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Abstract— Power Delay Profile-Fingerprinting (PDP-F) al-  database [1] for fingerprints. In [2], authors provide deter
lows to do positioning in multipath and even in NLOS environ-  ministic and Bayesian methods for PDP-F based localization
ments. Although many algorithms for position fingerprinting The Gaussian Maximum Likelihood (GML) based PDP-F

have been developed, analytical investigation in this area is led in thi ticle is also i tant for th K
still not matured. In this paper, we derive Cramér-Rao bounds révealed In this arucle 1S also Imporiant 1or thé work we

(CRBs) for location dependent parameters (LDPs) when they have developed in this article in the Rayleigh fading sectio
are finite and perform local identifiability analysis under It is well known that at least 3 BSs are required for a TOA

different path amplitude assumptions. We show that local pased localization system to uniquely identify (globalride
identifiability of the position vector can be accomplished if a tifiability) the location of the MT in 2D. Local identifiabty

condition for the pulse shape is satisfied even with one path . imilar i in th that th it fth bil
under the assumption that path amplitude is a genuine function 'S @ Simiiarissue in the sense that the position ot tné mobiie

of position (anisotropic path attenuation). On the other hand Must be uniquely identified around a local neighborhood
at least two paths are required to achieve local identifiability —of the MT. Hence if only signals from 2BSs are available,

for a distance dependent attenuation model (isotropic path the intersection of two circles will result in two possible
attenuation) for path amplitudes. In order to simplify the  c5ngidates for the MT position. In this case it is clear that

analysis we assume that pulses from different paths are non- . - e L . s
overlapping. Fisher Information Matrix (FIM) for LDPs and there is no global identifiability. However local identifibty

the position vector is derived to prove the statements. is present. To summarize no global identifiability in presen
Index Terms—fingerprinting, local identifiability, localiza-  of local identifiability means that there are discrete (not
tion, Fisher Information Matrix, Cram ér-Rao bound continuous) ambiguities left. No local identifiability mea

that there are continuous ambiguities left.
Notations: upper-case and lower-case boldface letters de-
Conventional localization techniques such as TOA (Tim&ote matrices and vectors, respectivély” and (.)? rep-
of Arrival) based algorithms depend on LOS conditionstesent the transpose and the transpose-conjugate ojerator
Moreover more than one Base Station (BS)-Mobile Terminal {.} is the statistical expectatiofk {.} is the real part and
(MT) links should satisfy LOS conditions to locate the MT.t7 {.} is the trace operator defined for square matrices.
It is not always the case that multiple links satisfy the
LOS conditions simultaneously. On the contrary location
fingerprinting (LF) (introduced by U.S. Wireless Corp. of |l MODELING OF THEPATH AMPLITUDES AND THE
San Ramon, Calif.) relies on signal structure characiesist CHANNEL MODEL
It exploits the multipath nature of the channel hence the
NLOS conditions. By using multipath propagation pattern, We begin with the channel model. The time varying
the LF creates a signature unique to a given location. Thehannel impulse response (CIR) between the BS and MT
position of the mobile is determined by matching measureean be written as:
signal characteristics from the BS-MT link to an entry of the

I. INTRODUCTION

database. The location corresponding to the highest match L
of the database entry is considered as the location of the h(t,7) = ZAi(t) p(T — 7:(t)) (1)
mobile. For LF, it is enough to have only one BS-MT link =1

(multiple BSs are not required) to determine the location )
of the mobile. Also LF is classified among Direct Location Where L denotes the number of paths (raysjt) is the
Estimation (DLE) techniques. Ahonen and Eskelinen Suggeg@nvolunon of the transmit and receive filters (pulse sb'l,a.pe
using the measured Power Delay Profiles (PDPs) in tHe(t). Ai(t) denote delay and complex attenuation coefficient
(amplitude and phase of the ray) of tié path respectively.
* EURECOM's research is partially supported by its industriembers: It iS reasonable to assume that path delays and amplitudes

BMW Group, Swisscom, Cisco, ORANGE, SFR, ST Ericsson, Thales/ary slowly with the position. Let us now consider sampling
Symantec, SAP, Monaco Telecom. The research reported heesiralso

partially supported by the European FP7 projects WHERE2, WRGnd CIR W'th a sam_phng pe”c’d of, Ieadmg toN samples and
NEWCOM-++, stacking them in a vector as follows:



Note that we are computing the FIM in the true position.

ZE;Tt)t) The covariance matrix and the mean vector which were
h(t) = | . ’ — Z Ai(t) pr, 2) computed offline according to the parameters of a database
: i=1 entry (each entry in the database correspond to a different
h(N~s,t) position with unique parameters such as path delays, am-
p(rs —7) plitudes, etc.) belong to the same position of the measured
(27, — 7) channel estimates. And also our main interest is the local
wherep. is defined asp, = | . which is the identifiability of the position vector = [z, y] which denotes
: the coordinates of the mobile position. Hence there will be a
p(N77s = 7) FIM transformation of parameters frofnto r. We can easily

sampled complex pulse shape vector having a delay equal&Btain the transformation frond,
the delay of the path in samples and Masionzero samples. formula [5]:
We implicitly assumed that paths are resolvable (system '

to J, by the following

bandwidthW is sufficiently large). If we write Eq. (2) in J. = FJ,FH (6)
matrix notation and include the channel estimation noise, .
we obtain the estimated CIR vector as: whereF = %\r:ro (ro = [z0,y0]” being the true position
Ar() of the mobile) is & x 2L matrix which is given by:
1
ﬁt:p7_~~~p.,. : +v(t). 3 .
ARG v o ... 9w 093 . 00}
P AL (t) F = ox ox Oz, Oz,
_— o ... 9 9o . Oy
b(t) dy oy 9y 9y T=20,Y=Yo
Two possible models can now be considered for the path @)

Note that LDP vectord will be defined differently in the

Gaussian modeld; (+) Gaussian with zero mean Char_next section which will result in a differef matrix. If we
* acterized by a bé)wer (variance) i.ear(A;) — ’02 check Eq. (6), for local identifiability of, J, must be full

which corresponds to Rayleigh fading case for théank (rank 2). Foul, to be full rank, it is reqqlred tha].9
magnitude must have at least rank 2. For the path amplitude variances,

S ) A they are mostly modeled by distance dependent attenuation
« deterministic model4;(t) deterministic unknowns 2o ; . : .
o ) , e which is accompanied by a path-loss coefficient (isotropic
We will investigate the local identifiability issues for hot

i e model). In that case? = % wherek is a positive constant
cases. In general, local identifiability of a parameter eect depending on the propajation speed of the wave, antenna
can be achieved when the Fisher Information Matrix (FIM) i ains, etc andy is the path-loss coefficienty( > 2)’ in

nonsingular [3]. Moreover we will investigate aspemale:assuch a conditiong? is just a function ofr. So only 7;

_orfhthe CIR wt:!ch v_\/|lltr;]1atke tTe derlv:t;lt_|t§>nt_of the FIM eas'gr'carries position dependent information. On the other hand
e s ot e sy ol canconsido o 2  postion depencen parameter
This makes the pulse matriR. an orthooonal Matrix. i.e (anisotropic model). For example in a given position it ntigh
P Do 9 '_~" be a function of the surrounding geography which will
PHP, = ¢,I wheree, = ||p(7)|? is the pulse energy. This . : . :
asTs r; t'og can be pal'd for hiah bandwidth s stem.s heé:ause reflections, refractions and so on. It is obvious that
th u Ipl durati val " '% ¢ Wi y WNEHR that case each path will carry 2 distinct information abou
€ puise durations are quite short. po2sition inzstead of 1. Also note that by chain rule, we have
Ill. CRB ANALYSIS FOR THERAYLEIGH FADING CASE %00 _ doudn _ \ dn \yherey, — —kyr, Y for the
Let 6 represent the vector of LDPs. If we justisotropic model. We can say thBtis a generic matrix. Hence
consider the delays and the variances of the conitis full rank (rank2) with probability 1 for the anisotropic
plex path amplitudes as LDP is given as:§ = case. For the isotropic modelinggnk(F) = min(2, L) due
[7_1, To, oo T, 02, 02, -+ U%]T, wherer; and o2 rep- to the chain rule. Therefore it is never possible to achibee t
path respectively. The log-likelihood of the data vectar foNow we will consider each of these cases separately.
complex white Gaussian noise is given as:

amplitudes:

A. Anisotropic Path Amplitude Variances

£L 5 —In(det (Cyp) — (ﬁ - M)H o (B 3 u) @) f hf we turn back to the discu_ssion abaly, in the Rayleigh
ading case the channel estimates have zero mean because
Hence from Eq. (4), the elements of the FIM for a general Eb(t) = 0. Hence the second term in Eq. (5) vanishes. The
complex Gaussian scenario is given by [4] covariance matrix of the channel estima€gg;, can be easily
obtained from Eq. (3) and given i};; = P, C,PH +021,
_10Cq4 ~—10Cqy, opul® _i[ou])\ o2 being the channel estimation error varian€®, is a
Wel,; = tr (Cﬁﬁ 90, Chn 90; )+2§R ({891} Chs L’)GJD ‘diagonal matrix with entrie§o?, 03, , o7 ]. The diagonal
(5)° structure of C, comes from the uncorrelated scattering




assumption of the paths. So for the GML technique witlhaving completely derived the FIM for the LDP vector, we
Rayleigh fading, the FIM is: can check the conditions to have at least rank 2 to achieve
9Css 5C.. the local identifiability ofr. We will first investigate the case
[Jol,; = tr (C-.l hoot *‘h) : (8) whenL = 1. In this case we have two LDPs namely and

hh 9y, hh 9y, .
_ ) ) ) o?. For L = 1, FIM has the following structure:
After this assumption, we can derive the elements of the FIM

by using Eg. (8). We can explicitly obtain the inverse of the Jo =
covariance matrix by using Woodbury’s matrix identity. By
exploiting the orthogonality of the pulse mati,, inverse  Obviously to achieve a rank of 2, the diagonals of the

Jom O

0 Jo.. (14)
03,07

covariance matrix is obtained as: matrix must be nonzero. As can be seen from Eg. (13),
J2 »2 is always positive. Fod ;, ;,, the following condition
Cip ' =010, 22 % _p.pH (9) Must hold:ep eq # b*. We can also state in the following
— epo} +02 ' form: [pI'p’.[> # |p-|? [[p'-[*. Note that we have not

For the preparation of the computation of the FIM entriesuS€d 71, but mstead we just used because the statement
we first compute the partial derivatives of the covarianc independent of the delay. What we observe is that local

matrix with respect to the parameters as follows: identifiability of r depends on the pulse shape and its deriva-
tive for L = 1. By using the Cauchy-Schwarz inequality we

have: ||p, || [[p’,|*? > |pZp’,|%. So unless one vector is

a;,}éh =P~ P, 8;}:}‘ =-0i (P Pr, + P, ’f) (10)  a scalar multiple of the other vector (pulse shape and its
‘ ) derivative), the equality never holds making the matrixkran
P/(Ts —7) 2 (full rank in this case). This is an important result beeaus
where p/. — P27 —7) and p'(nr, — 1) being local identifiability of r can be achieved with only 1 path.
T : s Another thing to emphasize is that if the pulse is real or
é?'(NTTs —7) symn;etric,_thelna and conseqL;'entIYo kl)ecolmdes()é_f_lnbak_]tis f
i dn(t , . caselJ,, ,, is always nonzero. Hence local identifiability o
defined asy/(n7, — 1) = 4 )‘ - With these partial i - chieved without any constraints in this case. We can
der|vat|ves and by using Eq. (8), (8) and the assumption thélasny extend the investigation fat > 1. Moreover it is
P ps, = dije,, we obtain the FIM entries: also possible to extract the CRBs for the estimation of the
elements of the LDP vectof. For that purpose diagonal
Jos (Cgﬁ BgThh Cf,ﬁ f’:ﬂ entries of the inverse al, must be computed. Fab > 1,
= gtay* (tr (BiBi) + ¢ tr (C;Cs) — 2¢; tr (BiCy)) FIM |s still_ a diagpnal matrix ZL x 2L). Hence now !ocal
Where identifiability of r is guaranteed without any constraints on

the pulse shape fof. > 1. Computing the CRBs is quite

easy for a diagonal matrix and given by:

B: = (p’ﬁpfi +PnP Tl> Ci= (apnpn + €yPrp ﬁ)
2

a=pip —atijb, = — . B(r — ) > 1 _ 1 1 1
PP -, J ep o?ﬁ»a% (11) (T T) > Jn’n 87T2W2SNR1( + SNRL)7
2
However we recognize that = jb (a tuns out to be  p(,2 22 > 1 (1+ 1 ) 7
0). However we omit the proof due to lack of space. Also Jag,ag SNR;

when the pulse is real or symmetric around its ceritetso h [,3 < h | SNR) of
becomed) resulting ina = 0. After doing the algebra, we where SN R; = is the signal to noise ratio ( )o
obtain the result as follows: the i'" path, andW is the the effective bandwidth of the

pulse given by = ¥ 62‘;/8’”. One remark we can make is

) (12)  that due to the non-overlapping pulse assumption, the CRBs
for path i only depend on the parameters of tié path.

wherep’Hp’T = ¢q4. Evidently information is higher for And also estimation of the delay becomes easier with the

stronger paths. By using the same methodology we continircreasing bandwidth, and as expected higher SNR makes

20t0, 2 (epeq — b?)

epo?+ o2

Jrim =

to calculate the rest of the FIM. the estimation easier for all parameters.
5 B. Isotropic Path Amplitude Variances
1 3Chh 1 8Chh €p . . .
Jo2 2 =tr | Cpp 92 “Rh g2 =\ gl Now as explained before, we conS|der the path variances
g "7 (@3) as distance dependent. Hengg = £ . As 7; ando? are
And Jo2,, =J., -2 turns out to be). For L > 1, we have coupled now, we will apply chain rule to derive the elements

the cross terms of ‘the FIM for different paths, €lg, -, for  of the FIM. In fact we do not need the entries explicitly for
i # j. Due to the non-overlapping pulse assumptlon all thimcal identifiability analysis. As we told before, fdr = 1,
entries of the FIM corresponding to different paths result iit is impossible to achieve local identifiability (only pdsie
0. Proof is simple but omitted here due to lack of space. Aftefior L > 1). To distinguish the entries from the anisotropic



case, we will use the notatial,, ,, for example. By using 5
H JPi
€

Eqg. (8) again we have: =—a On _ e’*ps,. (19)
873- 8@1'

With these partial derivatives, the entries of the FIM can be
computed as:

/
P

, _ __—19Cyqy do? ~ —10C; do?
I =1tr (Chh do? dri Cin o2 dr;

2 H
where ‘fl‘:’; = —kyr; 7T = ;. Henced',, ,, = 07 52 o2, T = 5N ({gf] [é’f]) =% aj eq,
andJ .. =J'_ .2 =n;J .2 ,2. Hence itis not possible to ) ou 17 T on 2
calculate the CRBs for the LDPs due to the rank deficiency Jajap = 2N ([Dai] {HD =

of the FIM. Therefore we change the strategy here. The ran
deficiency results from the fact that parameters are coupl%
(02 is a function ofr;). Therefore for the LDP, only delays

hereJ., ., = 0. For L > 1, the cross terms again all turn
t to be equal td) for i # j. For L = 1, the FIM is given

will be accounted, FIM will consist of only delays and theiraS follows:

CRBs will be calculated. CRBs for the estimationogfs will Ty — 2 { ales O } . (20)
be calculated by the transformation of parameters tecleniqu oy 0 e

[4]. We obtain easily: Clearly it is always rank 2. Obviously for any, FIM

is always full rank (rank2L) which guarantees the local

/ — 2 b . .pe oy
Trimi = Jrim 102 52 (15) identifiability of r. For the CRBs we have:
The calculation of the CRBs is now straightforward: ) )
~A\2

i — Tq > = )

e 1 _ 1 Blri=7)" 2 57— = gowesng, (21)
E(ri—7)" > 5 , (16) P57
I Jrir £ 07 d52 52 5 1 a?
v E(a; —d;)* > = —2, 22
s 1 (0 =di)" 2 77— = 39N, (22)
E(Ui - 012) > 2 (17) . .
Jo2 02 +Jr; 7, /0] where nowSN R; = afe,/o2. Hence we see that estimating

whereJ,. .. andJ,. . are given by Eq. (12) and (13) re- the delay is easier now than in the Rayleigh fading case.
spectively in the anisotropic case. We see that the infaamat T We extend the results to the isotropic modeling of the

is higher than the anisotropic case for both of the parametePath amplitude:;’s, we obtain similar results as we obtained
and this is an expected result. The reason is that, now rig:the Rayleigh fading case in the sense that estimationeof th

only delay, but also the path power carries information abolparameters become easier than their anisotropic counterpa

the delay and vice versa which makes the estimation of the V. CONCLUSION
parameters easier. After the analysis what we have seen is that local iden-
IV. CRB ANALYSIS FOR THE DETERMINISTIC CASE tifiability of the position vector depends on the number of

Now in this section we model the path amolitudes agaths {) and the modeling of the path amplitudes as well.
deterministic unknowns which does nol'? de endIO on delays" the Rayleigh fading case, for the anisotropic modeling,
) . . o P ; Ycal identifiability of the position vector can be achieved
instead a genuine function of position (anisotropic mode aven for L — 1. However for the isotropic modeling, at

ing). We turn back to the channel model in Eqg. (3) an ) : e
write the complex path amplitude of pathin polar form (ﬁaast two paths are required ¢ 2) for local identifiability.

The difference stems from the fact that if we consider the

as A;(t) = a;(t)e’**® where we assume that the phase . . :
: 7 RS sotropic modeling, only the delay parametert) (carries
¢;'s are deterministic unknowns. In this situation the LDP.” . . . .

- T distinct information about position. On the other hand each
vector is:0 = [r, T2, - TL, a1, a2, --- ar] . AS we

now have deterministic path amplitudes, mean of the chanrl%??h caries two distinct information about position foe th

estimates is not zero and given py= P b(t). We also have anisotropic _modelmg. For the (_:Ietermlr_usnc path ampktud _
. . . - 9 case there is the same reasoning again. As a result what is
a different covariance matrix which €;; = o;1. Under

these conditions, the computation of the FIM matrix will beobtalned is parallel to the case in which local identifidpili

. ) . . can be achieved with 2 TOA information.
different. If we check Eg. (5), unlike the Rayleigh fading
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