p

1 − (bp/bi)
1/r i > p

Combining all the information, we obtain

Wp =

W0 +

p−1
∑

i=1

ρiWi

(

bi

bp

)1/r

+
P
∑

i=p

ρiWi

1 −

P
∑

i=p+1

ρi

(

1 −

(

bp

bi

)1/r
) . (15)

At this point, [12] invokes the Kleinrock’s conservation law to simplify the expres-

sion. Since we are considering not only the infinite buffer case, but also the finite

5This is true under the hypothesis used in this paper: in particular, for the finite buffer case, λ

represents the rate of arrival inside the system, and for the closed system case the service rate is

exponentially distributed.

24

buffer and the closed system cases, we analyze Eq. 15 without using the Klein-

rock’s conservation law.

For the lowest priority group (p = 1), noting that
∑P

i=2 ρi = ρ − ρ1, in the

heavy traffic case (ρ → 1), from Eq. 15 we obtain

W0 +

P
∑

i=1

ρiWi = b
1/r
1 W1

P
∑

i=1

ρi

b
1/r
i

. (16)

For the group with p = 2, Eq. 15 becomes, after some manipulation (always as-

suming ρ → 1),

W2 =

W0 +
P
∑

i=1

ρiWi − ρ1W1

(

1 −

(

b1

b2

)1/r
)

1 −

P
∑

i=3

ρi + b
1/r
2

P
∑

i=3

ρi

b
1/r
i

. (17)

The numerator of the fraction, with the help of Eq. 16, can be transformed in

b
1/r
1 W1

P
∑

i=1

ρi

b
1/r
i

− ρ1W1 + ρ1W1

(

b1

b2

)1/r

=

b
1/r
1 W1

(

ρ1

b
1/r
2

+
P
∑

i=2

ρi

b
1/r
i

)

.

The denominator of the fraction can be transformed in

ρ1 + ρ2 + b
1/r
2

P
∑

i=3

ρi

b
1/r
i

= b
1/r
2

(

ρ1

b
1/r
2

+

P
∑

i=2

ρi

b
1/r
i

)

.

Equation 17 then becomes

b
1/r
2 W2 = b

1/r
1 W1. (18)

With the help of Eqs. 18 and 16 we can compute W3; repeating this process for all

groups we obtain the desired result.

A.2 Proof of Theorem 2

In case of service with pre-emption, we consider the mean time spent in the

system by a generic request coming from group p, Tp. With similar arguments

used in Appendix A.1 we have the following relation:

Tp =
1

µp
+

P
∑

i=1

Nifip

µi
+

P
∑

i=1

Migip

µi
. (19)

25

It is easy to show that the values of Ni, Mi, fip and gip remain the same as in

Appendix A.1. Assuming a homogeneous system, with µi = µ,∀i ∈ P , we obtain:

Tp =

1

µ
+

p−1
∑

i=1

ρiTi

(

bi

bp

)1/r

+

P
∑

i=p

ρiTi

1 −
P
∑

i=p+1

ρi

(

1 −

(

bp

bi

)1/r
) . (20)

Comparing Eqs. 20 and 15 we notice that they have the same structure, with 1/µ
instead of W0, and Ti instead of Wi. Thus the proof follows exactly the same

scheme used in Appendix A.1.

A.3 Proof of Theorem 3

We consider first the non-preemptive case: the starting point remains Eq. 14,

and the value of Ni, Mi are the same, while fip and gip change.

Let’s assume that the newly arrived request (which we call the tagged request)

belongs to group p. As said before, fip represents the expected fraction of group

i requests (already in the queue at the arrival of the tagged request) which receive

service before the tagged request. Clearly, if i ≥ p, then fip = 1. If i < p, the

request arrived at time Yi seconds before the tagged one, with Wi > Yi such that

bYi − ai = −ap

will receive service before the tagged request. So, the group i request should arrive

at most Yi = (ai − ap)/b seconds before the tagged one. Let P [wi > t] be the

probability that the waiting time wi (whose mean is Wi) is greater than t, we obtain

fip =











∫

∞

(ai−ap)/b
λiP [wi > t] dt i < p

1 i ≥ p

The parameter gip represents the expected fraction of group i requests which arrive

during Wp and receive service before the tagged request. If i ≤ p, then gip = 0. If

i > p, the request will receive service if it arrives before wp, and Vi seconds after

the tagged request, with:

bVi − ap = −ai.

Therefore, gip = λi min
(

(ap − ai)/b,wp

)

. Following the same approach used

in [14] it is possible to show that

min
(

(ap − ai)/b,wp

)

=

∫ (ap−ai)/b

0
P [wp > t] dt.

26

We then obtain

gip =











0 i ≤ p

λi

∫ (ap−ai)/b

0
P [wp > t] dt i > p

Combining all the information, we obtain

Wp = W0 +

p−1
∑

i=1

ρi

∫

∞

(ai−ap)/b
P [wi > t] dt +

P
∑

i=p

ρiWi+

P
∑

i=p+1

ρi

∫ (ap−ai)/b

0
P [wp > t] dt.

(21)

Note that
∫

∞

x
P [wi > t] dt = Wi −

∫ x

0
P [wi > t] dt.

In case of heavy traffic, as done in [14], we can assume that wi > (ai − aj)/b,

for any j, and approximate the integrals by
∫ x
0 P [wi > t] dt ≈ x. Equation 21

becomes

Wp = W0 +

P
∑

i=1

ρiWi −

p−1
∑

i=1

ρi
ai − ap

b
+

P
∑

i=p+1

ρi
ap − ai

b
. (22)

Since ρ → 1, we obtain

Wp −
ap

b
= W0 +

P
∑

i=1

ρiWi +

P
∑

i=1

ρi
ai

b
= constant. (23)

In case of service with pre-emption, we consider the mean time spent in the system

by a generic request coming from group p, Tp. With similar arguments used for the

non pre-emptive case, we arrive at the following relation:

Tp =
1

µp
+

P
∑

i=1

ρiTi −

p−1
∑

i=1

ρi
ai − ap

b
+

P
∑

i=p+1

ρi
ap − ai

b
, (24)

which leads to:

Tp −
1

µp
−

ap

b
=

P
∑

i=1

ρiTi +

P
∑

i=1

ρi
ai

b
= constant. (25)

Recalling that Tp −
1
µp

= Wp, we have completed the proof.

27

