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Abstract— Although most of the conventional localization for digital communication channels. In that case the aim is
algorithms rely on LOS conditions, it is possible to do po- to find the probability of error when a vector of symbols
sitioning with Power Delay Profile-Fingerprinting (PDP-F) in s; is transmitted but another vects is detected at the
multipath and even in NLOS environments. Many algorithms ' - s
for position fingerprinting have been developed, but analytical rece|vgr. We will pu.rsue a S|mlle_1r approach f°_f PDP-F PEP
investigation in this area is still not matured yet. In this analysis. However its analysis is not as straightforward as
paper we aim to find the pairwise error probability (PEP) for  for the digital communication channel case. The difficulty
PDP-F based localization systems. The objective is to see thegrises from the structure of the problem as will be clear
performance of PDP-F algorithms under different cost functions  ¢40 The objective is to determine the probability of error
and also under different path amplitude assumptions. By PEP, L . .
what is meant is the same as in the PEP analysis in digital _(the probability that Wf°”_9_ entry in the database is se_tbcte
communication channels. Hence the approach is similar for instead of the true position) when the channel estimates
PDP-F. However its analysis is not as straightforward as it from the MT-BS link is matched with a wrong entry of the
is for the digital communication channel case. We investigate database. Hence position estimation error occurs as &.resul

and show the results for least squares (LS) based algorithm \ye il investigate two different algorithms under diffete
under deterministic path amplitude modeling and Gaussian . )
path amplitude modeling.

Maximum Likelihood (GML) based algorithm for the Rayleigh

fading modeling of the path amplitudes. Notations: upper-case and lower-case boldface letters de-
Index Terms—fingerprinting, localization, pairwise error  note matrices and vectors, respectivély? and ()7 rep-
probability, least squares, Gaussian Maximum Likelihood resent the transpose and the transpose-conjugate ojgerator
E {.} is the statistical expectatiofk {.} is the real part and
|. INTRODUCTION tr {.} is the trace operator defined for square matrices.

Location fingerprinting (LF) (introduced by U.S. Wire-
less Corp. of San Ramon, Calif.) relies on signal structure!- CHANNEL MODEL AND ANALYTICAL EXPRESSIONS
characteristics [1], [2]. It exploits the multipath natupé OF PEPFOR THELS TECHNIQUE UNDERDETERMINISTIC
the channel hence the NLOS conditions. By using multipath PATH AMPLITUDE MODELING

p!ropagatiop pattern, th?,LF creates a ;igrjature un?que 10 Ay start with the channel model because PDP is just the
given !ocatlon. The po§|t|on of the m‘?b'_'e is determined b¥nagnitude squared version of the channel impulse response
matching measured signal characteristics from the BS-M{~|r) gyt before using the measured PDPs, it is classically

link to an entry of the database. The location correspondlrg/eraged over some time duration. However, if the mobile

to the highest match of the database entry is considereaas moves rapidly and/or some paths are not resolvable (due
location of the mobile. For LF, it is enough to have only ON&y the limited bandwidth of the pulse-shapst), path

BS-MT Ii_nk (multiple BS_S are not req_uired) t(_)_determinecontributions can overlap), the averaging gives a poor PDP
the location of the mobile. Also LF is classified among,ciimation.

Direct Location Estimation (DLE) techniques. Ahonen and
Eskelinen suggest using the measured Power Delay Profiles N,
(PDI?S) in the Qthbase [3] for_fingerprints. In [4], authors h(t, 1) = Zsz(t) p(r —75(t)) 1)
provide deterministic and Bayesian methods for PDP-F based
localization. The Gaussian Maximum Likelihood (GML) _
based PDP-F revealed in that article is one of the techniquéere IV, denotes the number of paths (raysjf) is the
that we analyze in this paper. convolution of the transmit and receive filters (pulse shape
What is meant by PEP is the same as in the PEP analy&st), 4i(t) denote delay and complex attenuation coefficient
(amplitude and phase of the ray) of tié path respectively.
* EURECOM's research is partially supported by its industriembers: We can write the complex path amplitude of patim polar
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NEWCOM++. us now consider sampling the CIR with a sampling period

i=1



of 7, leading toN, samples and stacking them in a vectorwherel is a vector of alll’s which is added to include the
as follows: effects of the noisePDP,,,. andPDP,;,. are computed
with delays and amplitudes of paths. For example in case

ng’t)t) N of non-overlapping pulses (pulses from different paths not
Ts - overlapping with each other), they would be given as:
h(t) = | . ~S AW P @ PPing ). they 9
. i=1
Ny L
h(NTTsa t) PDPirye = Z a? ‘Pn ‘2 , PDPfalse — Z b? ‘p<i|2 . (7)
p(rs —7) i=1 i=1
p(21s — ) - 5T .
wherep., is defined asp, = | . which is the Based on Equation (4RDP can be calculated as:
p(N;7s —T) — 1 — N .
sampled complex pulse shape vector having a delay equa®®f = 7 Y (VP +2(Rh(t) © Rv(t) + Sh(t) © Sv(t))
t=1

the delay of the path in samples and s ionzero samples.
If we write Equation (2) in matrix notation and include the
channel estimation noise, we obtain the estimated CIR wectowhere ® stands for the element-wise Hadamard multipli-
as: cation. In this case, it is used to multiply the correspogdin
elements of the real and imaginary parts of the noise and

+ PDPtru67 (8)

R A () channel vectors. In fact in the equation above, we made
h(t) = [pﬁ ---prJ : +v (). (3 a little approximation coming from the last term. We im-

L AN plicitly assumed that averaging gives a good PDP estimate

alt) (PDPy, . plus the noise terms). For example in case of

h(t)

T
— N l 2
PDP ~ PDPi..c + ; [v(t)|?. 9)
After these calculations and definitions we can turn back
to the PEP formulation. In fact PEP can also be stated
equivalently as:

wherev(t) is the complex additive white Gaussian noisea non-pver_lappmg p_Lljllse aktssum.ptlon, It Wc.)uldllfﬂot_be.an
vector with covariance matrix2I. We estimate the PDP as: Eppro?qmatlon. We will make an important simph |c_at|on n
quation (8) and assume that the terms in the innermost
— 1 & 2 parentheses tend to go @ In other words they will be
PDP = Tz ‘ ) replaced by their expected values as the noise is a zero
) =t ) mean process. In fact it is a reasonable assumption when
. where T' is the number of channe'll observations. Therghe number of observatiorE is high. HencePDP is now
is one thing th_at needs to be_ clarified that the ?bsomzi’pproximated as:
squaring operation is element-wise. Hence the resulting PD
estimate is another vector having the same length as the
channel estimates. For the path amplitudes, there can be two
possibilities:
« deterministic modelA4;(t) deterministic unknowns
« Gaussian model4;(t) Gaussian with zero mean, char-
acterized by a power (variance) i.ear(A;) = o2,
which corresponds to Rayleigh fading for the magni- . ) — )
tudes. PEP = Pr(||PDP — PDPy||° < ||[PDP — PDP7||"). (10)
We will consider the first case now where the path amplitudesThis equivalent formulation is easier to deal with. For
are considered as deterministic unknowns. The PEP can &ienplicity of notation, let us calPDP as x, PDP ;4
defined as follows when the LS criteria is the cost functionasy andPDP,,.,. asz. Then PEP becomes:

PEP = Pr(|[PDP — PDP;|| < |[PDP — PDPz[)), (5) p, (XT 2 —y) < ZHAD (@103 (v 403" (v + asn)
— 5 .
wherePDP is the measured PDP vector defined in Equa- (11)

tion (4), PDPr is the true PDP vector which is computed If we check Equation (9), we immediately recognize that
off-line from the stored database amRIDP is the PDP first term of the equation is deterministic while the second
vector to be erroneously detected. Every position in theerm is the random part. If we do the algebra, we can
database (Ray Tracing database or any other pre-computedrganize Equation (11) as:
database) is distinguishable from each other, e.g. theg hav

either different number of paths, or path delays or ampditud

T
T
(variances) are different. Hence there are unique entrigeei EP = Pr <(Z =) D IVOP <5 (ke —h— ks + 2M)>
database so that_ fingerprinting can work corredNDP =t (12)
andPDPy are given as: wherek, = 27z, ko = yTz, ks = y'y and M =

0217 (z—y). Herek, is an important parameter which gives
PDP7 = PDP;,. + 0.1, PDPr = PDP;,..+0.1, (6) information about the overlapping between the vectors. As



it is clear, it is always non-negative. It can I9eif and reformulated as:

only if the vectors do not overlap with each other at all. _
Pr (W Tuw, VT (2ky — ky — kg))
UWi\/T 2ow;

Mathematical formulation of PEP is almost complete. When PEP =
we explore Equation (12), it is a summation of random

variables on the left hand side. We can divide the analysis = Q <£M> (16)
for each turn ofT'. Let us call the random variable a¥; T
for the i*” loop. So the left hand side as a result becomes = Q <@HZ _y||) ) (17)
a random variablgV which is W = S W;. However 207

finding the distribution of is not easy as we will see later. And by using the Chernoff bound for th@ function, we
Therefore we will just compute the distribution of#; (W;  can bound the PEP as:

without loss of generality). And then we will call the ceritra R
limit theorem (CLT) forW as all theW,’s are identically PEP < ¢ 8% )

distributed. Remember tha&{t) is a complex white Gaussian )
noise vector. Hence each element of qhét)\Q vector is We see that PEP decreases when the norm of the difference

composed of sums of squares of two Gaussian r‘,deolpgsr‘tween the true and false PDPs increase. In fact it is a

variables. It is well known that this leads to the exponéntid €@sonable result. When they become more and more apart

distribution with meanl /A = o2, i.e. far(m) = Ae—™> from each other, one can expect that it will be less likely
o, e, fu ,

m > 0 [5]. Thereforel; will be a summation of exponential to confuse the true PDP with the false one. The interesting

random variables. However they all have different pararsetet"ing i that we reached this result after the approximation
(different \'s) which makes the calculation of the overall9iven by Equation (9) and by the use of the CLT.

(18)

distribution more difficult. In other words it would be a ||| A NALYTICAL EXPRESSIONS OFPEPEOR THEGML
summation of independent but not identically distributedTecpniQuE FORRAYLEIGH FADING MODELING OF THE
exponential random variables. If all had the same paraseter PATH AMPLITUDES

we know that this leads to the Erlang distribution [6]. The
distribution of /; which is a summation o’ exponential
random variables with means/ \;'s is derived as (proof is
omitted due to lack of space):

In this part, we investigate the PEP analysis for the GML
based PDP-F technique. We also have a different assumption
for the complex path amplitudes;(¢). Instead of modeling
them as deterministic unknowns, we now model them as
complex Gaussian random variables (Rayleigh distribution
for the magnitudes). For a complete description of this PDP-
F method, readers can refer to [4]. The channel model that we
have proposed in the previous section is still valid andmgive

K auw
fw, (u) = <H Ai> Z Keij (13) by Equation (3). We now assume that pulses from different
i=1 i=1 H(/\l — ) paths are non-overlappin@{ is an orthogonal matrix) to
=1 simplify the analysis which is a reasonable assumption in
i high bandwidth systems. The matching criteria is based on

Gaussian log-likelihood. Hence formulation of the PEP is

Deriving the distribution of#” which is a summation of of ~ Such that the probability that the log-likelihood perfouia
these random Variab'em’s) will be more Cha”enging_ We the true pOSition is lower than the |Og-|ike|ih00d in theskl
can also compute the probability fér= 1 with the obtained Position which results in the false position to be selected.
derivation. However in that case the assumption that we hawée have multiple channel estimates, the log-likelihood can
done in Equation (9) will be disturbed. Due to these reasong€ expressed as:
we will call the CLT for thesel" (T being large) independent
and identically distributed random variables as we mesetion
before. Before applying the CLT, we have to know the mean . T /e . H
and variance ofV;’s. By using Equation (12), we determine Where C = T 2imt (hi - M? (hi - N) is the sample
the mean and variance oF;'s as follows: covariance matrix obtained from channel estimates. Since
the complex path amplituded;(¢) and the noise have both
zero mean, channel estimates have also zero mean, i.e.,
u = 0. For simplicity of notation, let us callCy; as
pw, = M, (14) Ct which denotes the covariance matrix calculated with
9 4 the true positions’ entries. By using Equation (3), we have
ow, = 0y (kitks—2ks). (15) Cr = P,.C.,P2 4521 whereC, is a diagonal matrix having
0200, ,aﬁNJ on its diagonal far(4;) = o2). We
also introduceCyg for the covariance matrix computed with
ow, the false positions’ entries &g = P C,PH + 021 where
distribution (\'(0,1)) when T is large. Hence PEP can beC, is a diagonal matrix havindo? ,o7 ,--- 07, ] on its

LL x —1In(det (Cyp)) —tr (CC;;) (19)

W —-Tu

By CLT, " will tend to have a standard normal



diagonal andP is defined similarly a®,. After giving the  where in the last equation we have made an approxi-

necessary information, we can state PEP as: mation based on the fact that noise samples and channel
coefficients are uncorrelated zero mean Gaussian random
PEP = Pr(LLy < LLF). (20) variables. Hence for largé we replaced them with their

K h h . . . __expectations resulting . With these at hand, the trace
We know that there are many scenarios to Investigalg,,ions can be evaluated by using Equation (24), (25) and

Howevg_r we will try tp explore the scenario where the err_OEZG). By exploiting the properties of the trace function and
probability is more likely to occur. And also the scenarioy oo the orthogonality oP, we obtain:

proposed will also simplify the analysis.
Scenario: The scenario can be summarized as follows:

2 T T
1) Number of paths are equal, i.d.,= N,,. tr (CCF) = U;, eptr (Z aiaf{) +tr ( viviH>
2) Path delays are equal, i.e;,= (; Vi. i=1 i=1
. . . T T
3) There is no delgy synchronization error. _ e Z aaD, | _ tr Z vwP.D.p | |
Under these assumptiol’s = P .. We see that the only dif- P =

ferences between. the true_and the false.positions’_ Parasnetqys assume that random variables are uncorrelated in time.

are the path amplitude variances. By using Equation (19) We is \vel| known that distribution remains the same under

can restate PEP as: orthonormal transformations. Therefore we realize that
andw; = ——P¥v; have the same distribution{(0, 52I)).

PEP = Pr <1n (det Cr/detCr) > tr (CCEI) —tr (éCEl» - However size of the vector changes (sizd @fiso changes).

(21) By this transformation we rewrite the above equation:
Under the assumption th&, being an orthogonal matrix,

the determinants can be easily calculated. X o2 T T
tr (CC,I}) = % [ep tr (Z aiaf) +tr <Z vivzH>
1 i=1 =1
det (Cr) = o027 det (I + —2PTCan) T T
. [og+ —ei tr (Z aiaf{Da> — eptr <Z WZWlHDa>:| .
i=1 =1

P 2

= ] (1 n %) , (22) )

i=1 70 Similarly we can deriver (CCgl). The term we need in

where we have used the Sylvester's determinant theorefaguation (21) is:

det(I + AB) = det(I + BA) ande, = S is the pulse

energy. One thing to note is that the determinant does ,, = e, 02 T T

not depend on the path delays when the pulses are ndﬁ-(CCFl _CCTI) =2 (e a'Dai+) wiDw |.
=1

i=1

overlapping. Similarly we obtaidet (Cr). Hence left hand (27)
side of Equation (21) is: where D = D, — D, being another diagonal matrix.
Each element ofv;, anda; are complex Gaussian random
Np o2 + epo?, variables with mean 0. Fowy, every entry has the variance
In (det Cr/detCr) =} _In (W) = /1. (23 42 while i"" entry ofa; has a variance of2 . The matrix
=t ' b D being diagonal simplifies the analysis substantially. It
For the inversion oC7 andCr we will use the Woodbury's prevents the coupling of the cross elements of the vec-

matrix inversion lemma. We get: tors. Therefore Equation (27) represents a summation of
squares of Gaussian random variables weightefDbgince
Cc;' = 0;%(1-P,D,PY) (24) N N
Cy' =0, 2(1- P,D,PY) (25) 2 Dar = [Dljjlax;|* andwiDwy = 3 [D]j;fuwe; [,
j=1 og=r
whereD, and D, are diagonal matrices havii®,];; = each _Ioop of _(by loop any of th@ iterations is _meant)
o2 o? o Equation (27) is composed of summation of non-identically
————5 and [Dy};; = ———— on their diagonals jstributed exponential random variables. One important
oy + ep0y, oy + €p0yp,

thing to mention is that in order to consider it as a summation
we implicitly assume thaD has all positive elements on its
- diagonal meaning that? > o7 Vi. In the previous section
b — 1 3 (Prai 4 vi)(Pra; +vi) that distribution was calculated and given by Equation (13)
im1 As we have done in the previous section, let us call this
distribution asl¥;, and letiW = ZiT:1 W; (all W;’'s identi-
(Pfaiafle +Prav) +vial' P/ +V¢Vfl> cally distributed). Since the derivation of the distriloutiof
! summation ofI" of them (V) will be difficult, we will call
(PfaiaiHPf’ _’_Vivf{) (26) the CLT agaiq forT" being I.arg<_e. Before that er need the
mean and variance d¥; which is calculated as:

respectively. By using Equation (3) we can writeas:

N~

¢ =

el

1

o
Il

Il
N~

<
Il

Q
N =

1

<
Il



Np [1]
mw, = % £ [D]u (ep 01720'31- + 1) = 6% f2, (28) 2]

2 Np 2
012,[,1_ = T—Z [D]?i (ei 0540§i + 1) = T—’; f3-(29) (3]

i=1

W —-Tuw, . F
We know thatTTf' will tend to have a standard [5]
normal distribution J(V(O7 1)) whenT is large. Hence PEP (6]

can be reformulated as:

_ W — Tuw, VT B )
PEP = Pr ( — -~ (f1 —ep f2) ) (30)
VT
Q(m(%ﬁ—fl)) . (31)
And we can use the Chernoff bound for the function

bounding the PEP as:

1 —25}2'%(61) f2—f1)2.

PEP < Se (32)
In the general ergodic case, using the CLT, we get for the
PEP:
-1 -1
PEP - Q tr{CtCg" — I} —Indet(CtCg") (33)
\/%tr{(CTCIZl -1)2}

from which we see that a mismatch in every path contributes
separately to decreasing the PEP when the path delays are
well separated (the numerator of the argument of ¢he
function is a form of the Itakura-Saito distance between
covariance matrices).

For the non-ergodic case in which the chanhalemains
constant in theT' estimatesh;, the PEP using the CLT
becomes:

In this contribution we derived approximate analytic re-
sults for the PEP for PDP-F. To the best of our knowledge,
there has not been any work for the computation of PEP
for fingerprinting applications so far. Hence the effect of
the pulse shape and other parameters on PEP are explicitly
shown. As expected we have shown that the PEP decreases
with the increasind’. In the asymptotic case, PEP goes to 0
for both of the algorithms investigated. Possible extamsio
of this work might be to investigate specific cases, e.g., all
path amplitudes being equal, and etc.

h” Ah + o%tr(A) + In(det Cr) — In(det C)
o2
J=lAllr

PEP:EhQ(

(34)
where A = Cg' — C1'.

IV. CONCLUSION
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