
A Component-Based Architecture For Software Communication Systems

Matthias Jung, Ernst W. Biersack
Institut Eurecom

2229 Route des Crˆetes, 06904 Sophia-Antipolis, France
E-Mail: fjung,erbig@eurecom.fr

In the Proceedings of IEEE ECBS 2000, Edinburgh, Schottland

Abstract

We examine the usefulness of component-based
software-engineering for the implementation of software
communication systems. We present an architecture that
allows to divide protocol software into fully de-coupled
components that can be plugged together using visual
builder tools to rapidly prototype flexible, robust, and
application-tailored communication protocols. We show
the feasibility of component-based protocol engineering
by demonstrating how a simple transport protocol was
realized. A discussion about advantages and impacts
concludes this paper.

1. Introduction

While a general purpose transport protocol such as TCP
has been for many years the protocol of choice for popular
applications liketelnet or ftp, first problems with the use of
TCP arose with the success of http [25]. For new applica-
tions like audio- and video-streaming, TCP is completely
unsuited. We belief that the popularity of the world wide
web and new technologies like Sun’s Jini (TM) [16] will
produce a number of distributed applications with very spe-
cialized and diversified communication needs that can not
be met in an optimum manner by a general purpose proto-
col like TCP.

Since protocol implementation from scratch is expensive
and error-prone, it is important to structure protocols in a
way that protocol elements can be re-used in different con-
texts and adapted to the special needs of an application. Ad-
ditionally, protocol implementations should be prepared for
change and hence easy to extend and maintain.

The recently emerged software-engineering paradigm
called Component-based development (CBD) – with Java
Beans (TM) and Active-X (TM) [24] as its most prominent

representatives – promises a new dimension of re-usability
and rapid prototyping of software compared to the simpler
object-oriented approach. CBD fosters the division of soft-
ware intocomponents that can be easily configured and
plugged together using visual builder tools or mark-up lan-
guages to create new applications. In this paper, we will
examine if and how component-based software engineering
can be useful to implement network protocols.

The rest of the paper is structured as follows. In Section
2, we outline the characteristics of component-based soft-
ware and present the Java-Beans component model [20].
In Section 3, we revise the functionality of a typical end-
to-end protocol and show how a protocol can be mapped
to independent components. In Section 4, we demonstrate
the feasibility and usefulness of component-based software-
engineering for protocol implementation based on a frame-
work prototype with Java Beans. Section 5 reviews related
work. A summary closes this paper.

2. Component-based Software Engineering

2.1. Definition

D’Souza et al. [14] define component-based develop-
ment (CBD) asan approach to software development in
which all artifacts – from executable code to interface spec-
ifications, architectures, and business models; and scaling
from complete applicationsand systems down to small parts
– can be built by assembling, adapting, and wiring together
existing components into a variety of configurations.

A component is usually characterized by the following
attributes:

� Components are largely de-coupled; they can be inde-
pendently developed and delivered

� Components have explicit and well-specified inter-
faces for the services they provide



� Components have explicit and well-specified inter-
faces for services it expects from other components

� Components can be customized and composed with
other Components without modification of code

CBD is often confused with object-oriented development
(OOD). This stems from the fact that OOD can be seen as
the most adapted implementation technique to CBD. In con-
trary to an object, a component provides a richer range of
intercommunication mechanisms, a higher degree of re-use
and adaptability, and usually a larger granularity. A compo-
nent may comprise one or more objects.

2.2. The Java-Beans Component-Model

Java-Beans [20] is the component model provided by
Sun. Java Beans is written in the Java programming
language [32] and hence profits from Java’s machine-
independence and portability.

A Java Bean (or shortly bean) is the Java representation
of a component, i.e. a Java class or object characterized by
three elements:

� A Property is a named attribute that may affect the be-
haviour or appearance of a bean (e.g. maximum packet
size, time out value).

� An Event stands for possibly asynchronous data that is
generated by a component (e.g. window size changed,
error appeared, etc.) It is fired by anevent source and
delivered to anevent listener.

� The Behaviour of a bean comprises all its methods
accessible for any other component (public methods).

Any tool that is used to configure and wire the compo-
nents together can identify properties, events, and behaviour
of a bean by analyzing its Java code. A Java class that in-
tends to be Java Beans compliant has to follow certain nam-
ing conventions, e.g. properties are identified by method
names that start withset or get. For more details see the
Java Beans specification [20].

2.3. Visual Builder Tools

Components can be configured and wired by either us-
ing mark-up languages or – the more popular approach –
programming environments that allow visual specification,
representation, and configuration of components. Such a
tool is commonly referred to asvisual builder tool. The
visual builder tool we are using for visual implementation
is Visual-Age for Java [11] by IBM.

To build a program visually, already existing beans are
arranged on a screen calledvisual builder window. Beans

are selected either by symbol or by name. The visual
builder then analyzes the selected bean to identify proper-
ties, events, and methods. Figure 1 shows how properties
can be modified in a window calledproperty editor.

Figure 1. Property configuration (screen-shot
using Visual Age)

To establish event-connections between beans, first an
event source bean must be selected. A window opens to
show all possible events raised by that bean. After selection
of the event, the target bean is selected. A window indicates
possible behaviour by showing all accessible methods (see
Figure 2). If the target method needs one or more parame-
ters (beside the event object itself), these must be attached
to the event connection. Possible parameters are properties
of any bean in the visual builder window. At run-time, every
time the source bean fires the specified event, the method of
the target bean is called with the right parameters.

After the design process is terminated, the builder tool
creates code based on the information specified. That
means, it writes the values of the properties, creates meth-
ods to assemble all specified beans, and creates methods to
represent the event connections.

3. An Architecture for Component-based Pro-
tocol Structuring

3.1. What does an End-to-End Protocol?

The following sequence of processing steps can be ob-
served in a typical end-to-end protocol. An application
gives data to a protocol instance, which adds header in-
formation to the data, performs computing operations, and
changes internal state. After processing the data is sent over



Fragmentation

EmissionOrder

Figure 2. Building event connections (screen-
shot using Visual Age)

the network to the communication partner, where the in-
coming message is parsed and de-multiplexed to the right
protocol instance. When the message is processed, the
header information is stripped, and the state information is
updated, the payload data is delivered to the attached appli-
cation. An incoming message may trigger an acknowledg-
ment to be sent, hence a protocol instance may also create
new messages. Message processing may include checksum-
ming/checksum verification, sequencing/re-ordering, en-
cryption/decryption, fragmentation, etc. State information
may include flow-control window-sizes, connection/session
state, buffers, information about sequence numbers, etc.
Other typical protocol functions are the provision of timers
and handling of time-outs.

We resume the identified main tasks of an end-to-end
protocol:

� Provision of interfaces for the application

� Processing of messages in output-direction - normally
adding header information

� Provision of interfaces to the network

� De-multiplexing of incoming messages

� Processing of messages in input-direction - normally
parsing and stripping header information

� Creation of new messages

3.2. How to map protocols to components?

Our main goal is flexibility referred to as the possibil-
ity to build a variety of protocols out of existing compo-
nents. Granularity and interface design are the most impor-
tant issues to achieve flexibility. Traditional layered archi-
tectures (as in TCP/IP) follow an extremely coarse-grained
approach. As a result, layers are software blocks of high
complexity, but can be connected in a simple way to other
layers. We will follow a fine-grained structure that allows
us to combine components in a flexible manner.

Components must be configurable and completely (not
only partially) re-usable in different contexts. Re-usability
requires that components are largely de-coupled from each
other, i.e. they can work without any knowledge about the
type of other components they interact with. An important
design goal is hence to provide autonomy to components
and minimize context based knowledge in the components.

In the following, we present an architecture and its de-
sign elements that map protocol functionality to de-coupled
components. We will then discuss how our approach pro-
vides flexibility and re-usability.

3.3. Design elements

An entry is a component that encapsulates message
header information (like sequence number, window-size,
data-payload). The information is represented in two
forms: as a byte array (the raw data as it is written to
the network) and as an object of an predefined type (to
allow comfortable access during processing). Every entry
type can be configured visible to indicate that it should be
transformed into bytes after processing. Entries need to be
configured visible when their data is written to the network
or given to the application. An entry type can be configured
initializable to indicate that it should be filled with data
before processing starts, i.e. with data from network or
application. Entries can be both, initializable and visible.
The general case for processing in output direction is that
all entries are visible and only the data payload initializable.
The general case for processing in input direction is that
all entries are initializable and only the data payload visible.

A worker is a component that encapsulates a functional
step during protocol processing (like checksumming, re-
ordering, fragmentation). To de-couple the format of a mes-
sage from its processing, a worker operates directly on en-
tries and never on the message itself. It hence does not per-
form message parsing and does not need to know where its
relevant information can be found.

A worker defines a standard method to accept the data
to be processed. In contrary to a classical layer, a worker
provides processing either in output- or in input-direction to



enhance re-usability. Besides the standard data processing
interface, a worker usually defines a set of properties,
events, and public methods to communicate with other
components.

An order is a component that defines a data path (or
thread) through a protocol. It associates a protocol graph
(i.e. an ordered set of workers) with its header data (i.e.
an ordered set of entries). It has three main responsibil-
ities. Firstly, the coordination of protocol processing by
parsing data, mapping bytes to entries, and calling workers
with their relevant entries. Secondly, the decoupling of mes-
sage creation from message processing by reifying the data
paths of a protocol. For instance, a worker whose task it is
to acknowledge incoming data messages, does not need to
know the data format of the message it creates nor how this
message will be processed. It just needs to signal an event,
which activates an (acknowledgement) order to perform the
necessary steps. The third responsibility is the provision of
interfaces to application and network.

Different order types can be distinguished based on
their interfaces to application and network. An order that
is initialized with application data is referred to as accep-
tance, an order initialized with network data is referred to
as reception. These two order types are parsing the data
by considering all their entries configured initializable.
An order that delivers processed data to the application is
referred to as delivery, an order that writes processed data
to the network is referred to as emission. These two order
types transform all entries configured visible into byte ar-
rays before delivery or emission. Orders that are created by
other orders and end up without delivering or emitting are
called internal orders. Emission and reception orders must
specify information for multiplexing and de-multiplexing,
respectively. Delivery and acceptance orders provide
application interfaces for reading and writing, respectively.
We name orders that are both acceptable and emittable
output orders, and orders that are both receptable and
deliverable input orders.

A protocol environment replaces the notion of a
protocol stack. Instead of comprising different layers, a
protocol environment integrates all end-to-end protocol
functionality a particular distributed application needs.
Technically, an environment is a component that provides
an interface for protocol implementors to register orders. It
initializes and deactivates orders and provides coordination
between the various components.

Anchor: One typical protocol task is message multi-
plexing (mapping messages from different sources to one
sink) and de-multiplexing (distributing different messages
from one source to different sinks). This may comprise pro-

tocol (de)-multiplexing (based on the protocol type), ses-
sion (de-)multiplexing (based on the protocol instance), and
functional (de)-multiplexing (based on the message/order
type). In layered architectures, (de)-multiplexing is present
in every layer and defines the data path of a message.

In order to avoid that the main units of re-use, i.e.
the worker and entry components, are not involved with
(de)-multiplexing, we concentrate it outside the protocol
environment in an extra design element called anchor. An
environment that wants to work on top of an anchor needs
to be registered. The anchor obtains all de-multiplexing
information of the various reception orders from the
registering environment and puts them into a hash-table.
Incoming messages can then be de-multiplexed directly to
the respective order. That is, protocol-, session-, and order
de-multiplexing are performed within a single hash-lookup
without compromising the re-usability of other compo-
nents.

Events are the key mechanism to hide implementa-
tion details of a component from another component it
interacts with and hence crucial to provide re-usability
and flexibility. In our architecture, we provide two types
of standard events. An order-creation event signals the
intention of creating a new order. A notification-event
signals the intention of notifying other components about
change of state. Both events are normally raised by worker
components and can be combined with any method and
parameterized with any property of any component. How-
ever, the sink of an order-creation event should be an order
type, which triggers processing of a new message (e.g. an
incoming data message triggers an acknowledgment). The
sink of a notification-event is normally another worker (e.g.
an incoming acknowledgment signals that retransmission
buffer space can be freed).

A SAP (Service Access Point) represents an access point
to the network (corresponding to the notion of a service ac-
cess point of the ISO/OSI layer model). The idea of this
component is to de-couple protocols from dependencies of
the underlying network. A SAP can implement Ethernet
access as well as a UDP socket. A AAI (application access
interface) represent an access point to the application. We
distinguish read AAIs (for delivery orders) and write AAIs
(for acceptance orders).

An overview of the whole architecture and the relations
between the design elements can be seen in Figure 3.

3.4. Summary

We shortly resume how our architecture provides re-
usability and flexibility and therefore perfectly fits the com-
ponent based design paradigm.



Acceptance-
Order

Emission-
Order

Reception-
Order

Delivery-
Order

Workers Entries

Application

Anchor

Order

Environment Environment

Environment

demultiplex

Figure 3. Architecture of the Component-
Based Communication System

� De-multiplexing (which requires the knowledge of
protocol specific information and where the relevant
information can be found within a packet) is removed
from the processing path of a message and concen-
trated in the network anchor. A worker hence does not
need to know which worker will next process a mes-
sage.

� Parsing of messages is removed from the processing
path of a message and put into orders. A worker hence
does not need to know where in the message the rele-
vant information can be found. It obtains the relevant
information as entries.

� The Java Beans event mechanism allows to combine
arbitrary components. A worker hence does not need
to know the type of the workers he interacts with.

� Input- and output processing are separated in different
workers. This enables to de-couple sender and receiver
functions.

� For each message, its data path is clearly defined by
orders. When a worker creates a new message, it does
not need to know anything about format and further
processing of this message.

� Typical operations on header fields can be easily
re-used, since they are encapsulated in entries (e.g.
sequence-numbers). Changing the header format (e.g.
changing from a 2-byte to a 4-byte sequence-number)

requires just a configuration of the respective prop-
erty and does not impact any other part of the protocol
code.

Java Beans allows components to be represented by
icons. In Figure 4 one can see the icons for the protocol
components described above.

OrderType(Internal)

AcceptanceType

EmissionType

OutputOrderType

ReceptionType

DeliveryType Worker

Data Entry

Environment

Figure 4. Java Beans Symbols for our Proto-
col Components

4. A Case-Study

To better understand our approach, we first describe a
simple example protocol that ensures uni-directional reli-
able transfer of data. We then show how this protocol is
structured following the concept exposed in the last section.
The protocol is instantiated and started after a connection
protocol established a connection between a sender appli-
cation and a remote receiver application. We skip the con-
nection protocol and concentrate at the data transfer phase.

4.1. An example protocol

After a connection is established, the sender application
writes a byte stream in form of segments (byte-arrays) to
its protocol interface. When the segment exceeds a pre-
defined length (maximum segment length), the segment is
fragmented in smaller segments. Each of these segments
gets a sequence number and a checksum, is copied to a
buffer, and written to the network. A timer is maintained
for the oldest segment in the retransmission buffer. If this
timer expires, the oldest segment in the queue is retransmit-
ted (selective retransmission strategy).

On the receiver side, the sequence number of the incom-
ing segment is used to selectively acknowledge this seg-
ment. There are no negative or accumulative acknowledge-
ments. If the data is no duplicate, it is delivered to the re-
ceiver application. Note that our protocol does not assure
in-order delivery.

On the sender side, incoming acknowledgements free the
buffer holding the segment with the sequence number spec-
ified in the acknowledgment and restart the transmission
timer (only if there is still data in the buffer to be acknowl-
edged).



4.2. Identification of orders in the example protocol

Error-Control-Order

Workers
Sequencing(SeqNr)
Checksumming(CheckSum)
Buffer(All)
Emission (All)

Entries
SeqNr
DataPayload
Checksum

Fragmentation-Order

Workers
Acceptance(DataPayload)
Fragmentation(DataPL)

Entries
DataPayload

Retransmission-Order

Workers
Emission(All)

Entries
SeqNr
Checksum
DataPayload

Ack-Input-Order

Workers
Reception(All)
ChecksumVerification(All)
FreeBuffer(AckNr)

Entries
AckNr
Checksum

Input-Data-Order

Workers
Reception(All)
ChecksumVerification(All)
DuplicateDetection(SeqNr)
Acknowledging(SeqNr)
Delivery(DataPayload)

Entries
SeqNr
CheckSum
DataPayload

Ack-Output-Order

Workers
Checksumming(Checksum)
Emission(AckNr)

Entries
AckNr
Checksum

concurrent

creates new order

(a) Orders of the sender

(b) Orders of the receiver

Figure 5. Identified Orders of the Example
Protocol

Error-Control Order: When the size of the original
application data does not exceed the maximum segment
size, it is given a sequence number and a checksum. It
will then be buffered and sent to the network (while the
retransmission timer may be started if this segment is the
first to be buffered). This functionality can be done within
one thread. The corresponding order is referred to as error-
control-order. The header information needed for this order
is a sequence number, a checksum field and the data payload
from the application.

The error-control-order ends up with sending data to
the network. It is therefore of type emittable. It consists
of three workers: the sequencing worker assigns sequence
numbers to each data that comes along. It contains a
counter that starts with a value represented by a beans
property. The second worker calculates a checksum on
an arbitrary set of data and writes this value into an
entry representing an integer. The third worker called
retransmission worker operates on a sequence number and
an array of arbitrary data. It buffers both and maintains
a retransmission timer. Upon expiry of the timer, the
retransmission worker fires a NewOrderEvent containing
sequence number and the other data buffered. The needed
entries are hence sequence number, checksum value, and

data payload. Only the data payload is marked initializable,
since sequence number and checksum value are calculated
while the order is processed. All entries are marked visible
since they are all written to the network.

Fragmentation Order: When the application data ex-
ceeds the defined maximum segment size, it must be frag-
mented in smaller segments. The process of fragmentation
can be done within one thread. The corresponding order
is referred to as fragmentation-order. The data processed
by this order is the original application data, the result is a
number of segments with a size smaller than the maximum
segment size.

The fragmentation-order processes data from the ap-
plication and is therefore of type acceptable. It contains
one worker fragmentation-worker which takes an array of
bytes as input and throws an event NewOrderEvent for each
new segment resulting from the fragmentation process.
The maximum segment size is specified as a configurable
beans property of the fragmentation-worker. The only
entry needed represents the array of byte which can be of
variable length. This entry is marked initializable since it
is filled with data when the order is initialized. It does not
need to be marked visible because the data is not delivered
or emitted. Fragmentation and error-control can not be
done within one thread and have hence different orders
since fragmentation results in several pieces of data that all
need individual processing (sequencing, buffering).

Retransmission Order: When the retransmission timer
expires, the oldest data in the queue (including sequence
number, checksum, and data payload) is read from the
buffer and sent to the network. This operation requires
an own thread and hence an own order that we refer to as
retransmission-order.

The retransmission-order is of type emittable and does
not define any workers. It just takes the sequence number
entry, the checksum entry, and the data payload (all are
visible) from the error-control-order and writes it to the
network.

Input-Data Order: A packet sent by the error-control-
order or the retransmission-order contains an predefined
de-multiplex identifier used to associate the incoming data
with a thread of the input-data-order which serves to deliver
the data to the application. Before delivery, the checksum
must be verified, a check for duplicate sequence number is
made, and an acknowledgment is requested. If the check-
sum is not correct or the data was identified as duplicate,
the data is not used anymore. Otherwise the data payload is
delivered to the application.

The input-data-order gets its data from the network
(receptable) and delivers it to the application (deliverable).



It is therefore of type input-order. At first an ack-out-order
is generated, then a checksum-verification-worker checks if
the value of the checksum field corresponds with the value
calculated over the whole data. A duplicate-check-worker
finally assures that data is delivered only once to the
application. When checksum and duplicate check did not
lead to dropping the data, the payload is delivered to the
application. All entry fields – sequence number, checksum
value, and data payload – are marked initializable. The data
entry is additionally marked visible since it is delivered to
the application.

Ack-Output Order: There are two orders not yet
mentioned needed for acknowledgment handling. One
order called ack-out-order sends a message to the network
that contains the sequence number of the acknowledged
data. The ack-output-order is of type emittable and defines
an acknowledgement number as its only entry. Besides
checksum verification it contains no workers.

Ack-Input Order: The last order needed is called ack-
in-order and notifies the retransmission-buffer that the seg-
ment with the sequence number of the acknowledgment can
be deleted from the buffer. The ack-input-order is of type
receptable. It comprises two workers, one to verify the
checksum, the other to notify the retransmission worker.

Figure 5 shows the identified orders, their workers, and
the entries defined. The big arrows indicates that an order
creates another one. The small double-sides arrows indicate
that two orders access instances of the same variable, e.g.
the ack-in-order accesses the retransmission buffer to free
data that the error-control-order wrote to.

4.3. Visual Composition Process

Once workers and entries are implemented, our protocol
is built without writing any additional line of code. We just
select for each identified order, entry, and worker the cor-
responding symbol and put it on the screen. We connect
workers and entries to their orders (a special method imple-
mented by the order bean allows to register workers together
with their entries to express a parameter relationship), and
orders to their environment. We configure the properties of
the workers (like the maximum segment size for the frag-
mentation worker), entries (like the range of sequence num-
bers, the initializable and visible flags for any entry), and
orders (like the de-multiplex information for reception or-
ders). We specify creates-order relationships by connecting
the NewOrderEvent of a worker with the order it should cre-
ate (like the fragmentation-worker creates the error-control-
order). We specify any other relation-ship between work-
ers (e.g. state-updates) or between entries and workers
(like the sequence number entry of acknowledgment-order

is given to the retransmission worker to free the retransmis-
sion buffer). In Figure 6, we depicted a screen-shot after
building the sender part of the example protocol. It shows
all protocol components and their relationships.

Figure 6. Example protocol (sender) built with
Visual Age (screen-shot using Visual Age)

Running protocols within our framework, i.e. initializa-
tion of the environment and the anchor, the registration of
orders, entries, and workers, the allocation of threads, fill-
ing entries with data, executing orders, is transparent to the
visual composer, i.e. part of the implemented framework. It
is out of the scope of this paper to describe the details of the
runtime process of our framework.

4.4. First Experiences

Rapid Prototyping and Testing: Dividing protocols in
small modules already facilitates implementation signifi-
cantly. The process of configuring and combining various
components to a working application is a process of min-
utes. Due to the guidance of the visual builder tool, the
generated code is very robust. The clear structure largely
simplifies testing and debugging.

Re-usability: All protocol components are 100% re-
usable without any modification of code. However, while
entries can be applied in almost all protocol contexts, the
applicability of workers is often limited to certain protocol
families. The re-usability of whole orders is a rare case, the
re-usability of complete protocol layers is not yet supported
within our framework.



Compatibility: Our structuring approach may conflict
with specifications of existing protocols (e.g. centralized
de-multiplexing, multiple header formats). Since we intent
to provide a tool to rapidly implement and test new proto-
cols instead of re-implementing existing ones, we do not
consider compatibility as a major issue.

5. Related Work

Protocol implementation is a well explored field and a
high number of papers have addressed areas related to this
work. The idea to give the application more control over
the protocols it uses, was first expressed by Clark and Ten-
nenhouse and called Application Level Framing (ALF) [9].
Moving protocol code into user space is one step in that di-
rection. Experiences with user space protocol implementa-
tions are reported in [34], [6], [15]. Our work consequently
adopts the paradigm of ALF and user space protocol imple-
mentation.

The idea of replacing general purpose protocols by ap-
plication tailored protocols requires ease of implementation
and rapid prototyping of new protocols. Protocol frame-
works are an important tool to assist protocol implemen-
tation by providing implementation and runtime support.
There exist a high number of protocol frameworks, each
of which has a different focus. The most prominent one
is the X-Kernel [18] residing in the operating system ker-
nel, which allows to connect protocol layers by a standard
interface. The acceptance of the object-oriented program-
ming paradigm lead to a number of object-oriented protocol
frameworks ([17], [4]). Our work comprises also a frame-
work to build protocols. However, it widely differs from
the cited frameworks not only in the software engineering
technology used, but also in its architectural concept, the
granularity, and the structure it imposes.

The majority of all these protocol frameworks follow
rather coarse-grained, layered structuring approaches. The
advantages of fine-grained structuring and modularization –
higher flexibility and improved re-usability without serious
performance degradation – were first exposed by O’Malley
and Peterson [27]. DaCaPo [28] and ADAPTIVE [30]
demonstrate the higher flexibility of fine-grained modular-
ity by featuring dynamic configuration and assembly of pro-
tocols with classified requirements. Bhatti [2] overcomes
problems of the X-Kernel environment to implement fine-
grained fault-tolerance multicast applications. The Java
protocol framework JChannels [21] uses a fine-grained,
object-oriented approach to facilitate protocol maintenance
and modification. Fine-grained structuring is one require-
ment to achieve the main goal of our work, i.e. to build
the maximum number of communication software out of a
set of re-usable and configurable components. In this sense,
our work is close to the cited work that follows fine-grained

structuring. However, it widely differs in its structuring
concept, the programming comfort, and the degree of re-
usability of protocol functions.

Work related with the structure of protocol software goes
back to the early eighties. Layering has been the main con-
ceptual approach to structure protocols. The advantage of
layering is to reduce complexity of communication systems
by hiding information between different layers. However, a
number of problems with regard to layering have been iden-
tified such as inflexibility [35], inefficiency [33], and even
unexpected side-effects [12].

A lot of work tackles the efficiency problems of layering.
Clark [7] and Cooper [10] propose to carefully break up the
borders and allow adjacent layers to exchange control infor-
mation. Clark [8] and Atkins [1] suggested to apply verti-
cal process models to protocol software in order to reduce
context switches. Renesse [36] shows that techniques such
as header prediction, packet filtering, and message packing
can significantly improve latency. Mosberger and Peterson
unified optimization mechanisms as ILP [5] [13], fbuf [13],
or packet classifiers [23] [19] in the abstraction of a data
path and implemented dynamic path creation in the Scout
operating system [26].

Our work does not intend to mask performance prob-
lems of layered architectures, but to replace layering in end-
systems by an architecture that supports complete re-use,
fine-grained structuring, and high flexibility. The idea be-
hind our design element order is related to Mosbergers [26]
definition of a data path, i.e. a logical channel or a common
sequence of instructions through a complex system. How-
ever, while in Scout paths are used to apply a vertical pro-
cess model and to optimize inter-layer communication, we
use orders to structure protocols itself with the goal of sup-
porting rapid and visual prototyping of new protocol imple-
mentations. That is, we consider how protocols should be
structured to be implemented in a fast, flexible manner in-
stead of considering how protocols should be implemented
to optimize performance.

We don’t know of any work concerned about
component-based programming for protocol implementa-
tion. There is at least little work related to component-based
software engineering in system design. Kon and others [22]
use component-based programming to provide high config-
urability of a flexible operating system (2K). Singhai [31]
demonstrates the usefulness of component-based software
engineering for the development of middle-ware systems.

The concept of de-multiplexed architectures represented
by our element anchor was first expressed by Tennenhouse
[33] and was implemented in [29] [3].



6. Summary

The goal of this paper is to show that component-based
software technology is an excellent means to rapidly imple-
ment application-tailored end-to-end protocols out of fully
re-usable and configurable software components. We pro-
posed a structuring approach to map protocols to compo-
nents, which provides fine granularity and complete de-
coupling of protocol functions and message headers. We
implemented a runtime-system that follows our structuring
approach to test and run component-based protocol soft-
ware.

Based on a simple transport protocol, we showed the use-
fulness, power, and simplicity of the implementation pro-
cess. We could see that even visual programming of com-
plex software as network protocols is feasible and provides
a new dimension in rapid prototyping and programming
comfort.

Acknowledgment
This work is sponsored by ZT IK2, Siemens, München,
Germany.
Special thanks to Sergio Loureiro for the fruitful discus-
sions that helped to clarify my ideas.

References

[1] M. Atkins. Experiments in sr with different upcall program
structures. ACM Transactions on Computer Systems, pages
365–392, 1988.

[2] N. Bhatti and R. Schlichting. A system for constructing
high-level protocols. In ACM SIGCOMM Symposium, pages
138–150, Aug. 1995.

[3] E. W. Biersack and E. Rütsche. Demultiplexing on the atm
adapter: Experiments with internet protocols in user space.
Journal on High Speed Networks, 5(2):193–202, May 1996.

[4] S. Boecking, V. Seidel, and P. Vindeby. Channels. a run-time
system for multimedia protocols. 1995.

[5] T. Braun and C. Diot. Protocol implementation using ilp. In
Proceedings of ACM SIGCOMM’95, pages 151–161, 1995.

[6] T. Braun, C. Diot, A. Hoglander, and V. Roca. An experi-
mental user level implementation of tcp. Technical report,
INRIA, 1995.

[7] D. Clark. Modularity and efficiency in protocol implemen-
tation. Request for Comments (Informational) RFC 817, In-
ternet Engineering Task Force, July 1982.

[8] D. D. Clark. The structuring of systems using upcalls. In
Proc. of the 10th ACM Symposium on Operating Systems
Principles, pages 171–180, Oakland, CA, December 1985.

[9] D. D. Clark and D. L. Tennenhouse. Architectural consid-
erations for a new generation of protocols. In Proc. ACM
SIGCOMM ’90, pages 200–8, Philadelphia, PA, September
1990.

[10] G. H. Cooper. An argument for soft layering of protocols.
Technical Report MIT/LCS/TR-300, MIT, May 1983.

[11] I. Corp. Programming with VisualAge for Java Version 2.
Number SG24-5264-00. IBM Redbook, 1998.

[12] J. Crowcroft, I. Wakeman, and Z. Wang. Is layering harm-
ful? IEEE Network, 6(1), Jan. 1992.

[13] P. Druschel, M. Abbot, M. Pagels, and L. Peterson. Network
subsystem design: A case for an integrated data path. to be
Published in IEEE network 7’93, 1993.

[14] D’Souza, D. Francis, Wills, and A. Cameron. Objects,
components and frameworks with UML : the Catalysis ap-
proach. Addison-Wesley, 1998.

[15] A. Edwards and A. Muir. Experiences implementing a high
performance tcp in user space. In Proceedings of ACM SIG-
COMM, Boston, MA, Oct. 1995.

[16] W. Edwards. Core JINI. Sun Microsystems Press, 1999.
[17] H. Hüni, R. Johnson, and R. Engel. A framework for net-

work protocol software. In Object-Oriented Programming
Systems, Languages and Applications Conference Proceed-
ings (OOPSLA’95). ACM Press, 1995.

[18] N. Hutchinson and L. Peterson. The x-kernel: an architec-
ture for implementing network protocols. IEEE Transac-
tions on Software Engineering, 17(1):64–76, Jan. 1991.

[19] V. Jacobson. 4bsd tcp header prediction. Computer Com-
munication Review, 20(2):13–15, Apr. 1990.

[20] JavaSoft. Java Beans 1.0 API specification, October 1996.
[21] M. Jung, E. Biersack, and A. Pilger. Implementing network

protocols in java - a framework for rapid prototyping. In
Proceedings of ICEIS’99, Portugal, Mar. 1999.

[22] F. Kon, A. Singhai, R. H. Campbell, D. Carvalho, R. Moore,
and F. J. Ballesteros. 2K: A Reflective, Component-Based
Operating System for Rapidly Changing Environments. In
ECOOP’98 Workshop on Reflective Object-Oriented Pro-
gramming and Systems, Brussels, Belgium, July 1998.

[23] S. McCanne and V. Jacobson. The bsd packet filter: A new
architecture for user-level packet capture. In 1993 Winter
USENIX, San Diego, CA, Jan. 1993.

[24] S. Microsystems. Component-based software with jav-
abeans and activex. White Paper, Oct. 1996.

[25] J. Mogul. The case for persistent-connection http. In Pro-
ceedings of SIGCOMM’95, pages 299–314, sep 1995.

[26] D. Mosberger and L. Peterson. Making paths explicit in the
scout operating system. In Proceedings of OSDI, pages 153–
168, Oct. 1996.

[27] S. W. O’Malley and L. L. Peterson. A dynamic network
architecture. ACM Transactions on Computer Systems,
10(2):110–143, May 1992.

[28] T. Plagemann, P. B., M. Vogt, and W. T. Modules as build-
ing blocks for protocol configuration. In Proceedings of the
international Conference on Network Protocols (ICNP-93),
Sept. 1993.

[29] V. Roca, T. Braun, and C. Diot. Demultiplexed architectures:
a solution for efficient streams based communication stacks.
IEEE Networks Magazine, June 1997.

[30] D. Schmidt, D. Box, and T. Suda. Adaptive - a dynamically
assembled protocol transformation, integration, and evalu-
ation environment. Concurrency Practice and Experience,
5(4), June 1993.

[31] A. Singhai. Quarterware: A Middleware Toolkit of Software
Risc Components. PhD thesis, University of Illinois, 1999.

[32] Sun Microsystems. The java virtual machine specification.
Technical report, 1995.



[33] D. L. Tennenhouse. Layered multiplexing considered harm-
ful. In H. Rudin and R. Williamson, editors, Proc. IFIP
Workshop on Protocols for High-Speed Networks, pages
143–148, Zurich, Switzerland, May 1989. North-Holland
Publ., Amsterdam, The Netherlands.

[34] C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska. Imple-
menting network protocol at user level. IEEE/ACM Trans-
action on Networking, 1(5):554–565, Oct. 1993.

[35] C. Tschudin. Flexible protocol stacks. In Proceedings of
ACM SIGCOMM, Zurich, Switzerland, Oct. 1991.

[36] R. van Renesse. Masking the overhead of protocol layering.
In Proceedings of ACM Sigcomm, Sept. 1996.


