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Abstract—We consider a system where several providers share
the same network and control the routing in disjoint sets of nodes.
They provide connection toward a unique server (destination)
to their customers. Our objective is to facilitate the design
the available network links and their costs such that all the
network providers are interested in cooperating and none of
them withdraw from the coalition. More specifically, we establish
the framework of a coalition game by providing an algorithm
to compute the transferable coalition values. As by-product,
we apply the proposed algorithm to two-player games both in
networks subject to hacker attacks and in epidemic networks.

I. I NTRODUCTION

Sharing resources among competitive operators is a fun-
damental issue in 4G wireless systems. Cooperation enables
a better exploitation of the resources and promises higher
revenues to network providers. However, cooperation among
competitive entities is complicated by the sensitive issueof
conflicting interests. Thus, it becomes imperative to motivate
and guarantee a fair cooperation among these entities. This
can be achieved by a careful distribution of the costs or
the incremental revenues obtained by cooperating. Coalition
games offer a suitable theoretical framework to address this
problem.

Several providers share a network to provide connection
towards a unique common destination to their customers. We
provide a framework of a coalition game to facilitate the
design of the available network links and their costs such that
there exists an optimum routing strategy and a cost sharing
satisfying all the subsets of providers. More specifically,we
provide algorithms to compute the coalition values, i.e. the
minimum costs that each coalition can ensure for itself. The
proposed algorithm is based on some results for two-player
zero-sum stochastic games with perfect information in [1].

It is worth noticing that the analyzed problem differs sub-
stantially from the noncooperative routing games thoroughly
studied in literature (for additional details see e.g. [7] and
references therein). At the best of the authors’ knowledge,this
work is the first one applying coalition games to determine
an optimum routing solution and cost allocation in a shared
network.

II. ROUTING MODEL

We consider a network consisting of a set of nodesV =
{1, . . . , N}. M service providers share the network to offer
their customers connection toward a single destination nodeN .

The customers’s traffic is injected in the network atn≤N−1
nodes, called sources, located in nodesT = {i1, . . . , in} ⊆
V/{N}. There is only one destination, in nodeN . We assume
that all the sources transmit at the same rate the packets of a
provider k, for all possiblek. Let ck(i, j) > 0 represent the
cost per unit time that providerk has to sustain to convey its
own packets, sent by any of the sources inT , through the link
i→j.

The k-th service provider controls the routing, i.e. the
activation of outgoing links, in the set of nodesVk. We
suppose that a node is controlled at most by one provider, i.e.,
Vi ∩Vj =∅, ∀ i 6=j and

⋃

i Vi ⊆ V . Each nodei is assigned a
subsetαi⊆V , such that thedirectedlink i→j can be activated
if and only if j ∈ αi. In the generic nodei ∈ Vk controlled
by provider k, provider k himself can assign a probability
distributionfk to the each nodej ∈ αi such that the probability
that the network link(i, j) is utilized for routing isfk(i, j) at
anyrouting decision moment. The destination node is a “sink”,
and it does not route the incoming packets to any of the other
nodes. We remark that all the nodes{1, . . . , N − 1}, included
the sources, serve as routing nodes.

Let Φ
(k)
β , with β ∈ [0; 1], be aN -by-1 vector whosei-th

component is the expectedβ-discounted sum of costs:

Ef1,...,fM

[

∑

t≥0

βtck(it, it+1)
]

, with i0 = i,

where it is the t-th node crossed by the packets. It is worth
noticing that, forβ = 1, Φ

(k)
1 is the undiscounted sum and

its l-th component, withl ∈ T , is the cost per unit time that
providerk incurs for the stream of packets going from thel-th
source to the destination.

III. ROUTING COALITION GAME

Let M = {1, . . . ,M} be the grand coalition of service
providers. We assume that the providers belonging to a generic
coalition C ⊆ M can stipulate binding agreements among
them to enforce the optimum strategy for the coalition and
distribute the costs among themselves.
Let FC be the set of strategies available to coalitionC ⊆ M. It
is easy to show thatFC is the Cartesian product of the strate-
gies available to all the members ofC, i.e.FC = ×k∈CFk, and
the set of strategiesFC is dubbednot correlated. Moreover,
thanks to available results on stochastic games (see Appendix



A), we can focus only onpure (deterministic) strategies. Let
FC be the set of pure strategies forC, i.e.

FC =
{

fk : {k} ∈ C; ∀ i ∈ Vk, ∃ j : fk(i, j) = 1
}

.

Let us define, for anyβ ∈ [0; 1], the expectedβ-discounted
sum

Φ
(C)
β (fM/C , fC) =

∑

{k}∈C

Φ
(k)
β (fM/C , fC)

Let eT be aN -by-1 vector containing 1’s in correspondance of
the sources and 0’s otherwise. In this paper we are interested
in the caseβ = 1, since the quantityeT

T Φ
(C)
β=1 is the total

cost per unit time thatC incurs to sustain itsn|C| information
streams. The minimum costv(C) that coalitionC can ensure
for itself is

v(C) = min
fC∈FC

max
fM/C∈FM/C

eT
T Φ

(C)
1 (fM/C , fC). (1)

Under the transferable utility (TU) condition, we suppose that
v(C) can be partitioned among the providers ofC in any
manner, thanks to a binding agreement among its members.
We can say thatv(C) is the minmax value of a zero-sum game
between the coalitionC and the rest of the providersM/C,
who are willing to “punish” the coalitionC. The formulation
of this conflict among coalitions as a two-player stochastic
game with perfect information is available in Appendix B.
The overall optimum global routing strategyFo satifies

v(M) = eT
T Φ

(M)
1 (Fo) = min

fM∈FM

eT
T Φ

(M)
1 (fM)

where FM is the set of strategies available to the grand
coalitionM. It is easy to see that the superadditivity property
of the characteristic functionv:

v(C1) + v(C2) ≥ v(C1 ∪ C2), ∀ C1, C2 ⊂ M, C1 ∩ C2 = ∅

holds directly from the minmax definition (1) ofv.

A. Algorithm for computing coalition values

The valuesv(C) may be infinite. In Appendix A it is
shown thatv(C) is the value of the game at Nash equilibrium.
If v(C) = +∞, then the optimal strategies for the players,
i.e. the strategies at Nash equilibrium, impede at least one
source-destination path by causing a loop in the network. In
practice,v(C) = +∞ is not the cost that coalitionC has to
bear; anyway, it shows well that any service provider cannot
accept to lose its own packets.
The theory of stochastic games provides an approach toavoid
infinities in the computation of coalition values. The details
are illustrated in Lemma A.8, Appendix A-A. The idea is to
compute the optimal strategies(f∗M/C , f∗C ), for coalitionsM/C
and C respectively, forall the discount factors sufficiently
close to 1. Then, we adopt the strategy that is still optimal in
the limit for β → 1.

In the following, we illustrate the proposed approach. Fix
a pure strategyfM/C for coalitionM/C. We say that the pure
strategyf ′C is an improvement for coalitionC with respect to
f ′C for the discount factorβ iff

Φ
(C)
β (fM/C , f ′C) ≤ Φ

(C)
β (fM/C , fC)

where the relation≤ is component-wise and< is valid for
at least one component. LetΓM/C(fC) be the optimization
problem thatM/C faces whenC fixes its own strategyfC .
Then, the optimum strategy forM/C in ΓM/C(fC) maximizes

Φ
(C)
β (fM/C , fC) component-wisely.

Algorithm 1.
1) Pick a pure routing strategyfC for coalition C.
2) Find the best strategyfM/C for coalitionM/C in the op-

timization problemΓM/C(fC), for all the discount factors
close enough to 1.

3) Find the first node controlled by coalitionC in which
a change of strategyf ′

C is a benefit for coalitionC for
all the discount factors close enough to 1. If it does not
exists, then set(f∗

M/C , f∗
C ) := (fM/C , fC) and go to step

4. Otherwise, setfC :=f ′
C and go to step 2.

4) If limβ→1 eT
T Φ

(C)
β (f∗

M/C , f∗
C ) = l < +∞ then setv(C) =

l. Otherwise, setv(C) = +∞.

We remark that the optimal strategy in step 2 and the
strategy refinement in step 3 are found with the help of simplex
tableaux in the non-archimedean ordered fieldF (R) of rational
functions with real polynomial coefficients (for all details, see
[1]).

B. Transient case

Suppose now that the following assumption holds.

Assumption 1. For any couple of pure strategies(fM/C , fC)
for M/C and C respectively, and for alli ∈ V , there exists
a path1 τi(fM/C , fC) of finite length2 Li(fM/C , fC) and without
loops linking nodei to the destination nodeN .

The following result shows that the assumption above
ensuresΦ(C)

1 to be finite, for any couple of strategies.

Proposition III.1. Suppose that assumption 1 holds. Then, for
all the pure strategiesfM/C ∈ FM/C , fC ∈ FC :

(i) the pathτi(fM/C , fC) is unique;

(ii) Φ
(C)
1 (fM/C , fC) < +∞.

Proof: Let τi(fM/C , fC) = {i0 = i, i1, . . . , iLi
=N} be the

nodes crossed by the pathτi whenfM/C , fC are fixed. If there
existed more than one path linking two nodes then there would
exist at least one node in which more than one arc go out of
it. This is impossible since the strategies are pure. Then,(i) is
proved. Therefore, we can say that
{

pt(j|i0 = i, fM/C , fC) = 1I(j = it), ∀ t ∈ [1;Li(fM/C , fC)]

pt(j|i0 = i, fM/C , fC) = 0, ∀ t > Li(fM/C , fC)

wherept(j|i0) is the probability that thet-th node crossed by
the packets starting in nodei0 is j. Thus,∀ i ∈ V , the i-th
component ofΦ(C)

1 (fM/C , fC) is bounded by

Li(fM/C , fC) | C | max
k,i,j

ck(i, j) < +∞

1a path is a sequence of connected nodes
2the length of the path is the number of edges that it is composed of.



1) Adapted algorithm for finite coalition values:If As-
sumption 1 holds, then the algorithm 1 can be adapted as
follows (see Lemma A.4).

Algorithm 2.
1) Pick a pure routing strategyfC for coalition C.
2) Find the best strategyfM/C for coalition M/C in the

optimization problemΓM/C(fC), for β = 1.
3) Find the first node controlled by coalitionC in which a

change of strategyf ′
C is a benefit for coalitionC, for β =

1. If it does not exists, then set(f∗
M/C , f∗

C ) :=(fM/C , fC)
and go to step 4. Otherwise, setfC :=f ′

C and go to step
2.

4) Setv(C) = eT
T Φ

(C)
1 (f∗

M/C , f∗
C ).

We remark that the algorithm 2 is analogous to the one
described by Raghavan and Syed in [6] whenβ = 1 and
restricted to the transient case, with the difference that in
step 2 the search is not necessarily lexicographic for coalition
M/C. Indeed, at each iterationM/C is allowed to find its
own temporarily optimal strategy withany Markov Decision
Process solving method.

IV. N ETWORK DESIGN

The main contribution of this paper consists in describing
how to compute the coalition values, and the network design is
not our purpose. Nevertheless, we suggest which steps could
be followed in this direction.

An eventual network designer should aim at devising both
the routing decisionsαi available to each provider in each
node i ∈ V and the cost of the linksck(i, j), in order to
ensure that each coalition of providers has an interest in not
deviating from the global optimum policyFo. Formally, a
network designer should ensure the non-emptiness of thecore
of the TU (transferable utility) coalition game(M,v), i.e. that
set of costCo(v) = {g1, . . . , gM} ∈ R

M that providers can
share among themselves through binding agreements, such that

{

∑M
k=1 gk = v(M)

∑

{k}∈C gk ≤ v(C), ∀ C ⊂ M.

We see from the former equation that the core is globally
efficient for the network and from the latter that it is also
stablewith respect to the formation of greedy coalitions.

V. HACKER-PROVIDER ROUTING GAME

The routing game with just two players described in section
II can also be re-interpreted in the framework of the conflicts
between one service provider and one hacker.
There is a setV1 ⊆ V of vulnerable nodes, where the routing
control may be got hold by a hacker.V0 is the set of nodes
in which the routing is handled by a service provider. The
set V2 = V0/V1 is the set of unattackable nodes among the
ones controlled by the service provider. Each linki → j is
assignedc(i, j) > 0, that in this case can be also interpreted
as adelay, i.e. the time that a packet of providerk spends to
go from nodei to nodej. In such a case, let us assume that
the nodes are capable to re-direct all the incoming packets as
soon as they receive them, without any additional delay due

to the buffering. The service provider here wants to find the
routing rule thatjointly minimizes the packet delayΦ1 for all
the sources; conversely, the hacker wants to slow down the
network.
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Figure 1. Nash equilibrium in routing game. The continuous arrows are the
activated links. The costs are specified next to each arrow. Green and red
nodes are controlled by the service provider and by the hacker, respectively.
In white nodes there are no routing choice.

As in section II, there may be some couple of strategies for
the two players for which there exist loops in the network,
that cause the packet delay from some sources to be infinite.
Note that the hacker can also disrupt some nodes, by forcing
a loop on them. Hence, here we deal with the general case of
undiscounted stochastic games described in Appendix A-A.
The undiscounted optimal strategies can be computed by the
algorithm 1, in which player 1 is now the hacker which
controls nodesV1, and player 2 is the service provider, which
controls nodesV2.

Note that in this case, in contrast to the coalition game, we
are more interested in the computation of the optimal strate-
gies, and not in the value of the game at the Nash equilibrium.
Indeed, the optimal strategy for the service provider is thepure
routing policy it should adopt in order to minimize the source-
wise packet delay in the worst case. For Lemma A.3, the worst
situation for the provider is when the hacker is able to control
all the vulnerable nodesV1 and has at its disposal as many
routing policies as possible. Note that the optimal strategies for
both players are pure, i.e. the routing policy is deterministic
in each node.

An example of optimal strategies for both players in a delay
routing game is shown in Figure 1.

VI. NATURAL DISASTER

Let us reformulate the model described in section V, where
player 1 is now a natural agent that can put out of order
some nodesV1 ⊂ V of the network, independently of the
routing action taken by the service provider in such nodes.
This addresses the practical situation in which nodesV1 are
located in areas subject to catastrophic natural phenomena. It
is straightforward to see that the computation of the optimal
strategies for the service provider boils down to the calculation
of a Markov Decision Process uniform optimal solution (see



[3]), in which the set of nodes of interest is reduced toV2, that
is the collection of nodes controlled by the service provider.

VII. E PIDEMIC NETWORK

In this section we model an epidemic network withN
nodes;N−1 possibly infected individuals are located in nodes
{1, . . . , N − 1} respectively. Each individual can infect, with
some probability, only one among a subset of other individuals
in its neighborhood. There is a probabilityµi that the infection
process starts from thei-th individual. The infection spread
terminates when the virus reaches the healer, located in node
N . Hence, there is a probabilityµN that the epidemic spread is
averted. There are two player: player 2, the “good” one, wants
to design and force the connections among the individuals such
that the lowest expected number of individuals are infected,
while player 1 has the opposite goal. The assumption of perfect
information still holds, i.e. the set of nodes in which player 1
and player 2 have more than one action available are disjoint.

The formulation of the problem is analogous to the
two-player game described in section II, in which the cost of
the link (i, j) is 1 for all nodesi, j. The nodes are substituted
by the individuals, the destination with the healer, the sources
become the first infected entity, the packet routing is replaced
by the virus transmission. In this context, we wishµ

T Φ1

to represent the average number of infected individuals.
Therefore, for each couple of routing strategies,no loops in
the network are allowed, i.e. we suppose that the Assumption
1 holds. Hence, thanks to Propostion III.1, for every couple
of pure stationary strategies(f ,g), µ

T Φ1(f ,g) is actually
the expected number of infected individuals.

Thanks to Corollary A.1, we can use the algorithm 2
to find the optimal strategy for the “good” player, who is
interested in minimizing the objective functionµT Φ1(f ,g). If
(f∗,g∗) are the undiscounted optimal strategies, then the value
µ

T Φ1(f
∗,g∗) is the most pessimistic estimate for player 2 for

the expected number of infected individuals.

VIII. C ONCLUSIONS

Several providers share the same network and control the
routing in disjoint sets of nodes. There are several information
sources and one destination. By using the framework of
stochastic games, we provided algorithms to compute the
minimum costs that each coalition of providers can ensure
for itself. This helps the optimum design of a network, which
should guarantee the existence of an efficient and stable costs
partition among the providers. We also modeled situations in
which there are two players with conflicting interests, like
a hacker against a service provider, or in which a service
provider wants to reduce the damages to the network caused
by a natural disaster. An epidemic spread network model was
shown as well. From a theoretical perspective, we extended
some results on uniform optimal strategies in stochastic game
to the case of undiscounted criterion.

ACKNOWLEDGMENT

This reasearch was supported by “Agence Nationale de la
Recherche” with reference ANR-09-VERS-001 and by the

European research project SAPHYRE, partly funded by the
European Union under its FP7 ICT Objective 1.1 - The
Network of the Future.

APPENDIX A
STOCHASTIC GAMES

In a two-player stochastic gameΓ we have a set of states
S = {s1, s2, . . . , sN}, and for each states the set of actions
available to the i-th player is calledA(i)(s), i = 1, 2.
Under the zero-sum assumption, each triple(s, a1, a2) with
a1 ∈ A(1)(s), a2 ∈ A(2)(s) is assigned an immediate reward
r(s, a1, a2) for player 1, −r(s, a1, a2) for player 2, and a
transition probability distributionp(.|s, a1, a2) on S.

A stationary strategyu ∈ US for the i-th player determines
the probability u(a|s) that in states player i chooses the
actionsa ∈ [a

(i)
1 , . . . , a

(i)
mi(s)

].
We assume that both the number of states and the overall
number of available actions are finite.
Let p(s′|s, f ,g) andr(s, f ,g) be the expectation with respect
to the stationary strategies(f ,g) of p(s′|s, a1, a2) and of
r(s, a1, a2), respectively.

In this paper we consider stochastic games with perfect
information, i.e. in each stateat mostone player has more
than one action available. LetS1 = {s1, . . . , st1} be the set
of states controlled by player 1 andS2 = {st1+1, . . . , st1+t2}
be the set controlled by player 2, witht1+t2≤N . Therefore,
r(s, f ,g) = r(s, f) if s ∈ S1 or r(s, f ,g) = r(s,g) if s ∈ S2;
the same simplification can be carried out for the transition
probabilities.
Let Φβ(f ,g) be a column vector of lengthN defined as

Φβ(f ,g) =

∞
∑

t=0

βtPt(f ,g)r(f ,g) (2)

such that itsi-th component equals the expectedβ-discounted
reward when the initial state of the stochastic game issi. In
(2),β ∈ [0; 1) is the discount factor,P(f ,g) andr(f ,g) are the
N-by-N transition probability matrix and theN-by-1 average
reward vector associated to the couple of strategies(f ,g),
respectively. Ifβ=1, then the reward is calledundiscounted.
Let ρ be such thatβ(1+ρ) = 1. Note that ifβ ↑ 1, thenρ ↓ 0.
Let us give some definitions useful for our purpose.

Definition 1. The β-discounted value of the gameΓ is such
that

Φβ(Γ) = sup
f

inf
g

Φβ(f ,g) = inf
g

sup
f

Φβ(f ,g). (3)

An optimal strategyf∗β (g∗
β) for pl. 1 (2) assures to him a

reward which is at least (at most)Φβ(Γ).

Corollary A.1. The optimal strategiesf∗β , g∗
β are also optimal

when the scalar objectiveaT Φβ is considered, whereai ≥
0, ∀ i = 1, . . . , N .

Definition 2. A stationary strategyh is said to beuniformly
discount optimal for a player ifh is optimal for everyβ close
enough to 1.



A strategy is pure if the action choice is deterministic in each
state. The following Theorem (see [2]) ensures the existence
of such strategies among the optimal ones.

Theorem A.2. For a stochastic game with perfect information,
both players possess uniform discount optimal pure stationary
strategies(f∗,g∗) and moreoverΦβ(Γ)=Φβ(f∗,g∗).

Let st be a state controlled by playeri = 1, 2 and X ⊂
Ai(st). Let us callΓt

X the stochastic game which is equivalent
to Γ except in statest, where playeri has only the actionsX
available. In the next sections, we make use of the following
result in [1].

Lemma A.3. Let i=1, 2 andst ∈ Si, X⊂Ai(st), Y ⊂Ai(st),
X ∩ Y = ∅. ThenΦ∗

ρ(Γ
t
X∪Y ) ∈ F (R), which is the uniform

value of the gameΓt
X∪Y , equals

Φ∗
ρ(Γ

t
X∪Y ) =l max

l
{Φ∗

ρ(Γ
t
X),Φ∗

ρ(Γ
t
Y )} if i = 1

Φ∗
ρ(Γ

t
X∪Y ) =l min

l
{Φ∗

ρ(Γ
t
X),Φ∗

ρ(Γ
t
Y )} if i = 2.

Let us introduce another special class of stochastic games.

Definition 3. Let pt(.|s) be the transition probability from
states after t steps. A stochastic gametransient if

∞
∑

t=0

∑

s′∈S

pt(s
′|s, f ,g) < +∞ (4)

for eachs ∈ S and all pure stationary strategiesf and g.

Note that the stochastic game in section III-B is transient.

Lemma A.4. Algorithm 2 provides the undiscounted optimal
strategies for transient stochastic games.

Proof: In transient stochastic games with bounded in-
stantaneous payoffs, the undiscounted reward is also bounded,
for each couple of stationary strategies (see [2]). Furthermore,
under the transient condition, the uniform optimal strategies
are optimal under the undiscounted criterion as well (see [1]).
It is straightforward to prove that all the elements, belonging to
F (R), of the simplex tableaux built throughout the algorithm 1
are right continuous inρ=0 (or, equivalently, left continuous
in β=1). Therefore, we are allowed to shift the ordered field
on which the algorithm works fromF (R) to R, with β = 1.

A. Undiscounted criterion with positive rewards

In this section we analize the concept of optimal strategies
for the undiscounted criterion. Before, let us state two impor-
tant Theorems.

Theorem A.5 (Abel’s Theorem on power series). Let the
power seriesf(x)=

∑∞
n=0 anxn have radius of convergence

r and still converge forx=r. Then,limx↑r f(x) = f(r).

Theorem A.6 ( [4]). Let
∑

k≥0 ck be a divergent series of
positive terms. Then

lim
x↑1

∑

k≥0

xkck = +∞

Now we can we state as follows.

Corollary A.7. Let
∑

k≥0 ck be a series of positive terms and
ξ ∈ R. Then

{

limx↑1

∑

k≥0 xkck = ξ ⇐⇒
∑

k≥0 ck = ξ

limx↑1

∑

k≥0 xkck = +∞ ⇐⇒
∑

k≥0 ck = +∞

Proof: For the if conditions, see Theorems A.5, A.6.
About theonly if conditions, we know [4] that a positive term
series either converges or diverges to+∞. If

∑

k≥0 ck =ξ1 6=

ξ, thenlimx↑1

∑

k≥0 xkck =ξ1 for Theorem A.5. Hence, both
the (⇐) relations are proved by contradiction.

Now we are ready to state the following result.

Lemma A.8. Suppose that all the instantaneous rewards are
nonnegative. Let us utilize the extended line of real numbers,
i.e. treat±∞ as a number (±∞ = ±∞, −∞ < a ∈ R <
+∞). Then, the uniform optimal strategies are optimal in the
undiscounted criterion as well, i.e.

Φ1(f ,g
∗) ≤ Φ1(f

∗,g∗) ≤ Φ1(f
∗,g) ∀ f ,g (5)

Proof: By definition, the saddle point relation (5) is valid
∀β ∈ [β; 1) and hence also for the limitβ ↑ 1. Then, it is still
valid for β = 1 for Corollary A.7.

APPENDIX B
FORMULATION OF ROUTING GAME AS A STOCHASTIC

GAME

Let us formulate the routing model in section II as a
stochastic game. Player 2 is the coalitionC⊂M, while player
1 is the rest of the providersM/C. There exist a bijective
association between the network nodesV and the statesS. Let
S1 and S2 be the set of states associated to the set of nodes
⋃

{k}∈M/C Vk and to
⋃

{k}∈C Vk, respectively. The network
link i → j is activated if and only if playerk selects the
actiona

(k)
j (si), wherej ∈ αi, k : si ∈ Sk. The instantaneous

reward r(si, a
(k)
j (si)) =

∑

{p}∈C cp(i, j), where k is the
player that controls the nodei. The transition probability
is p(sw|si, a

(k)
j (si)) = 1I(w = j), where 1I is the indicator

function. Note that
∑

s′∈S p(s′|s, f ,g)=1, ∀ s ∈ S/{sN} and
for each couple of stationary strategies(f ,g). The destination
node is a “sink”, i.e.p(si|sN )=0, ∀ i ∈ [1;N ], and no actions
are available in it for both players.
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