Stochastic Games for Cooperative Network Routin
and Epidemic Spread

Lorenzo Maggi Konstantin Avrachenkov Laura Cottatellucci
Eurecom INRIA Eurecom
Mobile Communications Department BP95, 06902 Sophia Antipolis, France Mobile Communications Department
BP193, F-06560 Sophia Antipolis, Frandemail: k.avrachenkov@sophia.inria.BBP193, F-06560 Sophia Antipolis, France
Email: lorenzo.maggi@eurecom.fr Email: laura.cottatellucci@eurecom.fr

Abstract—We consider a system where several providers share The customers’s traffic is injected in the networknat N —1
the same network and control the routing in disjoint sets of nodes nodes, called sources, located in nodes= {i1,...,in} C
They provide connection toward a unique server (destination) V/{N1. There is only one destination, in nod& We assume

to their customers. Our objective is to facilitate the design that ail th i it at th te th kets of
the available network links and their costs such that all the at all tne sources transmit al the same rate the packels of a

network providers are interested in cooperating and none of Providerk, for all possiblek. Let ¢ (i, j) > 0 represent the
them withdraw from the coalition. More specifically, we establish cost per unit time that providet has to sustain to convey its

the framework of a coalition game by providing an algorithm  own packets, sent by any of the sourceinthrough the link
to compute the transferable coalition values. As by-product, i .

we apply the proposed algorithm to two-player games both in . . . .
networks subject to hacker attacks and in epidemic networks. The k-th service provider controls the routing, i.e. the
activation of outgoing links, in the set of nodds. We

I. INTRODUCTION suppose that a node is controlled at most by one provider, i.e
Sharing resources among competitive operators is a fuh-1V;=0, Vi#j and{J, V; € V. Each node is assigned a
damental issue in 4G wireless systems. Cooperation enalsigbsety; CV, such that thelirectedlink i — j can be activated
a better exploitation of the resources and promises highit@nd only if j € «;. In the generic nodé € Vj, controlled
revenues to network providers. However, cooperation amoRy provider k, provider & himself can assign a probability
competitive entities is complicated by the sensitive isefie distributionf;, to the each nodg € «; such that the probability
conflicting interests. Thus, it becomes imperative to natév that the network link(i, j) is utilized for routing isfj (i, j) at
and guarantee a fair cooperation among these entities. Thyrouting decision moment. The destination node is a “sink”,
can be achieved by a careful distribution of the costs @nd it does not route the incoming packets to any of the other
the incremental revenues obtained by cooperating. Caalitinodes. We remark that all the nodgs ..., N — 1}, included
games offer a suitable theoretical framework to address tffie sources, serve as routing nodes.
problem. Let <I>g“), with 8 € [0;1], be aN-by-1 vector whose-th
Several providers share a network to provide connecticomponent is the expectetidiscounted sum of costs:
towards a unique common destination to their customers. We
provide a framework of a coalition game to facilitate the Ee .t [Zﬁtck(ityit-i-l)}, with ig = 1,
design of the available network links and their costs suelh th t>0

the_r e exists an optimum routing strategy and a cost Sha”vr\]/ﬂerez't is the t-th node crossed by the packets. It is worth
satisfying all the subsets of providers. More specificalig noticing that, for — 1 3™ is the undiscounted sum and
provide algorithms to compute the coalition values, i.ee th 9 ' AR, L

g - . [ts I-th component, with € 7, is the cost per unit time that

minimum costs that each coalition can ensure for itself. Thg ; :
. . roviderk incurs for the stream of packets going from ki
proposed algorithm is based on some results for two-pla)Per -
. . ; . source to the destination.
zero-sum stochastic games with perfect informatiori_In [1].

It is worth noticing that the analyzed problem differs sub- m
stantially from the noncooperative routing games thordyigh - _
studied in literature (for additional details see elg. [Aida Let M = {1,...,M} be the grand coalition of service
references therein). At the best of the authors’ knowletige, Providers. We assume that the providers belonging to a gener
work is the first one applying coalition games to determingoalition C C M can stipulate binding agreements among

an optimum routing solution and cost allocation in a shardflem to enforce the optimum strategy for the coalition and

. ROUTING COALITION GAME

network. distribute the costs among themselves.
Let F¢ be the set of strategies available to coalitiba@ M. It
Il. ROUTING MODEL is easy to show thdf is the Cartesian product of the strate-
We consider a network consisting of a set of nodés- gies available to all the members©fi.e.F¢ = XyccFg, and
{1,...,N}. M service providers share the network to offethe set of strategieF: is dubbednot correlated Moreover,

their customers connection toward a single destinatiomdd thanks to available results on stochastic games (see Append



[A), we can focus only orpure (deterministic) strategies. Letwhere the relation< is component-wise anet is valid for
F¢ be the set of pure strategies f0ri.e. at least one component. Lét,c(fc) be the optimization

blem thatM/C f henC fixes it trategyfc.
Fc:{fk:{k:}ec; Vie Vi, Hj:fk(i,j)zl}. problem thatM/C faces whe ixes its own strategyc

Then, the optimum strategy fov1/C in Tyc(f¢c) maximizes
Let us define, for any3 € [0; 1], the expected3-discounted Q’(ﬁc)(fM/c,fc) component-wisely.

sum Algorithm 1.

1) Pick a pure routing strategy for coalition C.

k}ecC . . .

{ }e, ) L 2) Find the best strategy for coalition M/C in the op-
Letes be aN-by-1 vector containing 1's in correspond_ance of " timization problemi e (fc), for all the discount factors
the sources and 0's otherwise. In this paper we are intéreste  |5ge enough to 1.

. . . c) -
in the casel = 1, since the quamlt)eg‘l’(g:)l is the total  3) Find the first node controlled by coalitiod in which

2 (b fe) = > @ (fue. fo)

cost per unit time thaf incurs to sustain its|C| information a change of strategy; is a benefit for coalitionC for
streams. The minimum cos{(C) that coalitionC can ensure all the discount factors close enough to 1. If it does not
for itself is exists, then setf, .. f¢) = (faye, fe) and go to step
v(C) = min  max eg@gc)(f/vl/c,fc). 1) 4. Otherwise, sefc:= f/ and go to step 2.
fc€Fc fuyc EFayc 4) If limg_,q e?—{)g:)(fj/l/c, &) =1< +oo then sew(C) =
Under the transferable utility (TU) condition, we suppolsatt I. Otherwise, set(C) = +oo.

v(C) can be partitioned among the providers ©fin any . .
manner, thanks to a binding agreement among its members//e remark that the optimal strategy in step 2 and the

We can say that(C) is the minmax value of a zero-sum gaméstrategy refinement in step 3 are found with the help of simple
between the coalitio and the rest of the providetst/C tableaux in the non-archimedean ordered fig[®) of rational
who are willing to “punish” the coalitiorc. The formulation functions with real polynomial coefficients (for all desikee

of this conflict among coalitions as a two-player stochastLJ:D'
game with perfect information is available in Appenfiik B. g Transient case
The overall optimum global routing strated@y satifies

e ) e ) Suppose now that the following assumption holds.
v(M) = ez @ (F°) = fj\inei%w er® (fm)

Assumption 1. For any couple of pure strategie€nqc, fc)

where Fy, is the set of strategies available to the gran®’ M/C andC respectively, and for ali € V, there exists

coalition M. It is easy to see that the superadditivity propert§ Pathi i (faqc, fc) of finite Iengtﬁ Li(fryc, fe) and without
of the characteristic function: oops linking node; to the destination nodé.

v(C1) 4+ v(C2) = v(CLUCy), VC1,Co C M, C1NCy =0 The following result shows that the assumption above

(©) i i
holds directly from the minmax definitiofll(1) of ensuresP;’ to be finite, for any couple of strategies.

Proposition Ill.1. Suppose that assumptigh 1 holds. Then, for
all the pure strategie$rc € F e, fe € Fe:

(i) the pathr;(fuqc, fe) is unique;

A. Algorithm for computing coalition values

The valuesv(C) may be infinite. In Appendix[A it is
shown that(C) is the value of the game at Nash equilibrium. . ©)
If v(C) = +oo, then the optimal strategies for the players) @1 (fae, fe) < +oo.

i.e. the strategies at Nash equilibrium, impede at least one proof: Let 7i(Epe, fo) = {io=1,i1,...,ir, =N} be the
source-destination path by causing a loop in the network. fddes crossed by the pathwhen faye, fe are fixed. If there
practice,v(C) = +oo is not the cost that coalitiod has to existed more than one path linking two nodes then there would
bear; anyway, it shows well that any service provider canngiist at least one node in which more than one arc go out of

accept to lose its own packets. _ _it. This is impossible since the strategies are pure. T(ipis
The theory of stochastic games provides an approaelva@ proved. Therefore, we can say that

infinities in the computation of coalition value$he details o , o

are illustrated in LemmB_Al8, Appendix_AlA. The idea is to{pt(ﬂo =i,fae.fe) = W(j=ir), Vit e [L; Lilfaye, fe)]
compute the optimal strategieﬁjgc, £%), for coalitionsM/C pe(jlio =i, faqe, fe) = 0, Vit > Li(faqc, fe)
and C respectively, forall the discount factors sufficiently herep, (jio) is the probability that the-th node crossed by

;:A(;sl?r;ﬁ ;L(;rT;T’lwe adopt the strategy that is still optimal rr/]e packets starting in nodg is j. Thus,Vi € V, thei-th
' component oftbgc)(fM/c,fc) is bounded by

In the following, we illustrate the proposed approach. Fix
a pure strategy,c for coalition M/C. We say that the pure
strategyf’, is an improvement for coalitio with respect to ™
f/ for the discount factop iff

Li(frqe, fe) | C| fglaxck(i,j) < +oo
2%

© © 1a path is a sequence of connected nodes
e, (fae, fo) < @, (fre, fe) 2the length of the path is the number of edges that it is composed o



1) Adapted algorithm for finite coalition valuedf As- to the buffering. The service provider here wants to find the
sumption[1 holds, then the algorithih 1 can be adapted rasiting rule thafjointly minimizes the packet delad; for all

follows (see Lemma_Al4). the sources; conversely, the hacker wants to slow down the
Algorithm 2. network.
1) Pick a pure routing strategyc for coalition C.
2) Find the best strategy'yc for coalition M/C in the oo
optimization problent’yc(fc), for g = 1. : ’ Hacker

3) Find the first node controlled by coalitiofi in which a : . O Service
change of strategy’, is a benefit for coalitiorC, for 3 = : provider
1. If it does not exists, then s(afj;/l/c,fg) =(fme, fe)
and go to step 4. Otherwise, sgt:= f; and go to step
2

4) Setv(C) = eg‘I)(lc)(f;/[/ca fe)- : : :
12 ! T

We remark that the algorithinl 2 is analogous to the or%ne .
described by Raghavan and Syed fin [6] whén= 1 and :
restricted to the transient case, with the difference that :i :
step 2 the search is not necessarily lexicographic for tho@li = :
M|/C. Indeed, at each iteratioM/C is allowed to find its Figure 1. Nash equilibrium in routing game. The continuousws are the

own temporarily optimal strategy witany Markov Decision activated links. The costs are specified next to each arraeeiGand red
Process solving method. nodes are controlled by the service provider and by the maokspectively.
In white nodes there are no routing choice.

-
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-
-
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IV. NETWORK DESIGN

The main contribution of this paper consists in describing As in sectiorl, there may be some couple of strategies for
how to compute the coalition values, and the network designthe two players for which there exist loops in the network,
not our purpose. Nevertheless, we suggest which steps caiiat cause the packet delay from some sources to be infinite.
be followed in this direction. Note that the hacker can also disrupt some nodes, by forcing

An eventual network designer should aim at devising bothloop on them. Hence, here we deal with the general case of
the routing decisionsy; available to each provider in eachundiscounted stochastic games described in Appendix A-A.
nodei € V and the cost of the linkgy(,7), in order to The undiscounted optimal strategies can be computed by the
ensure that each coalition of providers has an interest in rmdgorithm [, in which player 1 is now the hacker which
deviating from the global optimum polic§°. Formally, a controls noded/, and player 2 is the service provider, which
network designer should ensure the non-emptiness ofdhe controls noded/.
of the TU (transferable utility) coalition gam@/, v), i.e. that ~ Note that in this case, in contrast to the coalition game, we
set of costCo(v) = {g1,...,g9m} € RM that providers can are more interested in the computation of the optimal strate
share among themselves through binding agreements, satch gfies, and not in the value of the game at the Nash equilibrium.

M Indeed, the optimal strategy for the service provider ispines
> k=1 9k = v(M) routing policy it should adopt in order to minimize the sa#c
Z{k}ec g <v(C), VCCM. wise packet delay in the worst case. For Lenimd A.3, the worst
ituation for the provider is when the hacker is able to aintr
| the vulnerable node®; and has at its disposal as many
0routing policies as possible. Note that the optimal stiatefpr
both players are pure, i.e. the routing policy is deterntimis

V. HACKER-PROVIDER ROUTING GAME in each node.

. o : . . An example of optimal strategies for both players in a delay
The routing game with just two players described in Secn%ﬂuting game is shown in Figuf@ 1.

[Mcan also be re-interpreted in the framework of the corslic
between one service provider and one hacker. Vi
There is a set’; C V of vulnerable nodes, where the routing

control may be got hold by a hackér, is the set of nodes Let us reformulate the model described in secfidn V, where
in which the routing is handled by a service provider. Thelayer 1 is now a natural agent that can put out of order
setV, = V;/V; is the set of unattackable nodes among tteome noded’; C V of the network, independently of the
ones controlled by the service provider. Each link> j is routing action taken by the service provider in such nodes.
assigned:(¢, ) > 0, that in this case can be also interprete@his addresses the practical situation in which notesre

as adelay, i.e. the time that a packet of providérspends to located in areas subject to catastrophic natural phenoniena
go from nodei to nodej. In such a case, let us assume thas straightforward to see that the computation of the ogtima
the nodes are capable to re-direct all the incoming pacleetsstrategies for the service provider boils down to the calioih
soon as they receive them, without any additional delay doé&a Markov Decision Process uniform optimal solution (see

We see from the former equation that the core is global
efficient for the network and from the latter that it is als
stablewith respect to the formation of greedy coalitions.

. NATURAL DISASTER



[3]), in which the set of nodes of interest is reducedtpthat European research project SAPHYRE, partly funded by the
is the collection of nodes controlled by the service provide European Union under its FP7 ICT Objective 1.1 - The

Network of the Future.
VIl. EPIDEMIC NETWORK

In this section we model an epidemic network wiifh APPENDIXA
nodes;N—1 possibly infected individuals are located in nodes STOCHASTIC GAMES
{1,...,N — 1} respectively. Each individual can infect, with )
some probability, only one among a subset of other indiviglua_ N @ two-player stochastic ganie we have a set of states
in its neighborhood. There is a probabiljty that the infection S = {51,52,...,sn}, and for each state the set of actions
process starts from theth individual. The infection spread available to thei-th player is calledA®(s), i = 1,2.

terminates when the virus reaches the healer, located ia n&§der tlhe Zero-sum assumption, each triplea,, az) with
N. Hence, there is a probabilify, that the epidemic spread is?! < AW (s), ap € AP)(s) is assigned an immediate reward
averted. There are two player: player 2, the “good” one, warft(s: a1, az) for player 1, —r(s, a1, az) for player 2, and a
to design and force the connections among the individuals sdransition probability distribution(.|s, a1, a) on 5. _
that the lowest expected number of individuals are infected A Stationary strategyr € U for thei-th player determines
while player 1 has the opposite goal. The assumption of gerféh€ probability u(a[s) that in states playeri chooses the
information still holds, i.e. the set of nodes in which plage actionsa € [l ..., af;)i(s)]-
and player 2 have more than one action available are disjoiife assume that both the number of states and the overall

The formulation of the problem is analogous to theumber of available actions are finite.
two-player game described in sectioh II, in which the cost et p(s'[s, f,g) andr(s, f,g) be the expectation with respect
the link (4, ) is 1 for all nodesi, j. The nodes are substitutedto the stationary strategiedf,g) of p(s'|s,a1,a2) and of
by the individuals, the destination with the healer, therses 7 (s, a1, az), respectively.
become the first infected entity, the packet routing is regdla  In this paper we consider stochastic games with perfect
by the virus transmission. In this context, we wig ®, information, i.e. in each statat mostone player has more
to represent the average number of infected individuakhan one action available. Le&t; = {si,...,s: } be the set
Therefore, for each couple of routing strategias, loopsin  of states controlled by player 1 atd = {s;,+1,..., St;+t5}
the network are allowed, i.e. we suppose that the Assumptibe the set controlled by player 2, with+t, < N. Therefore,
[ holds. Hence, thanks to Propostion Il.1, for every couplds, f,g) = r(s,f) if s € S; orr(s,f,g) =r(s,g) if s € Ss;
of pure stationary strategie,g), u” ®,(f,g) is actually the same simplification can be carried out for the transition
the expected number of infected individuals. probabilities.

Let ®5(f,g) be a column vector of lengthv defined as

Thanks to Corollary_All, we can use the algorittith 2 -
to find the optimal strategy for the “good” player, who is . tt
interested in minimizing the objective functiuf ®, (f, g). If ®p(f.8) = Zﬁ P, g)r(f. g) 2)
(f*,g*) are the undiscounted optimal strategies, then the value
uT®,(f*, g*) is the most pessimistic estimate for player 2 fogsuch that itsi-th component equals the expectedliscounted

t=0

the expected number of infected individuals. reward when the initial state of the stochastic game;idn
@), 8 € [0;1) is the discount factol? (f, g) andr(f, g) are the
VIII. CONCLUSIONS N-by-N transition probability matrix and thBl-by-1 average

Several providers share the same network and control tiesvard vector associated to the couple of strategfeg),
routing in disjoint sets of nodes. There are several infoiona respectively. If3=1, then the reward is calledndiscounted
sources and one destination. By using the framework bétp be such thaB(1+p) = 1. Note thatif3 1 1, thenp | 0.
stochastic games, we provided algorithms to compute thet us give some definitions useful for our purpose.
minimum costs that each coalition of providers can ensure , , ,
for itself. This helps the optimum design of a network, whickpefinition 1. The j-discounted value of the ganiéis such
should guarantee the existence of an efficient and stabts cdgat
partition among the providers. We also modeled situations i
which there are two players with conflicting interests, like
a hacker against a service provider, or in which a service ] ]
provider wants to reduce the damages to the network caudsy optimal strategyf; (gj) for pl. 1 (2) assures to him a
by a natural disaster. An epidemic spread network model wigyvard which is at least (at mostp(I").
shown as well. From a theoretical perspective, we extendegm”ary A.1. The optimal strategie§;, g’; are also optimal

some results on ur_nform optlmz_:ll s_trategles in stochasmnegawhen the scalar objectivaT{)ﬁ is considered, where; >
to the case of undiscounted criterion. 0. Vi—1 N

®4(T") = supinf ®Pp(f,g) = inf sup (£, g). 3)
f 8 g f
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A strategy is pure if the action choice is deterministic iclea Corollary A.7. Let) ", ., ¢, be a series of positive terms and

state. The following Theorem (seg [2]) ensures the existen¢ce R. Then B

of such strategies among the optimal ones. )
{hmle Zkgo ahep =€ <= Zkzo cr=¢

Theorem A.2. For a stochastic game with perfect information, limgy 3o 2Fer = +00 S o O = 400
x k>0 - k>0 -

both players possess uniform discount optimal pure statipn

strategies(f*, g*) and moreover®;(T') =P 4(f*, g*). Proof: For theif conditions, see Theoreris AG,_A.6.

About theonly if conditions, we know/[4] that a positive term

eries either converges or divergesttoo. If >, o, cr =& #

, thenlimg11 Y7, zFe, =& for Theoren[Ab. Hence, both

Be («) relations are proved by contradiction. [ ]
Now we are ready to state the following result.

Let s; be a state controlled by playér= 1,2 and X C
A;(s¢). Letus calll'y, the stochastic game which is equivalenz
to I' except in state,, where player has only the action&
available. In the next sections, we make use of the followir}
result in [1].

Lemma A3, Leti—1, 2ands, € 5, X s, Y i, Bl e 2 e e of roal number
XNY =0. Then®*(T% € F(R), which is the uniform . :

0 o(Txuy) (R) i.e. treat 00 as a number oo = +oo0, —00 < a € R <
400). Then, the uniform optimal strategies are optimal in the
@) (I y) =1 max, {®) (%), ®5(Iy)} if i=1 undiscounted criterion as well, i.e.

@ (Iuy) = min, {®5(T), &,(IY)}  if i=2 B, (f,g") < &, (f*,g") < B, (f*,g) VEg (5
Let us introduce another special class of stochastic games. pqof: By definition, the saddle point relatiofl (5) is valid
Definition 3. Let p,(.|s) be the transition probability from V/3 € [3;1) and hence also for the limjit T 1. Then, it is still

value of the gamé& -, equals

states after ¢ steps. A stochastic ganteansient if valid for 3 = 1 for Corollary[AZ. u
oo , APPENDIXB
S pils]s, £, 8) < o0 4) FORMULATION OF ROUTING GAME AS A STOCHASTIC
=0 55 GAME
for eachs € S and all pure stationary strategiet and g. Let us formulate the routing model in sectiéd Il as a

ts.tochastic game. Player 2 is the coalita M, while player

1 is the rest of the providerat/C. There exist a bijective
Lemma A.4. Algorithm[2 provides the undiscounted optimahssociation between the network nodéand the state§. Let
strategies for transient stochastic games. S; and S, be the set of states associated to the set of nodes

Proof: In transient stochastic games with bounded i inﬂv},eM/C Vie and 0 Uy ec Vi, respectively. The network

stantaneous payoffs, the undiscounted reward is also leoynd""". * _(’k)] 1S actlvateq it and only if playeri_f selects the
for each couple of stationary strategies ($ée [2]). Funtioge, actiona;(si), wherej € a;, k : s; € Si. The instantaneous
under the transient condition, the uniform optimal streeg reward r(si,a;k)(si)) = D (prec cp(i,7), where k is the
are optimal under the undiscounted criterion as well (sPe [1player that controls the nodé The transition probability
Itis straightforward to prove that all the elements, belogdo is p(s.|s;,al"(s;)) = L(w = j), where I is the indicator
F(R), of the simplex tableaux built throughout the algorithim function. Note tha" .o p(s'|s,f,g)=1,Vs € S/{sn} and
are right continuous ip=0 (or, equivalently, left continuous for each couple of stationary strategigsg). The destination
in 3=1). Therefore, we are allowed to shift the ordered fieldode is a “sink”, i.ep(s;|sy)=0, Vi € [1; N], and no actions
on which the algorithm works fron¥'(R) to R, with 5=1. are available in it for both players.
|

Note that the stochastic game in secifion 1}I-B is transien
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