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Turgut Öktem and Dirk Slock∗

Mobile Communications Department, EURECOM
2229 route des Cretes, B.P. 193, 06560 Sophia Antipolis Cedex, FRANCE

oktem@eurecom.fr, slock@eurecom.fr

Abstract— Although most of the conventional localization
algorithms rely on LOS conditions, it is possible to do po-
sitioning with Power Delay Profile-Fingerprinting (PDP-F) in
multipath and even in NLOS environments. Many algorithms
for position fingerprinting have been developed, but analytical
investigation in this area is still not matured yet. In this
paper we aim to find the pairwise error probability (PEP) for
PDP-F based localization systems. The objective is to see the
performance of PDP-F algorithms under different cost functions
and also under different path amplitude assumptions. By PEP,
what is meant is the same as in the PEP analysis in digital
communication channels. Hence the approach is similar for
PDP-F. However its analysis is not as straightforward as it
is for the digital communication channel case. We investigate
and show the results for least squares (LS) based algorithm
under deterministic path amplitude modeling and Gaussian
Maximum Likelihood (GML) based algorithm for the Rayleigh
fading modeling of the path amplitudes.

Index Terms— fingerprinting, localization, pairwise error
probability, least squares, Gaussian Maximum Likelihood

I. I NTRODUCTION

Location fingerprinting (LF) (introduced by U.S. Wire-
less Corp. of San Ramon, Calif.) relies on signal structure
characteristics [1], [2]. It exploits the multipath natureof
the channel hence the NLOS conditions. By using multipath
propagation pattern, the LF creates a signature unique to a
given location. The position of the mobile is determined by
matching measured signal characteristics from the BS-MT
link to an entry of the database. The location corresponding
to the highest match of the database entry is considered as the
location of the mobile. For LF, it is enough to have only one
BS-MT link (multiple BSs are not required) to determine
the location of the mobile. Also LF is classified among
Direct Location Estimation (DLE) techniques. Ahonen and
Eskelinen suggest using the measured Power Delay Profiles
(PDPs) in the database [3] for fingerprints. In [4], authors
provide deterministic and Bayesian methods for PDP-F based
localization. The Gaussian Maximum Likelihood (GML)
based PDP-F revealed in that article is one of the techniques
that we analyze in this paper.
What is meant by PEP is the same as in the PEP analysis

∗ EURECOM’s research is partially supported by its industrial members:
BMW Group, Swisscom, Cisco, ORANGE, SFR, ST Ericsson, Thales,
Symantec, SAP, Monaco Telecom. The research reported herein was also
partially supported by the European FP7 projects WHERE2, CROWN and
NEWCOM++.

for digital communication channels. In that case the aim is
to find the probability of error when a vector of symbols
si is transmitted but another vectorsj is detected at the
receiver. We will pursue a similar approach for PDP-F PEP
analysis. However its analysis is not as straightforward as
for the digital communication channel case. The difficulty
arises from the structure of the problem as will be clear
soon. The objective is to determine the probability of error
(the probability that wrong entry in the database is selected
instead of the true position) when the channel estimates
from the MT-BS link is matched with a wrong entry of the
database. Hence position estimation error occurs as a result.
We will investigate two different algorithms under different
path amplitude modeling.

Notations: upper-case and lower-case boldface letters de-
note matrices and vectors, respectively.(.)T and (.)H rep-
resent the transpose and the transpose-conjugate operators.
E {.} is the statistical expectation,ℜ{.} is the real part and
tr {.} is the trace operator defined for square matrices.

II. CHANNEL MODEL AND ANALYTICAL EXPRESSIONS

OF PEPFOR THELS TECHNIQUE UNDERDETERMINISTIC

PATH AMPLITUDE MODELING

We start with the channel model because PDP is just the
magnitude squared version of the channel impulse response
(CIR). But before using the measured PDPs, it is classically
averaged over some time duration. However, if the mobile
moves rapidly and/or some paths are not resolvable (due
to the limited bandwidth of the pulse-shapep(t), path
contributions can overlap), the averaging gives a poor PDP
estimation.

h(t, τ) =

Np∑

i=1

Ai(t) p(τ − τi(t)) (1)

where Np denotes the number of paths (rays),p(t) is the
convolution of the transmit and receive filters (pulse shape),
τi(t), Ai(t) denote delay and complex attenuation coefficient
(amplitude and phase of the ray) of theith path respectively.
We can write the complex path amplitude of pathi in polar
form asAi(t) = ai(t)e

jφi(t). It is reasonable to assume that
path delays and amplitudes vary slowly with the position. Let
us now consider sampling the CIR with a sampling period



of τs leading toNτ samples and stacking them in a vector
as follows:

h(t) =




h(τs, t)
h(2τs, t)
...
h(Nτ τs, t)


 =

Np∑

i=1

Ai(t) pτi
, (2)

wherepτ is defined as:pτ =




p(τs − τ)
p(2τs − τ)
...
p(Nτ τs − τ)


 which is the

sampled complex pulse shape vector having a delay equal to
the delay of the path in samples and hasN nonzero samples.
If we write Equation (2) in matrix notation and include the
channel estimation noise, we obtain the estimated CIR vector
as:

ĥ(t) =
[
pτ1

· · ·pτNp

]

︸ ︷︷ ︸
Pτ




A1(t)
...

ANp(t)




︸ ︷︷ ︸
a(t)

+v(t). (3)

wherev(t) is the complex additive white Gaussian noise
vector with covariance matrixσ2

vI. We estimate the PDP as:

P̂DP =
1

T

T∑

t=1

∣∣∣ĥ(t)
∣∣∣
2

(4)

where T is the number of channel observations. There
is one thing that needs to be clarified that the absolute
squaring operation is element-wise. Hence the resulting PDP
estimate is another vector having the same length as the
channel estimates. For the path amplitudes, there can be two
possibilities:

• deterministic model:Ai(t) deterministic unknowns
• Gaussian model:Ai(t) Gaussian with zero mean, char-

acterized by a power (variance) i.e.var(Ai) = σ2
i ,

which corresponds to Rayleigh fading for the magni-
tudes.

We will consider the first case now where the path amplitudes
are considered as deterministic unknowns. The PEP can be
defined as follows when the LS criteria is the cost function:

PEP = Pr (||P̂DP − PDPF || < ||P̂DP − PDPT ||), (5)

whereP̂DP is the measured PDP vector defined in Equa-
tion (4), PDPT is the true PDP vector which is computed
off-line from the stored database andPDPF is the PDP
vector to be erroneously detected. Every position in the
database (Ray Tracing database or any other pre-computed
database) is distinguishable from each other, e.g. they have
either different number of paths, or path delays or amplitudes
(variances) are different. Hence there are unique entries in the
database so that fingerprinting can work correctly.PDPT

andPDPF are given as:

PDPT = PDPtrue + σ2
v1, PDPF = PDPfalse + σ2

v1, (6)

where1 is a vector of all1’s which is added to include the
effects of the noise.PDPtrue andPDPfalse are computed
with delays and amplitudes of paths. For example in case
of non-overlapping pulses (pulses from different paths not
overlapping with each other), they would be given as:

PDPtrue =

Np∑

i=1

a2
i |pτi |2 , PDPfalse =

L∑

i=1

b2
i |pζi

|2 , (7)

Based on Equation (4),̂PDP can be calculated as:

P̂DP =
1

T

T∑

t=1

(
|v(t)|2 + 2(ℜh(t) ⊙ℜv(t) + ℑh(t) ⊙ℑv(t))

)

+ PDPtrue, (8)

where⊙ stands for the element-wise Hadamard multipli-
cation. In this case, it is used to multiply the corresponding
elements of the real and imaginary parts of the noise and
channel vectors. In fact in the equation above, we made
a little approximation coming from the last term. We im-
plicitly assumed that averaging gives a good PDP estimate
(PDPtrue plus the noise terms). For example in case of
a non-overlapping pulse assumption, it would not be an
approximation. We will make an important simplification in
Equation (8) and assume that the terms in the innermost
parentheses tend to go to0. In other words they will be
replaced by their expected values as the noise is a zero
mean process. In fact it is a reasonable assumption when
the number of observationsT is high. HenceP̂DP is now
approximated as:

P̂DP ≈ PDPtrue +
1

T

T∑

t=1

|v(t)|2 . (9)

After these calculations and definitions we can turn back
to the PEP formulation. In fact PEP can also be stated
equivalently as:

PEP = Pr (||P̂DP−PDPF ||2 < ||P̂DP−PDPT ||2). (10)

This equivalent formulation is easier to deal with. For
simplicity of notation, let us callP̂DP as x, PDPfalse

asy andPDPtrue asz. Then PEP becomes:

Pr

(
x

T (z − y) <
(z + σ2

v1)T (z + σ2
v1) − (y + σ2

v1)T (y + σ2
v1)

2

)
.

(11)
If we check Equation (9), we immediately recognize that

first term of the equation is deterministic while the second
term is the random part. If we do the algebra, we can
reorganize Equation (11) as:

PEP = Pr

(
(z − y)T

T∑

t=1

|v(t)|2 <
T

2
(2k2 − k1 − k3 + 2 M)

)

(12)
where k1 = zT z, k2 = yT z, k3 = yT y and M =

σ2
v1

T (z−y). Herek2 is an important parameter which gives
information about the overlapping between the vectors. As



it is clear, it is always non-negative. It can be0 if and
only if the vectors do not overlap with each other at all.
Mathematical formulation of PEP is almost complete. When
we explore Equation (12), it is a summation of random
variables on the left hand side. We can divide the analysis
for each turn ofT . Let us call the random variable asWi

for the ith loop. So the left hand side as a result becomes
a random variableW which is W =

∑T

i=1 Wi. However
finding the distribution ofW is not easy as we will see later.
Therefore we will just compute the distribution of aWi (W1

without loss of generality). And then we will call the central
limit theorem (CLT) forW as all theWi’s are identically
distributed. Remember thatv(t) is a complex white Gaussian
noise vector. Hence each element of the|v(t)|2 vector is
composed of sums of squares of two Gaussian random
variables. It is well known that this leads to the exponential
distribution with mean1/λ = σ2

v , i.e. fM (m) = λe−mλ,
m ≥ 0 [5]. ThereforeW1 will be a summation of exponential
random variables. However they all have different parameters
(different λ’s) which makes the calculation of the overall
distribution more difficult. In other words it would be a
summation of independent but not identically distributed
exponential random variables. If all had the same parameters,
we know that this leads to the Erlang distribution [6]. The
distribution ofW1 which is a summation ofK exponential
random variables with means1/λi’s is derived as (proof is
omitted due to lack of space):

fW1
(u) =

(
K∏

i=1

λi

)




K∑

j=1

e−λju

K∏

l=1
l 6=j

(λl − λj)




. (13)

Deriving the distribution ofW which is a summation ofT of
these random variables (Wi’s) will be more challenging. We
can also compute the probability forT = 1 with the obtained
derivation. However in that case the assumption that we have
done in Equation (9) will be disturbed. Due to these reasons,
we will call the CLT for theseT (T being large) independent
and identically distributed random variables as we mentioned
before. Before applying the CLT, we have to know the mean
and variance ofWi’s. By using Equation (12), we determine
the mean and variance ofWi’s as follows:

µWi
= M, (14)

σ2
Wi

= σ4
v (k1 + k3 − 2k2) . (15)

By CLT,
W − TµWi

σWi

√
T

will tend to have a standard normal

distribution (N (0, 1)) when T is large. Hence PEP can be

reformulated as:

PEP = Pr

(
W − TµWi

σWi

√
T

<

√
T

2σWi

(2k2 − k1 − k3)

)

= Q

(√
T

2σ2
v

√
k1 + k3 − 2k2

)
(16)

= Q

(√
T

2σ2
v

||z − y||
)

. (17)

And by using the Chernoff bound for theQ function, we
can bound the PEP as:

PEP ≤ 1

2
e
− T

8σ4
v
||z−y||2

. (18)

We see that PEP decreases when the norm of the difference
between the true and false PDPs increase. In fact it is a
reasonable result. When they become more and more apart
from each other, one can expect that it will be less likely
to confuse the true PDP with the false one. The interesting
thing is that we reached this result after the approximation
given by Equation (9) and by the use of the CLT.

III. A NALYTICAL EXPRESSIONS OFPEPFOR THEGML
TECHNIQUE FORRAYLEIGH FADING MODELING OF THE

PATH AMPLITUDES

In this part, we investigate the PEP analysis for the GML
based PDP-F technique. We also have a different assumption
for the complex path amplitudesAi(t). Instead of modeling
them as deterministic unknowns, we now model them as
complex Gaussian random variables (Rayleigh distribution
for the magnitudes). For a complete description of this PDP-
F method, readers can refer to [4]. The channel model that we
have proposed in the previous section is still valid and given
by Equation (3). We now assume that pulses from different
paths are non-overlapping (Pτ is an orthogonal matrix) to
simplify the analysis which is a reasonable assumption in
high bandwidth systems. The matching criteria is based on
Gaussian log-likelihood. Hence formulation of the PEP is
such that the probability that the log-likelihood performed in
the true position is lower than the log-likelihood in the false
position which results in the false position to be selected.If
we have multiple channel estimates, the log-likelihood can
be expressed as:

LL ∝ − ln (det (Cĥĥ)) − tr
(
ĈC

−1

ĥĥ

)
(19)

where Ĉ = 1
T

∑T

i=1

(
ĥi − µ

)(
ĥi − µ

)H

is the sample
covariance matrix obtained from channel estimates. Since
the complex path amplitudesAi(t) and the noise have both
zero mean, channel estimates have also zero mean, i.e.,
µ = 0. For simplicity of notation, let us callC

ĥĥ
as

CT which denotes the covariance matrix calculated with
the true positions’ entries. By using Equation (3), we have
CT = PτCaP

H
τ +σ2

vI whereCa is a diagonal matrix having[
σ2

a1
, σ2

a2
, · · · , σ2

aNp

]
on its diagonal (var(Ai) = σ2

ai
). We

also introduceCF for the covariance matrix computed with
the false positions’ entries asCF = PζCbP

H
ζ + σ2

vI where
Cb is a diagonal matrix having

[
σ2

b1
, σ2

b2
, · · · , σ2

bL

]
on its



diagonal andPζ is defined similarly asPτ . After giving the
necessary information, we can state PEP as:

PEP = Pr (LLT < LLF ). (20)

We know that there are many scenarios to investigate.
However we will try to explore the scenario where the error
probability is more likely to occur. And also the scenario
proposed will also simplify the analysis.

Scenario: The scenario can be summarized as follows:

1) Number of paths are equal, i.e.,L = Np.
2) Path delays are equal, i.e.,τi = ζi ∀i.
3) There is no delay synchronization error.

Under these assumptionsPζ = Pτ . We see that the only dif-
ferences between the true and the false positions’ parameters
are the path amplitude variances. By using Equation (19) we
can restate PEP as:

PEP = Pr
(
ln (detCT/detCF) > tr

(
ĈC

−1
F

)
− tr

(
ĈC

−1
T

))
.

(21)
Under the assumption thatPτ being an orthogonal matrix,

the determinants can be easily calculated.

det (CT ) = σ2Nτ
v det

(
I +

1

σ2
v

PτCaP
H
τ

)

= σ2Nτ
v

Np∏

i=1

(
1 +

epσ2
ai

σ2
v

)
, (22)

where we have used the Sylvester’s determinant theorem,
det(I + AB) = det(I + BA) and ep = S is the pulse
energy. One thing to note is that the determinant does
not depend on the path delays when the pulses are non-
overlapping. Similarly we obtaindet (CF ). Hence left hand
side of Equation (21) is:

ln (detCT/detCF) =

Np∑

i=1

ln

(
σ2

v + epσ2
ai

σ2
v + epσ2

bi

)
= f1. (23)

For the inversion ofCT andCF we will use the Woodbury’s
matrix inversion lemma. We get:

C
−1
T = σ−2

v (I − PτDaP
H
τ ) (24)

C
−1
F = σ−2

v (I − PτDbP
H
τ ) (25)

whereDa and Db are diagonal matrices having[Da]ii =
σ2

ai

σ2
v + epσ2

ai

and [Db]ii =
σ2

bi

σ2
v + epσ2

bi

on their diagonals

respectively. By using Equation (3) we can writêC as:

Ĉ =
1

T

T∑

i=1

ĥiĥ
H
i =

1

T

T∑

i=1

(Pτai + vi)(Pτai + vi)
H

=
1

T

T∑

i=1

(
Pτaia

H
i P

H
τ + Pτaiv

H
i + via

H
i P

H
τ + viv

H
i

)

≈ 1

T

T∑

i=1

(
Pτaia

H
i P

H
τ + viv

H
i

)
(26)

where in the last equation we have made an approxi-
mation based on the fact that noise samples and channel
coefficients are uncorrelated zero mean Gaussian random
variables. Hence for largeT we replaced them with their
expectations resulting in0. With these at hand, the trace
functions can be evaluated by using Equation (24), (25) and
(26). By exploiting the properties of the trace function and
also the orthogonality ofPτ we obtain:

tr
(
ĈC

−1
T

)
=

σ−2
v

T

[
ep tr

(
T∑

i=1

aia
H
i

)
+ tr

(
T∑

i=1

viv
H
i

)

−e2
p tr

(
T∑

i=1

aia
H
i Da

)
− tr

(
T∑

i=1

viv
H
i PτDaP

H
τ

)]
.

We assume that random variables are uncorrelated in time.
It is well known that distribution remains the same under
orthonormal transformations. Therefore we realize thatvi

andwi = 1
√

ep
PH

τ vi have the same distribution (N (0, σ2
vI)).

However size of the vector changes (size ofI also changes).
By this transformation we rewrite the above equation:

tr
(
ĈC

−1
T

)
=

σ−2
v

T

[
ep tr

(
T∑

i=1

aia
H
i

)
+ tr

(
T∑

i=1

viv
H
i

)

−e2
p tr

(
T∑

i=1

aia
H
i Da

)
− ep tr

(
T∑

i=1

wiw
H
i Da

)]
.

Similarly we can derivetr
(
ĈC−1

F

)
. The term we need in

Equation (21) is:

tr
(
ĈC

−1
F − ĈC

−1
T

)
=

ep σ−2
v

T

(
ep

T∑

i=1

a
H
i Dai +

T∑

i=1

w
H
i Dwi

)
.

(27)
where D = Da − Db being another diagonal matrix.

Each element ofwk andak are complex Gaussian random
variables with mean 0. Forwk, every entry has the variance
σ2

v while ith entry of ak has a variance ofσ2
ai

. The matrix
D being diagonal simplifies the analysis substantially. It
prevents the coupling of the cross elements of the vec-
tors. Therefore Equation (27) represents a summation of
squares of Gaussian random variables weighted byD. Since

aH
k Dak =

Np∑

j=1

[D]jj |akj |2 andwH
k Dwk =

Np∑

j=1

[D]jj |wkj |2,

each loop of (by loop any of theT iterations is meant)
Equation (27) is composed of summation of non-identically
distributed exponential random variables. One important
thing to mention is that in order to consider it as a summation
we implicitly assume thatD has all positive elements on its
diagonal meaning thatσ2

ai
> σ2

bi
∀i. In the previous section

that distribution was calculated and given by Equation (13).
As we have done in the previous section, let us call this
distribution asWi, and letW =

∑T

i=1 Wi (all Wi’s identi-
cally distributed). Since the derivation of the distribution of
summation ofT of them (W ) will be difficult, we will call
the CLT again forT being large. Before that we need the
mean and variance ofWi which is calculated as:



µWi
=

ep

T

Np∑

i=1

[D]ii
(
ep σ−2

v σ2
ai

+ 1
)

=
ep

T
f2, (28)

σ2
Wi

=
e2
p

T 2

Np∑

i=1

[D]2ii
(
e2
p σ−4

v σ4
ai

+ 1
)

=
e2
p

T 2
f3. (29)

We know that
W − TµWi

σWi

√
T

will tend to have a standard

normal distribution (N (0, 1)) when T is large. Hence PEP
can be reformulated as:

PEP = Pr

(
W − TµWi

σWi

√
T

<

√
T

ep

√
f3

(f1 − ep f2)

)
(30)

= Q

( √
T

ep

√
f3

(ep f2 − f1)

)
. (31)

And we can use the Chernoff bound for theQ function
bounding the PEP as:

PEP ≤ 1

2
e
− T

2 e2
p f3

(ep f2−f1)
2

. (32)

In the general ergodic case, using the CLT, we get for the
PEP:

PEP = Q


 tr{CTC−1

F − I} − ln det(CTC−1
F )√

1
T

tr{(CTC−1
F − I)2}


 (33)

from which we see that a mismatch in every path contributes
separately to decreasing the PEP when the path delays are
well separated (the numerator of the argument of theQ
function is a form of the Itakura-Saito distance between
covariance matrices).

For the non-ergodic case in which the channelh remains
constant in theT estimatesĥi, the PEP using the CLT
becomes:

PEP = Eh Q


hHAh + σ2

vtr(A) + ln(detCF) − ln(detCT)
σ2

v√
T
||A||F




(34)
whereA = C−1

F − C−1
T .

IV. CONCLUSION

In this contribution we derived approximate analytic re-
sults for the PEP for PDP-F. To the best of our knowledge,
there has not been any work for the computation of PEP
for fingerprinting applications so far. Hence the effect of
the pulse shape and other parameters on PEP are explicitly
shown. As expected we have shown that the PEP decreases
with the increasingT . In the asymptotic case, PEP goes to 0
for both of the algorithms investigated. Possible extensions
of this work might be to investigate specific cases, e.g., all
path amplitudes being equal, and etc.
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