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Abstract

Performance and reliability of content access in mobilevpéts is con-
ditioned by the number and location of content replicas alggd at the net-
work nodes. Location theory has been the traditiorenitralized approach to
study content replication: computing the number and plas#grof replicas
in a static network can be cast as a facility location problem. The evalea
of this work is to design a practical solution to the abovefaiptimization
problem that is suitable for mobile wireless environmemé thus seek a
replication algorithm that iightweight, distributed, andreactive to network
dynamics.

We devise a solution that lets nodes (i) share the burderoahgtand
providing content, so as to achieve load balancing, anda(itbnomously
decide whether to replicate or drop the information, so aadpt the con-
tent availability to dynamic demands and time-varying rattopologies.
We evaluate our mechanism through simulation, by explogimgde range
of settings, including different node mobility models, temt characteristics
and system scales. Furthermore, we compare our mechangtateeof-the-
art approaches to content delivery in static and mobile odktsy

Results show that our mechanism, which useal measurements only,
is: (i) extremely precise in approximating an optimal swintto content
placement and replication; (ii) robust against network iitgb iii) flexible
in accommodating various content access patterns. Moreowescheme
outperforms alternative approaches to content dissermimbaoth in terms of
content access delay and access congestion.

Index Terms

content replication, mobile networks, facility locatidrebry, distributed
algorithms
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1 Introduction

Academic and industrial research in the networking fieldussping the idea
that networks should provide access to contents, rathertthaosts. Recently, this
goal has been extended to wireless networks as well, asssideby the tremen-
dous growth of services and applications offered to usengppgd with advanced
mobile terminals.

The inexorable consequence of a steady increase in ddta &edrted by mo-
bile devices fetching content from the Internet is a dragnafjnetwork resources
of mobile operators [1-3]. A promising approach to solve ftroblem iscontent
replication, i.e., to create copies of information content at user @evigo as to
exploit device-to-device communication for content defiv This approach has
been shown to be effective especially in wireless netwoiiks mvedium-high node
density, whereaccess congestion is the main limiting factor that determines the
performance of content delivery (see, e.g., [4] for a sunmyhe topic).

been extensively side, and delay replication mechanisitins péth the

In this paper, we consider such a wireless network scenadoeaplore the
concept of content replication in a cooperative envirorime@hen the content de-
mand and network topology dynamically change in time. I tontext, nodes
can fetch content from the Internet using a cellular netystkre it, and possi-
bly serve other users through device-to-device communitde.g., using IEEE
802.11 or Bluetooth). Our scenario also accommodates thshplity for content
to exhibit variegate popularity patterns, as well as to laatgd upon expiration of
a validity-time tag, so as to maintain consistency with esgtored by servers in
the Internet.

according to an epidemic approach the content to all useghtmot be

The application scenario we target in this work introducesesal problems
related to content replicatioi®ptimal replica placement is one of those: selecting
the location that is better suited to store content is diffi@specially when the net-
work is dynamic. Another prominent issuehisw many content replicas should be
made available to mobile nodes. Clearly, decisions on thegphent and number of
replicas to be deployed in the network are tightly relatexbfgms: intuitively, the
latter introduces a feedback loop to the former as everyetdmeplication triggers
a new instance of the placement problem.

studied through the lenses of classic Location [5]. Our emdeis to build
upon the theoretic works that have flourished in the facibsation theory litera-
ture, and address the abojént problems, with the ultimate goal of designing a
lightweight, distributed mechanism to achieve contenticapon in mobile wire-
less networks. Thus, our work departs from previous apesthat either require
global (or extended) knowledge of the network [6, 7] or arpragtical [8]. In par-
ticular, study realistic scenarios in simultaneously coned by mobile nodes have
capacity constraints for the amount other nodes. we desigmgent replication
scheme that requirdsecal measurements only and that aims at evenly distributing
among nodes the demanding task of hosting a content repiidsserve others.



We show that optimality in both placement and replication ba approximated
through our simple practical solution.
The contributions of this paper are summarized as follows:

e we revisit traditional facility location theory in the liglof the extremely
challenging settings that mobile wireless networks inticed Leveraging
the insights provided by capacitated facility location y@zhes to content
replication, we propose a distributed mechanism inspingdobal search
approximation algorithms. Our solution exploits a patécuformulation
of a multi-commodity capacitated facility location prolvido compute an
approximate solution based on local measurements only;

e we perform an extensive simulation study where we dissegbtbperties of
our distributed mechanism. As a result, we show that coqi@cement and
replication achieved through our scheme well approximateimal solu-
tion when both network and content dynamics are considéredhermore,
our results prove that our mechanism (i) achieves load balgramong the
network nodes, in terms of both amount of served requeststandge ca-
pacity required at each mobile user, and (ii) scales verlwitd the network
size and density, making it suitable for those scenarioshithvaccess con-
gestion may appeat;

e we compare through simulation our content replication seheith existing
mechanisms, considering the realistic case where noteds use interested
in the available information items.

The remainder of the paper is organized as follows. In Secedjive a detailed
overview of the system model and we introduce the contenicedjpn problem,
pointing at the new problems introduced by the dynamic eatirwireless net-
works. In Sec. 3, we revisit traditional location theory andend it to accommo-
date the constraints and requirements of our system. Bas#teansights gained
from a theoretical ground, we move on to the design of ouridiged mechanism
for content replication and replica placement in Sec. 4. énsS5 and 6 we de-
scribe the simulation settings and methodology and pres#mrough discussion
on the results. We review prior works in the domain of contdissemination in
mobile networks in Sec. 8, and finally draw our conclusionSég. 9.

2 Network scenario and problem statement

Here, we first detail the system model we refer to, then we eefia problem
of content replication and placement in mobile networkspdrticular, we inherit
the problem of replication typical of the wired Internet amd discuss the new
challenges introduced by the dynamic nature of wirelesswarés with respect to
their wireline counterpart. At last, we describe the stepgake in order to address
content replication and placement in our setting.
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2.1 System model

We investigate a scenario including mobile users (i.e.,ilaagimdes), equipped
with devices offering 3G/4G Internet connectivity as wealldevice-to-device com-
munication capabilities (e.qg., through IEEE 802.11). Aitbh we do not concern
ourselves with the provision of Internet access in ad hoeless networks, we re-
mark that broadband connectivity allows new content to behésl and, possibly,
updated.

We denote the set of mobile nodes Bywith V' = |V|, and we consider that
they may be interested in a set of information items. We tefeuch a set a6 and
to its cardinality ad. Each itemi € Z, of sizes(i), is tagged with a validity time,
and originally hosted on a server in the Internet, which aaadressed by mobile
users through the broadband access we hinted at. We defi(g)abe content
popularity level of the generic item i.e., the fraction of nodes interested in such
an item. Thus, we have < p(i) < 1, with p(i) = 1 corresponding to the highest
popularity level, i.e., when all nodes in the system arer@stted in content.

We focus on aooperative environment where a nodeg € V wishing to access
the content first tries to retrieve it from other devices.tdfsearch fails, the node
downloads a fresh content replica from the Internet sermdrtamporarily stores
it for a period of timer;, termedstorage time. For simplicity of presentation, in
the following we assume; = 7, V5 < V. During the storage period, serves
the content to other nodes upon receiving a request for it@wabibly, downloads
from the Internet server a fresh copy of the content if itsditsd time has expired.
We refer to the nodes hosting an information copy at a givee tnstant aseplica
nodes. We denote the set of nodes storing a copy of iteahtimet by R;(¢), and
defineR(t) = UiezRi(t), with R = |R|. Also, we associate to each replica node
J a capacity value:;, which, as we shall see later, relates to the capability ef th
node to serve content requests.

A node, which is interested in a generic information iteand does not store
any copy of it, issues queries for such an item at a ’at®eplica nodes, which
receive a query for an information item they currently stovél reply with a mes-
sage including the requested content.

Finally, in order to clearly define the problem we addressthim following
we model the network topology at a given time instatttrough a graplt:(¢) =
(V,£(t)), whose set of vertices coincides with the set of network sadtland the
set of edge€ (¢) represents the set of links existing between the networkesatl
timet.

2.2 Problem statement

Both content replication and caching have received sigmtiattention in the
literature, due to their importance in enhancing perforceamvailability and reli-
ability of content access for Web-based applications. Wueproblems, however,
differ since content replication is an independent proe@s®ed at creating copies



of a content at the network nodes, regardless of whetherablegd for it or not.
Caching, instead, is a by-product of the content query nrésitaas only nodes
that retrieved the content have the possibility to cachd]it |

Our claim (confirmed by simulation results) is that, in a natwscenario as
the one we address in this work, content replication is toreéepred to caching.
Indeed, caching may lead to the creation of a large numbeogies in the net-
work, especially for highly-popular content. In mediunghidense networks, this
raises the problems of (i) large overhead due to multipléegpo a single query,
(i) energy depletion of a large fraction of nodes acting astent providers, (iii)
congestion in accessing the cellular network for freshesigas of the content in
order to avoid inconsistencies. We therefore deal witheminteplication, that is,
we desigh a mechanism to determine how many replicas sheutddated in the
network and where, under dynamic, realistic conditions.

Traditionally, a similar problem has been studied throdghlenses of classic
Facility Location Theory [5], by considering replicas to dreated in the network
as facilities to open. Which new problems are then introduneur work?

i) Content replication and placement can be cast as an optiarizaroblem in

presence of static network conditions. However, node riglidads to a dynamic
graphG(t), which would require the problem to be solved upon every ogtw
topology or demand rate change.

ii) While addressing content replication, we also target lcadrizing among the
nodes. Even under static topology and constant demandngdhe facility loca-

tion problem does not yield load balancing.

iii) The input to the facility location problem is the content dem workload gen-
erated by users: both replica locations and the number &itaspto deploy in a
network depend on content consumption patterns. While pipecach tradition-
ally adopted is to assume content demand to be directed twdkest facility, the
wireless nature of our system yields unpredictable propagagaths for content
requests, potentially reaching multiple facilities (ieplnodes).

iv) The traditional approach defines two separate sets, onaddities (replica

nodes) and one for the users. In our context, instead, any may store an infor-
mation replica as well as request an item which it does noeatly own.

As afirst step to address all of the above issues, in Sec. 3strecteur atten-
tion to a simplified network setting and revisit a centradizpproach for facility
location problems. Our goal is to gain sufficient insightsnirsuch a problem
formulation, as well as from solutions to it proposed in fterature, to build a dis-
tributed approach that closely approximates the optimhitism to the problem.
Then, in Sec. 4 we consider a dynamic scenario (i.e., moluitles and time-
varying demand) and seek an algorithm that only requireal lacowledge and a
distributed implementation.



3 Getting insights: A centralized approach

The simplified network scenario we address here is charaeteby static
nodes and constant demand; furthermore, we drop the loahdiagy require-
ment we previously outlined and assume that content quarislirected to the
closest replica node. For simplicity, let us fix the time amgtand drop the time
dependency from our notation; also, let all users be intiedes every content
(¢ =1,...,I)and request it at the same constant rate.

Given such a scenario, we formulate our replication probdsnacapacitated
facility location problem where the set of replica nodes= U;R; corresponds to
the set of facilities that are required to be opened, nodaseting a content are
referred to as clients and information items correspontiéacbmmaodities that are
available at each facility. We model the capacity of a regptiode as the number of
clients that a facility can serve. The goal is to identify sabset of facilities that,
at a given time instant, can serve the clients so as to mirirmizne global cost
function while satisfying the facility capacity constrtsn

We point out that, with respect to traditional formulationfsthe capacitated
facility location problem, we need to take into account thiéofving aspects. Both
clients and facilities lay on the same network gragh= (V,£). As such, any
vertex of the graph can be a client or a facility: all vertettest are not selected as
facilities will be treated as clients.

In the location theory literature, two copies of the samdifgecan be opened
at the same location, in order to increase the capacity ofea $nstead, in our
work a vertex of the graph can host only one copy of the saniltyaindeed, it
is reasonable to assume that a node stores only one copy sduthe information
item.

For the sake of clarity, we first definesangle-commaodity capacitated facility
location problem, where we delve into the details of locarsk techniques that
have been applied in the literature to solve such problengsth&h move to anulti-
commodity version of the problem and discuss the issues related toabacity
constraints we are required to satisfy in this case.

3.1 The single commodity problem

Let us consider one information item only (i.é.= 1). Then, we can define
the single commodity capacitated facility location problas follows.

Definition 1 Given the set V of nodes (which can act as both clients and facility
nodes) and cost f; of opening a facility at j € V), select a subset of nodes as
facilities, R C V, so asto minimize thejoint cost C'(V, f) of opening the facilities
and serving the demand while ensuring that each facility j can only serve at most
c; clients:

COY )= fi+ Y dhmy). (1)

JER hey



In (1), mp, € R isthefacility j closest to i, and d(h, my,) is the cost attributable
to facility m, for serving client h (in the literature, thisis typically modelled as a
pair-wise distance function between client and facility). Also, the number of clients
attached to facility j € R, i.e,

uj =|{h €V, stomy = j}l,
must be such that u; < c;.

In words, the above problem amounts to finding how many taslishould
be open, and at which nodes, so as to minimize the averagmdisto access
a facility from a client location, while satisfying the cayitg constraints of each
opened facility. This problem nicely translates into outisg, where we need to
establish the number of replicas to be created for an infbomatem and find the
best nodes to store them so as to minimize the distance (tieackelay) to access
the information. We also point out that the facility locatiproblem in Def. 1
reduces to &-median problem if the number of facilities is given, i.&,= k,
and we drop the capacity constraints. The solution to sugieaa case maps to
finding the best location fak facilities to be opened.

It is well known that, for general graphs, the above problamsNP-hard [9]
and a variety of approximation algorithms have been deeselggnd analyzed to
solve them. Among these algorithms, the ones based on leaettsare the most
versatile [6]. In a general form, a local search algorithnsdtve capacitated fa-
cility location problems consists of an iterative procexdimr which, at every step,
a variation is applied to the current solution of the prohléhthe global cost de-
creases, the variation is accepted as a new solution to ¢iséepn. The algorithm
stops when no more improvements can be obtained. Thredioasare possible:
to swap the location of a currently opened facility, doop a currently opened facil-
ity, and toadd a facility to the current solution. Note that the local séeatgorithm
to the capacitated version of the facility location problstfairly complex: indeed,
it involves the computation of a minimum cost flow problem mder to verify the
capacity constraints [6].

Such local search procedures will inspire our distributegtinanism described
in Sec. 4, where we introduce three basic operations thattiitely, albeitasyn-
chronoudly, yield the solution to the content replication problem. Hwoer, there
are some important remarks to make. The key point in our isolus the defi-
nition of the opening costg;’s, which allows us to move from a centralized to a
distributed implementation as well as provide load balagciMoreover, the par-
ticular operation that each node executes to solve theceeplacement problem is
performed irrespectively of the number of replicas in themoek. As such, con-
tent placement and replication are effectively de-coupkadally, in our network
system adding and swapping are constrained operationy: veniexes that are
connected by an edge to the current vertex hosting a complita can be selected
as possible replica locations. Thus, our operationdama and information item
replicas can only move by one hop at the time in the underlgetgvork graph.
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3.2 The Multi-commodity problem

We now consider the more general setting in which multiplaemdities (i.e.,
information items) may be available at each facility (ireplica node).

While the problem can be defined similarly to Def. 1, the caatfion that we
need to minimize, formerly defined in (1), has to be rewritisrfollows:

COV. =D > i) +>Y  d(h,mu(i) )

i€ jER; i€ heV

wheref;(i) is the cost to open a facility for commodityR; C V is the subset of
nodes acting as facilities for commoditymy, (i) € R; is the facility holding item

i that is the closest th, and the numbeu;(i)! of clients requesting any content
i attached to facilityj € R;, i.e.,u;(i) = [{h € V s.t.my (i) = j}|, is such that
> iez ui(i) < ¢j.

In the traditional formulation of such problem, with digtirsets of facilities
and clients, a solution amounts to finding the location aediilimber of facilities
to open so that the overall client requests are satisfiedunsetting, however, the
problem is more complex: since any vertex of the grépban host a facility or
can be a client, it is possible for a vertex to assume botlsrdteleed, a vertex can
be a replica node for one or more information items, and,easéme time, a client
requesting information items that are not currently hostiettie vertex.

Finding approximate solutions to the multi-commodity cafzded facility lo-
cations is still an open issue and little is known concerdaugl search heuristics
that can be effectively implemented in practice. In this kyave take a simple
approach that has been also discussed in [10]: a solutidretmulti-commodity
problem is built from the union of the solutions to individsangle-commodity
facility location problems. Therefore, we transform thenfalation from muilti-
commodity to single-commodity by solving the above problameach itemi
(i=1,...,1I) separately.

Then, for each item, (2) becomes:

COV, 1) =D £+ Y d(h,my(i) (3)

JER hey

wherem, (i) € R; is the facility closest td and the number of clients attached to
facility j € R; is such that the capacity constraints are satisfied.

Despite the apparent simplicity of such an approach, howc#pacity con-
straints are verified remains an issue to be discussed. lwarlet we adopt the two
techniques presented below, where we denote the subsenaiadities hosted at
j by Z; and its cardinality by/;:

1. Each opened facility has a capacity that is allocated ¢b eammodity in-
dividually. In practice, this translates into having a sepabudget allocated

Clearly, we haveu; (i) = 0 if j does not own.



to each information item that is currently replicated at denim the network.
Formally, the capacity constraints can be writteru@8) < ¢;/I;, Vi € Z;,
where we equally split the budget available to facility; over all the com-
modities it hosts. In the following, we name such a technispli¢ capacity
budget.

2. We consider a facility to have a capacity that is sharedngntioe commodi-
ties currently hosted by the facility. This case appearsetoniore realistic
for our application scenario: each node hosting replicasfofmation items
allocates a preset budget that is used to serve all the denequested by
other nodes. Formally, we define the capacity constraimthie case as fol-
lows: ) ez, u;(i) < ¢;, and we refer to such a techniqueshared capacity
budget.

In conclusion, the approach we take in this work is to brealydimt optimiza-
tion problem of the capacitated multi-commadity faciligchtion into a number
of single-commodity location problems, as from (3), for ahiwe use the local
search techniques outlined above with the additional denations we made in
this section concerning the capacity constraints.

To the best of our knowledge, there is no known practicatridiged algorithm
to obtain approximate solutions to the capacitated vermsidhe multi-commodity
facility location problem either. In the next section, werfore propose a new ap-
proach that only requires local knowledge, which is acqlirih simple measure-
ments, and also provides load-balancing. It follows thatnen a static scenario,
our distributed algorithm does not converge to a static gondition in which a
fixed set of nodes is selected to host content replicas. A, ghe traditional
methods that are used in the literature to study the conmeegproperties and the
locality gap of local search algorithms cannot be direqigleed, which is the main
reason for us to take an experimental perspective and valma work through
simulations.

4 Distributed mechanism for content replication

We now describe our distributed replication mechanism. édmwith the in-
sights on the problem formulation discussed in Sec. 3, owthar@sm mimics a
local search procedure, by allowing replica nodes to exegné of the following
three operations on the content: (1) handover, (2) replioa(3) drop. For clarity
of presentation, in the following we describe our mechanisterms of two objec-
tives: content replication (Sec. 4.1) and replica placdani®ac. 4.2). Indeed, the
handover operation amounts to solving the optimal placémecontent replicas,
whose number is determined through the add and drop opesatio

For simplicity, we consider again that all users are intets every content
(¢ =1,...,I)and request it at the same constant rate. Also, we fix theitistant
and drop the time dependency from our notation.



4.1 Content replication

Let us define the workload of the generic replica ngdier contenti, w; (i), as
the number of requests for contérserved byj during its storage time. Also, recall
that we introduced the valug as the capacity value of nogeand we provided
a definition that suited the simplified, static scenario dbed in Sec. 3. We now
adapt the definition of; to the dynamic scenario at hand, as the reference volume
of data that replica nodgis willing to provide during the time it acts as a replica
node, i.e., in a storage time Then, with reference to Eq. 1, we denote fy=
>_iez, Ji(1) the cost associated with replicas at ngde

Given the load balance we wish to achieve across all reptidasiand the node
capacity constraint, the total workload for replica ngdshould equakt;. Thus,
we write f; as:

fi=ci— Y s(iw;(i) @)
i€Z;
where we recall that(:) denotes the size of content In other words, we let
the cost associated with replica noflgrow with the gap between the workload
experienced by and its capacity:;.

Then, during storage time the generic replica nodec R measures the num-
ber of queries that it serves, i.eu,(i) Vi € Z;. When its storage time expires, the
replica nodej computesf; and takes the following decisions: ff > e the content
is dropped, if f; < —e the content iseplicated, otherwise the hand-over operation
is executed (see Sec. 4.2). Hetds a tolerance value to avoid replication/drop
decisions in case of small changes in the node workload.

The rationale of our mechanism is the following. fIif < —e, replica nodej
presumes that the current number of content replicas inréeeia insufficient to
guarantee the desired volume of data, hence the node teglittee content and
hands the copies over to two of its neighbors (one eachpviollg the placement
mechanism described below in Sec. 4.2. The two selectedimzig will act as
replica nodes for the subsequent storage time. Instedg >if e, node; estimates
that the workload the current number of replicas can prosdceeding the total
demand, thus it just drops the content copy. Finally, if tkgegienced workload is
(about) the same as the reference value, replica negtects one of its neighbors
to which to hand over the current copy, again according tertehanism detailed
next.

4.2 Replica placement

As noted in Sec. 3, given the graph representing the netvaptlagy at a
fixed time instant, the placement &f = k replicas can be cast askamedian
problem. By applying the approximation algorithm in [6], wbserved that the
solution of such a problem for different instances of theotogy graph yields
replica placements that are instances of a random variatiferonly distributed
over the graph. As a consequence, in a dynamic environmetamet is to design



a distributed, lightweight solution that closely approzies a uniform distribution
of the replicas over the network nodes while ensuring lodarzing among them.
To this end, we leverage some properties of random walk avidela mechanism,
calledRandom-Walk Diffusion (RWD), that drives the “movement” of replicas over
the network according to a random walk mobility model.

According to RWD, at the end of its storage timea replica nhodg randomly
selects another nodeto store the content for the following storage period, with
probability p;; = dij if I is a neighbor ofj, and0 otherwise, wherel; is the
current number of neighbors of nogeln this way, each replica performs a random
walk over the network, by moving from one node to another ahdeme stepr.
Thus, we can apply the result stating that in a connectedbipartite graph, the
probability of being at a particular nodeconverges with time ta; /(2|£]) [11].

In other words, if the network topology can be modeled by alaggrapi with
the above characteristics, the distribution of replicasingaccording to a random
walk converges to a stationary distribution, which is uniicover the nodes.

In general, real-world networks yield non-regular graph&wever, whenl”
nodes are uniformly deployed over the network area and haveame radio range,
the node degree likely has a binomial distribution with paegers(V — 1) andp,
with p being the probability that a link exists between any two rsqde, 13].

For practical values gb andV in the scenarios under study, we verified that
the node degree distribution is indeed binomial with lowiasae, i.e., all nodes
have similar degree. It follows that a random walk providasaaceptable uni-
form sampling of the network nodes, hence the replica placemistribution well
approximates the uniform distribution.

A similar result can be obtained also for clustered netwogologies, where
each cluster core results to be an expander graph [14]. $nctse, a uniform
replica placement over the nodes can be achieved withinaable network clus-
ters, thus ensuring the desired placement in all areas vihengser demand is not
negligible.

Finally, we stress that the presencefbieplicas in the network corresponds to
R parallel random walks. As observed in [15], this reduceslinpat a factorR the
expected time to sample all nodes in the network, which isetjorelated to the
time needed to approximate the stationary distribution loprstant factor [16].
It follows that, given a generic initial distribution of threplicas in the network,
the higher theR, the more quickly the replica placement approximates aoumif
distribution.

5 Simulation scenario

We implemented our mechanism in the — 2 simulator. We consider a wire-
less network with high node density, namalg - 10~* nodes/m, on a square area
of 1 km?, which results in/ = 320 and an average node degree of 9.6 neighbors.

2 graph is regular if each of its vertices has the same numitregighbors.
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By default, nodes move according to the stationary randogpwiat model [17]
with an average node speed of 1 m/s and a mean pause time qfdl€ttng that is
representative, for example, of customer mobility withimall. We also explored
the performance of our mechanism in presence of outdoorsgréate mobility.

We assume nodes to be equipped with a standard 802.11 aetesfath a
54 Mbps fixed data transmission rate and a radio transmisaimye of 100 m. As
our focus is on the placement and replication of items withimad-hoc network,
we do not simulate cellular access. However, we accounthtodelay associated
with the download of information items from the cellular wetk, by assuming a
throughput of 384 kbps, matching that typically provided3§y technologies to
outdoor mobile users.

The rate at which a node interested in a content generateiesg|fier that item
is setto\ = 0.01 requests/s. As for the propagation of the queries in the atéb
work, we assume the presence of a content-location seh@tenbdes can access
to obtain the identity of the closest content replicA query for the closest replica
node is then propagated using sequence numbers to detedisaadd duplicate
gueries, as well as an application-driven broadcast th@naply selects the for-
warding nodes by leveraging the Preferred Group BroadP&zBj technique [19].
Also, a TTL is included into queries, allowing them to traahops at most so as
to prevent network flooding. Once reached by the requesintbieded destination
serves it, while other replica nodes ignore the query.

As far as the content return path is concerned, we assumeathesach hop,
the identity of the last node that relayed the query is inetlith the message and
recorded at the following forwarder. Thus, the path fromttrget replica node to
the query source is backtracked at the application laydrauitresorting to ad hoc
routing protocols, which would induce overhead or delayhimprocess.

Since all standard MAC-layer operations are simulated) oeries and replies
may be lost due to typical problems encountered in 802.5&dad hoc networks
(e.g., collisions, hidden terminals): if a query fails (j.@o answer is received after
2's), a new request is issued, up to a total of 5 times

Finally, concerning the replication/drop parameters,ttierance value used
in the replication/drop algorithm is set to 5% of the nodeazdty budget, while
the storage time is set to 100 s.

For each experiment described in the following, resultsaaaraged over 10
simulation runs, each lasting around 3 hours of simulate tafter a warm-up
period of 500 s.

3Since query propagation is not the focus of our work, we dofadher address how such a
service is maintained; for details, we refer the readereo/tst literature on the topic, e.g., [18] and
references therein.

4According to extensive calibration tests, omitted due tcsdimitations, these parameters pro-
vide the best results in terms of content access performance
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6 Results

We present the main results of our work organized in a sefiegiestions.
Furthermore, in order to benchmark the distributed meamamroposed in Sec. 4
against the centralized approach discussed in Sec. 3, wermept the latter as
follows. Given the network time evolution, we take a snhapdsbfothe network
topology everyr s. For every snapshot, we sol¥eseparate single-commodity
problems as in (3), under both split and shared capacityéiaddo do so, we set
fi() = ¢;/1; — u;(i) and f; = ¢; — 32e7, u;(i) in the case of split and shared
capacity budget respectively, withy(i) = s(i)w;(i). As a result, load balancing
is achieved under the assumption that each content queslyagane replica node
only.

6.1 Benchmarking the replication scheme

Here, we provide baseline results on the performance ofaplication scheme
with respect to the multi commodity problem presented in S&; and discuss its
fairness.

12



What is the impact of the capacity budget on the replication sheme?

To answer this first question, we run the CFL centralizedrétlyo in a snap-
shot of the mobile network topology, in presence of 4 itemd dflbytes each.
We vary the value of; from 10 Mbytes to 40 Mbytes, which, in the case of opti-
mization with split capacity budget, means that each canseassigned a budget
Cj/4.

The optimal number of replicas per information item, deddby R}, is ob-
tained by numerically solving the optimization problem &),(in both its split and
shared capacity budget versions, and is shown in Fig>.1T4e plot clearly shows
that, as higher budgets allow replica nodes to satisfy faagsounts of requests,
increasingc; reduces the need for replication, with the result that a fawenber
of replicas is present in the network.

It is interesting to observe that a significantly higher nembf replicas is re-
quired by an optimization with split capacity budget witspect to that needed by
an optimization with shared capacity budget. The reasdmaisthe latter, using a
common budget for all items, forces replications only whentotal workload for
all items exceeds the budget. Conversely, optimizatioh gflit capacity budget
uses separate budgets for each content and, thus, resulbserirequent violations
of such constraints.

Now, intuitively, a large number of replicas may have a beiafeffect on con-
tent access performance: more replicas should imply higihences for queries to
be satisfied through device-to-device communication. t E{b) we show the
most important percentiles (5%, 25%, 50%, 75%, 95%) of cundecess delay
with split and shared capacity constraints, épr= 40 Mbytes. Contrary to the in-
tuition, our results indicate that the advantage granted ligh number of replicas
under the split capacity is quite negligible, and this ismhadue to the congestion
that arises in the wireless network.

In summary, our findings pinpoint that the replication metdsa with shared
capacity constraints is a suitable approach. Beside erpeatal results, there are
also practical reasons to opt for shared capacity congtraimdeed, in the split
capacity case, a budget has to be assigned to each itemtbustened by a replica
node, which is a quantity that may vary over time. As a conerge, content
replicas may not be suitably handled if the remaining cdpausiailable to a node
is not appropriately re-distributed. Furthermore, usgbdspects also play a role
in favor of a shared capacity approach: it would be unfeagibhsk a user to select
a service budget to allocate to every possible item she well eeplicate.

SHere and in the following, unless stated otherwise, theltesefer to one of the four items since
similar results were obtained for each of them.
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How does our replication scheme perform with respect to the EL centralized
algorithm?

In order to provide an answer, we simulate our replicatidreste and we focus
on the case wherg = 40 Mbytes. As shown in Fig. 2(a), our replication scheme
can well approximate the results obtained by solving théopéation problems:
indeed, the number of replicd® generated by our scheme is very close to the op-
timal valueR;, in both the cases of split and shared capacity budget. Mergthe
number of replicas in the system appears quite stable awet Which is obviously
a desirable feature.

Not only the number, but also the placement of replicasfits@hportant when
comparing our scheme against a centralized solution. Wigow investigate the
similarity between the replica placement achieved by ocinrigue and that ob-
tained with the CFL centralized algorithm over the diffarenapshots represent-
ing the network evolution. To do so, we employ the well-knoy#rgoodness-of-fit
test on the inter-distance between content regdlicas depicted in Fig. 2(b), the
x? error obtained comparing the distributions we achieve withoptimal ones is
extremely low in all cases; indeed, tlyé error we obtain is well below the valde
needed to accept the null hypetesis that the two distribsitase the same at a 95%
confidence level.

How fair is our replication scheme?

The scheme we propose is fair in terms of resources demanol®dhbdes in
the network. On the one hand, in Fig. 3(a), we show the digtah of the number
of items stored by a node at the same time: a node seldom stanesthan one
replica, which implies that node memory utilization is damiacross the network.
Indeed, our scheme successfully avoids the risk of reptaeksg at some good
candidates thanks to the enforced periodic swapping of dptica role among
nodes. On the other hand, Fig. 3(b) depicts the cumulatistilglition function
(CDF) of the percentage of total network workload handle@égh node, in terms
of answered queries: the curve is quite steep around thé vekse % = 0.3%,
corresponding to a perfectly fair workload distribution@rg nodes.

6.2 Impact of the content characteristics

We now vary the popularity and size of content items, and lestheir impact
on the performance of our replication scheme.

®Note that using inter-distances instead of actual cooteinallows us to handle a much larger
number of samples (e.d/, - (V — 1) instead of just” samples) thus making the computation of the
x? index more accurate.

"With 14 degrees of freedom as in our case, such value is 23.685
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Table 1: R} computed by the centralized CFL algorithm in presence déwiht
content popularity
| ltem id | Interested| Opt. with split budget| Opt. with shared budgelt

1 100% 39 42
2 75% 30 29
3 50% 19 18
4 25% 14 15

How does our replication scheme perform in presence of itemith different
popularity?

We study now the scenario when not all nodes are interestaccantent. In
such a situation, a node stores a replica of the content ditlysiinterested. If a
node attempts to hand over the content to an uninterestesl (bgdandom selec-
tion), the request will be denied and a different node willdhto be selected.

In Table 1, we report the results of the CFL algorithm whenpbeeentage of
interested nodeg(¢), ¢ = 1,...4, varies from 25% to 100%. We also sgt=
40 Mbytes for the optimization with shared capacity budget ang- 60 Mbytes
for the optimization with split capacity budget. Intereglly, Table 1 indicates that,
in order for the replication mechanisms to yield roughlyshene replication factor,
the capacity budget that is required for the shared capapijiyoach is substantially
lower than that required for the split capacity case.

As far as the optimization with shared capacity budget ixeamed, Fig. 4(a)
shows that the average number of replicas for ifef;, generated by our scheme
oscillates around the optimal value determined by the CEbrghm for the same
item, R}, even when is characterized by low popularity. Moreover, the workload
remains evenly shared among replica nodes: Fig. 4(b) shmteach node serves
at least 0.2% of the total workload and 98% of nodes servethess0.4% of the
total workload. The load distribution is thus quite denseuad 0.3%, i.e.% that
is the ideal mean workload. Finally, the results in Fig. 4(aYlerline the fairness
of our replication scheme also from a memory utilizatiompaoif view, with nodes
caching with high probability at most one content at a timee Mdserve similar
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Table 2: R} computed by the centralized CFL algorithm in presence déwiht

content sizes
| ltem id | Item size | Opt. with split budget] Opt. with shared budgst

1 1 Mbytes 39 42
2 2 Mbytes 62 67
3 3 Mbytes 87 91
4 4 Mbytes 115 117

80— 50% 0.8 0.8
0.7] 0.7
60) 0.6 0.6
é 0.5 é 0.5
0.4 i 0.4
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Figure 4: Impact of content popularity on the replicationhnshared capacity, in
terms of number replicas, workload distribution, and megmuiization

result§ when the split capacity approach is used, although thisinesja larger
budget to be allocated to the replication process.

How does our replication scheme perform with different conent sizes?

Let us focus on a scenario where the four items have idergimalilarity but
different sizes (i), ¢ = 1,...,4). The considered values are detailed in Table 2,
along with the optimal number of replicas computed, for each item, by the
centralized CFL algorithm under the split and shared cépacidget constraints.

Focusing on the optimization problem with shared capadityglet, Fig. 5(a)
shows a good matching betweén and the optimal valuék, for any itemi. The
workload exacted from the nodes by our scheme is shown inSim), and the
number of information items stored by each node is depiateig. 5(c). Very
similar considerations apply to the case of optimizatiothveiplit capacity bud-
get, although comparable performance can only be attafrted capacity budget
allocated by each node largely exceeds that in the sharedicappproach.

8For the sake of brevity, we omit these results in this work.
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Figure 6: Impact of user mobility on the replication with st capacity, in terms
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6.3 Impact of mobility
What is the impact of a more accurate human mobility model on ar scheme?

We now study the performance of our scheme in presence ofaraom clus-
tered mobility, which has been shown to characterize hunarements in outdoor
environments. More precisely, we employed the SLAW mod@] {2 generate a
synthetic trace representing the movements of 320 outdesrsuwithin an area
of 1 knm?, during 3 hours. The SLAW settings included 600 waypointseR-
distributed with Hurst parameter equal to 0.75, a flight dpafel m/s, and pause
times that obey a Levy distribution with coefficient equallteand minimum and
maximum values equal to 100 s and 1000 s, respectively. Tdtardie weight,
which determines the priority that nodes give to nearbytiooa before travel-
ing to farther locations, is set to 3. All results refer to tase of the optimization
with shared capacity budget: those for the optimizatiorbjenm with split capacity
budget are very similar and are omitted for sake of brevity.

Fig. 6(a) shows the evolution of the number of replicas ptarmation item
over the simulation time, for SLAW and the stationary RWPvjaresly employed.
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In both cases, the number of replicas per item roughly matte optimal value.
In the SLAW scenario, the presence of a small number of delustecs implies
that content queries will be originating from within eachister: this explains the
(almost negligible) difference in the number of replicad amorkload with respect
to the RWP model. It also follows that the different mobilityes not result in sig-
nificant differences in the total load distribution, as shdwy the plot in Fig. 6(b).
As far as memory utilization is concerned, in Fig. 6(c) SLA@/des a slightly
more unbalanced CDF, as nodes group into denser clusterstiteer RWP mo-
bility. Specifically, under SLAW, 80% of nodes hold two or ragtems versus the
90% measured under the RWP model.

How does our mechanism work as the node speed varies?

Invariance of the performance of our replication schemd¢ortode speed is
demonstrated by Fig. 7(a), Fig. 7(b) and Fig. 7(c). There,cas notice how
the different velocity of nodes during their movement doetlead to significant
variations in the number of replicas, per-node workload @eldy, respectively.
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6.4 Scalability

In order to determine the scalability properties of the psgu replication
scheme, we study the impact that the number of items, netdemkity, and net-
work size have on the system performance. Again, all resefes to the case of
optimization with shared capacity budget, since thoseinétbunder optimization
with split capacity budget are similar, but require a sigmaifitly higher budget to
be allocated at nodes.

We first evaluate the performance when the cardinality ofrtf@mation item
set varies between 1 and 32. More precisely, Fig. 8(a) shmewsumber of replicas
per item generated in the system, which grows as the sizeaftbrmation set in-
creases. Indeed, a larger content set implies that nodésdestore more items on
average; however, their capacity budggetemains constant, and is shared among
all items they store. As a result, focusing on one singleamnteach replica node
for that content will be able to serve fewer and fewer quesiggshe number of
available items increases. As a consequence, more refdicise same content
are needed in order to meet the constraint on the capacityebuukence to keep the
workload constant, as depicted in Fig. 8(b).
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Fig. 8(c) shows the effect that the number of informatiomiteas on the service
provisioning delay. The increase of the delays is imputtibtbe heavier traffic on
the channel, that results in collisions and retransmissidithe information replies.

We then study the effect of the network density, measuretleaaverage node
degree, which is increased up to a mean number of neighbonmsoge equal to
20 in Fig. 9. Fig. 9(a) shows that the number of replicas iases according to
the optimal number of facilities computed by the CFL locarsé algorithm. In-
deed, the increased presence of neighbors induces a higtieinl the network, in
terms of queries: in order to satisfy the new demand, andw the per-node
workload constraint, additional nodes must become prosifier each content.
The availability of additional facility nodes allows themexperience a practically
unchanged per-storage time workload, in Fig. 9(b), as weeH aimilar delay for
successful content requests, in Fig. 9(c).

Finally, in Fig. 10, we assess the performance of the refiicaystem versus
the size of the network: that is, we maintain the network ter®nstant but we
consider a number of nodes ranging between 100 and 1000. Ascartd expect,
the number of replicas grows linearly with the network sirekig. 10(a), while
Fig. 10(b) and Fig. 10(c) show that the network size has aiilutno impact on the
average workload at replica nodes and on the delay, resplcti

Overall, our replication scheme shows excellent scatgbilroperties, since
it can dynamically adapt the number and placement of replioathe network
settings, so as to maintain a constant utilization of compation and memory
resources at each node. Moreover, we recall that such iesulfitained with lo-
cal measurements only, and thus the cost of the process dbebange with the
number of items or the size and density of the network.

7 Benchmarking our replication scheme to other approaches

We now turn our attention to a network system where inforomatiems are
associated to different query rates, and we evaluate theadibn of replicas for
each content. In this case, we compare the performance oéplication scheme
with that of the so-called square-root replication strat@d]. According to such a
strategy, the allocation percentagg) for a content is proportional to the square
root of the total demand per second for that content, i.e.,

_ pd)
Y Vo)

In [21], it has been proved that square-root replicatiorpignaal in terms of num-
ber of solved queries. Although initially introduced forred, unstructured, peer-
to-peer networks, the square-root rule has since beeredppliwireless networks
as well [22].

a(i)
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We derive our simulation results in the casd 6t 4 items with different popu-
larity, andc;={5, 15,40} Mbytes. Fig. 11 shows the fraction of the total number of
replicas of itemy, versus the associated query rat® V' A. The plot compares our
scheme with: (i) the square-root strategy, (ii) a uniformatelgy, which allocates
the same number of replicas per item, and (iii) a proportistrategy, where the
number of replicas is proportional to the content populaiwe observe that our
scheme achieves an allocation in between the square-rdgtraportional distri-
butions, while it is far from that obtained under the unifastrategy. This suggests
that our replication scheme well approximates the optiraplication strategy. In
particular, we can observe that, whenis higher, i.e., replica nodes are more
generous in reserving resources to serve requests, tlatiio tends to follow a
proportional distribution. Conversely, in presence oféowalues ot:;, i.e., when
the budget is limited, the allocation better fits the squact rule. In other words,
a “strict” budget sacrifices content replicas that play agimal role in achieving
low access cost: such replicas are dropped and the oveapk sif the distribution
drifts from proportional to square root.

Before we move on, a further observation is required. Singereplication
scheme roughly achieves the result obtained by a squateitooation, it is rea-
sonable to wonder why a different approach to content rafdio is required. First
of all, in this work we have different objectives than thaf2f]: load-balancing,
for example, requires an additional layer to complemensthere root allocation
scheme, which instead we achieve as part of our design. dfortre, the dis-
tributed version of the replication algorithms proposefRit] has some limitations
that renders them less suitable to be deployed in a mobile)egs environment.
The simple path replication scheme catering to low storagairements, just like
our scheme, substantially over/undershoots the optimalben of replicas. The
other approaches discussed in [21] are better at convetgiag optimal number
of replicas but require the bookkeeping of large amountsifmirimation. Finally,
the design and the evaluation of such algorithms in [21] dotaie into account
the dynamic nature that is typical of a mobile network.
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As a second step in our comparative evaluation, we benchauarieplication
mechanism with a simple caching scheme. In particular, weider gpull-based®
caching mechanism: a node issues a query for an informatom of interest to
other nodes in its vicinity. Such a request can travel up tmps away from the
node that issued the request. If a request is not satisfiddrmat timeout, the
content is fetched directly from the cellular network. Afteaving successfully
downloaded the content, the node stores it until the cooretipg validity time
expires. In case a node receives a query for the stored ¢piittavill serve it
through device-to-device communication. Note that, if dens not interested in
an information item, it will not participate to the cachingpess, including content
transfer and storage.

In summary, with the mechanism outlined above, informaftems spread
from one node to another in the network in a manner that lgassgembles an
epidemic diffusion process. However, when this contenpagation is hindered
by availability problems, the cellular network is used teaie new content sources
and avoid starvation.

With respect to the replication scheme we propose, theljadéd caching ap-
proach analyzed here differs in many aspects. First, sueltlding scheme even-
tually achieves full content replication, in that all nodasthe end of the diffusion
process, hold a copy of the content and can serve requestsigighbors. Instead,
the goal of our replication mechanism is to find the optimahber of replicas
that minimize content access costs, while guaranteeirg)batancing. Addition-
ally, in the caching scheme, nodes simply discard expiredecd, while, in our
scheme, replica nodes are in charge of downloading upiewdasions of the con-
tent. Since in our simulations nodes are loosely syncheahithe former behavior
implies that, at regular intervals corresponding to theteainversion expiration
times, the whole content diffusion process restarts froratsh.

In order to better understand our results, we now procedd suitne key intu-
itions that follow from the differences between caching agplication schemes
outlined above. It is well known that pull-based caching rapphes are sub-
optimal during the bootstrap phase of the content deliveoggss: the few nodes
storing a copy of the content are overwhelmed by queriesnatipg from nearby
nodes, while the vast majority of the other nodes remainadk wait for the con-
tent to propagate towards them. The caching scheme we &vdiaee partially
overcomes this problem by allowing nodes to fetch conterduh the cellular
network. However, it is reasonable to expect a large numbéexdernal” data
transfers: as a consequence, access congestion may aosd #ie cellular level.
Finally, we note that when the content is unpopular, theudifin process is even
slower and the above negative effects are amplified.

In the following, we test the performance of the replicateomd caching ap-
proaches in presence of two content discovery mechanisenorie presented in

°It is not the focus of this work to explore push-based meatmsj nor more advanced ap-
proaches such as interleaving of push/pull phases.
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Figure 12: Performance of caching and replication mechanim terms of (a)
number of replicas and (y)? index, for 100% content popularity and 100 s content
validity time

Sec. 5 and employed in the previous sections, which is basedcontent location

service, and a flooding-based approach. The latter mechdaiks the knowledge

of replica node identities, and thus floods the network witbrggs for the desired
content, although the overhead is reduced by means of a RG&IpTTL-bounded

forwarding. The presence of two discovery techniques alag to comment on

the impact that an optimized, yet complex solution (as thelmsed on the use of
a content location service) and a simple, yet sub-optimal (flooding) have on

the overall system performance.

We first focus on the behavior of the replication and cachiclgemes over
time. We run the two solutions in the identical standardregstoutlined in Sec. 5,
assuming a content validity time of 100 s and injecting omdica in the network at
the beginning of the simulation. The number of replicas gmés the system over
time is depicted in Fig. 12(a). We observe that, while ouficafion scheme con-
trols the number of replica nodes and keeps it relativelylistha caching solution
leads to a rapid growth of users caching the content. As éggeloy achieving full
replication, the caching strategy is more expensive thamehlication scheme for
the mobile nodes, in terms of storage requirements.

One may argue that fewer content replicas may lead to a sutalpplace-
ment: full replication ensures that the content residesravbiee demand is. The
results illustrated in Fig. 12(b), however, show that sudtlittonal storage space
usage does not lead to any significant advantage in term® afuhlity of replica
placement. The? index obtained by comparing the geographical distributibn
replicas under the two schemes with that computed by thealizeid solution is
essentially equivalent.

We now compare the performance of the caching approach tathaf our
replication scheme, when considering the following mettiat complement those
previously employed:

e query solving delay, intended as the time elapsed from thiasm when a
node sends the first query until the request is fulfilled, lifiezia replica
node or the cellular network;
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e percentage of external downloads, i.e., queries thattessuh an external
download, with respect to the overall requests generattttinetwork.

Assume the content update period to be fixed at 100 s. Fig) $B(avs the
average delay (along with the 95% confidence interval) fer idplication and
caching scheme as the content popularity varies. As hintedbave, the repli-
cation scheme outperforms the caching mechanism, and ffeesdice in the rel-
ative performance is amplified (in favor of replication), tag content popular-
ity decreases. Indeed, as content popularity decreasest fdes participate in
the diffusion process that underlies the caching schemesudk, nodes have to
wait longer for their queries to be satisfied and, in gendinaly end up download-
ing the content from the cellular network. Instead, whendbetent popularity is
high, the epidemic-style diffusion process performs bedied the delay decreases.
Fig. 13(b) reinforces the key intuitions we discussed im Haction: when the con-
tent diffusion process is hindered by content popularitypite nodes resort to the
cellular network to compensate for the delays of devicdegice communication.
Our replication scheme outperforms the caching approashialthis aspect: by
approximating optimal content replication and placemeunt,mechanism reduces
the content access costs, in terms of congestion. Insteadaching mechanism
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does not alleviate access congestion: i) nodes in the tyicifia content replica
will “collide” to obtain the content through device-to-de# communication, and
i) nodes resorting to the cellular infrastructure becaofquery timeout expira-
tion also compete for bandwidth. These interwined aspeetexacerbated when
the content becomes stale: with our approach, few replickesitake care of the
update process, while, with the caching scheme we study tierevhole content
diffusion process has to start over.

Next, we delve into the impact of the content update frequeaied compare
the replication and caching scheme when the content walidite is in the inter-
val [25,100] s. Here the content popularity is set to 100%. Fig. 14(a) shibe
delay for the replication and caching scheme as the updetgiéncy decreases
(i.e., larger update times). When the update frequencygis, hoth caching and
replication suffer in terms of access delay. Requests farpalated version of the
content put under stress the replication scheme, becawsefdica nodes are in
charge of the content update, and consumer nodes have ttowie update pro-
cess to finish. Instead, as we argued above, the caching edm&srto restart at
every content update, and this is suboptimal. Fig. 14(Infoeces the intuition that
the caching scheme, in order to mitigate a slow diffusiorcess, heavily relies
on cellular communications, a phenomenon that is exaaatbahen the update
frequency is high. Instead, the replication scheme is déisdlgrunaffected by the
update frequency with respect to the number of external tads.

As described earlier in this section, we carried out our canafve analysis
using different content access mechanisms. As reportedrinesults, there is no
noticeable impact of using a simple flooding technique \v&esmore sophisticated
one based on content location service. However, althouglloveot report the
results here for sake of conciseness, the workload payeddiyrode because of
gueries being flooded in the network is larger than with arilianyk service helping
nodes to target the closest replica.

In light of the results discussed above, our content refidinascheme clearly
emerges as a simple, efficient and performing alternatit@dtitional mechanisms
that distribute the content through opportunistic comroations among the nodes.
By controlling the number and the placement of content caegli our mechanism
appears to be suitable especially when content popularityot 100%, both for
performance and cost-related reasons.

8 Related work

Simple, widely used techniques for replication are gossjgind epidemic dis-
semination [23, 24], where the information is forwarded tcaadomly selected
subset of neighbors. Although our RWD scheme may resemideaiproach in
that a replica node hands over the content to a randomly chosighbor, the
mechanism we propose and the goals it achieves (i.e., appaban of optimal
number of replicas) are significantly different.
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Another viable approach to replication is represented lgrgm-based [25]
and cluster-based protocols [26]. Both methods, althoufiérent, are based on
the maintenance of quorum systems or clusters, which inlenobtwork are likely
to cause an exceedingly high overhead. Node grouping i®afsoited in [27,28],
where groups of nodes with stable links are used to coopelastore contents and
share information. The schemes in [27,28], however, reqrira-priori knowledge
of the query rate, which is assumed to be constant in timee Mw@it, on the con-
trary, our lightweight solution can cope with a dynamic damhavhose estimate by
the replica nodes is used to trigger replication. We pointloat achieving content
diversity is the goal of [29] too, where, however, coopenmatis exploited among
one-hop neighboring nodes only.

Threshold-based mechanisms for content replication ameoged in [30, 31].
In particular, in [30] it is the original server that decidgkether to replicate con-
tent or not, and where. In [31], nodes have limited storagmlsiities: if a node
does not have enough free memory, it will replace a preworesteived content
with a new one, only if it is going to access that piece of infation more fre-
qguently than its neighbors up te-hops. Our scheme significantly differs from
these works, since it is a totally distributed, extremeghtiveight mechanism,
which accounts for the content demand by other nodes andesnaueplica den-
sity that autonomously adapts to the network dynamics.

Finally, relevant to our study are the numerous schemespaapfor handling
query/reply messages; examples are [32], which resemitdepdrfect-discovery
mechanism, and [33, 34] where queries are propagated alajegtbries so as to
meet the requested information. Also, we point out that th&DRscheme was first
proposed in our work [35]. That paper, however, besidesgipreliminary study;,
focused on mechanisms for content handover only: no rejlicar content access
were addressed.

9 Conclusions

We focused on content replication in mobile networks and ddressed the
joint problem of (i) establishing the number of content iegud to deploy in the
network, (ii) finding their most suitable location, and)(liétting users efficiently
access content through device-to-device communication.

We studied the above problems through the lenses of fatddgtion theory
and proposed a distributed, lightweight scheme that build§) local search ap-
proximations of the multi-commodity capacitated facilibgation problem and (ii)
parallel random walk diffusion in non-regular graphs. Wewgéd that, despite its
simplicity and the fact that it only leverages local meamgsts, our replication
solution can approximate with high accuracy the solutidaiad by optimal cen-
tralized algorithms, while also guaranteeing a fair balagpof the communication
and memory resources demanded of nodes. Additionally,dhense we propose
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adapts to network dynamics, in terms of content populasiae and set cardinality,
as well as user number, density and mobility.

When compared to different approaches to content repdicadind caching,
our approach performs closely to square-root-based edjgit; while it outper-
forms traditional caching techniques that mimic an epidediffusion of the con-
tent, especially in the more challenging settings of lowtenhpopularity and high
frequency of content updates.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[Online].  Available: http://www.nytimes.com/200BM3/technology/
companies/03att.htmif=1

[Online]. Available: http://venturebeat.com/2009/Q1/
iphone-users-eating-up-atts-network/

A. Lindgren and P. Hui, “The quest for a killer app for oppmistic and delay
tolerant networks,” ilACM CHANTS, Bejing, China, September 2009.

A. Derhab and N. Badache, “Data replication protocols rfmbile ad-hoc
networks: A survey and taxonomyEEE Communications Qurveys & Tuto-
rials, vol. 11, no. 2, pp. 33-51, June 2009.

P. B. Mirchandani and R. L. FranciBjscrete Location Theory. New York,
NY: John Wiley and Sons, 1990.

V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagaagd V. Pandit,
“Local search heuristic for k-median and facility locatiproblems,” inACM
STOC, Heraklion, Crete, Greece, July 2001.

N. Laoutaris, G. Smaragdakis, K. Oikonomou, |. Stavki&a and
A. Bestavros, “Distributed placement of service facitia large-scale net-
works,” in IEEE Infocom, Anchorage, AK, May 2007.

T. Moscibroda and R. Wattenhofer, “Facility location:isibuted approxi-
mation,” inACM PODC, Las Vegas, NV, July 2005.

O. Kariv and S. Hakimi, “An algorithmic approach to netskdocation prob-
lems, Part Il p-medians,dAM Journal on Applied Mathematics, vol. 37,
no. 3, pp. 539-560, December 1979.

R. Ravi and A. Sinha, “Multicommodity facility locatig’ in ACM/SAM
Symposium on Discrete Algorithms, New Orleans, LA, January 2004.

L. Lovasz, “Random walks on graphs: A survegbdmbinatorics, vol. 2, pp.
1-46, 1993.

27



[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

B. Bollobas,Modern Groph Theory. New York, NY: Springer-Verlag, 1998.

R. Hekmat and P. V. Mieghem, “Degree distribution ang bount in wireless
ad hoc networks,” inEEE International Conference on Networks (ICON),
New York, NY, 2003, pp. 603-609.

I. Benjamini, G. Kozma, and N. Wormald, “The mixing timef the
giant component of a random graph,” October 2006. [Onlidehilable:
http://arxiv.org/abs/math/0610459

K. Li, “Performance analysis and evaluation of randomlknalgorithms on
wireless networks,” inEEE International Symposium on Parallel & Dis
tributed Processing (IPDPSW), Atlanta, GA, April 2010, pp. 1-8.

J. Kahn, J. Kim, L. Lovasz, and V. Vu, “The cover timegtblanket time
and the Matthews bound,” IFEEE Symposium on Foundations of Computer
Science (FOCS), Redondo Beach, CA, November 2000, pp. 467—475.

J.-Y. L. Boudec and M. Vojnovic, “Perfect simulationdastationarity of a
class of mobility models,” inEEE Infocom, Miami, FL, March 2005.

R. Friedman and G. Kliot, “Location services in wiredesd hoc and hybrid
networks: A survey,” Technion - Israel Institute of Techog), Computer
Science Department, Tech. Rep., 2006.

V. Naumov, R. Baumann, and T. Gross, “An evaluation tdirvehicle ad hoc
networks based on realistic vehicular traces,”AtM MobiHoc, Florence,
Italy, May 2006.

K.Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong, “SLAW: Abitity model
for human walks,” in EEE Infocom, Rio de Janeiro, Brazil, 2009.

E. Cohen and S. Shenker, “Replication strategies itrucired peer-to-peer
networks,” inACM SGCOMM, Pittsburgh, PA, August 2002.

Y. Zhang, J. Zhao, and G. Cao, “Roadcast: A popularitam@@icontent shar-
ing scheme in VANETS,” inEEE International Conference on Distributed
Computing Systems (ICDCS), Montreal, Canada, June 2009.

H. Hayashi, T. Hara, and S. Nishio, “On updated dataedfiseation exploit-
ing an epidemic model in ad hoc networks,” liecture Notes in Computer
Science, vol. 3853, December 2006, pp. 306-321.

M. Hauspie, A. Panier, and D. Simplot-Ryl, “Localizedopabilistic and
dominating set based algorithm for efficient informatioasdimination in ad
hoc networks,” iInEEE MASS Fort Lauderdale, FL, October 2004.

28



[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. Luo, J.-P. Hubaux, and P. T. Eugster, “PAN: Providialigble storage in
mobile ad hoc networks with probabilistic quorum systenrs ACM Mobi-
Hoc, Annapolis, MD, June 2003.

H. Yu, H. Hassanein, and P. Martin, “Cluster-basedioggion for large-scale
mobile ad-hoc networks,” ilnternational Conference on Wreless Networks,
Las Vegas, NV, June 2005.

T. Hara, “Effective replica allocation in ad hoc netwsrfor improving data
accessibility,” inlEEE Infocom, Anchorage, AK, May 2001.

T. Hara, Y.-H. Loh, and S. Nishio, “Data replication rhetls based on the
stability of radio links in ad hoc networks,” iDatabase and Expert Systems
Applications (DEXA), 2003.

L. Yin and G. Cao, “Balancing the tradeoffs between dataessibility and
query delay in ad hoc networks,” iiEEE SRDS Bilbao, Spain, September
2004.

V. Thanedar, K. C. Almeroth, and E. M. Belding-Royer, lightweight con-
tent replication scheme for mobile ad hoc environmentigfivorking, May
2004.

M. Shinohara, H. Hayashi, T. Hara, and S. Nishio, “Regkllocation consid-
ering power consumption in mobile ad hoc networks,IHEE International
Conference on Pervasive Computing and Communications Workshop (PER-
COMW), Pisa, Italy, March 2006.

K. Chen and K. Nahrstedt, “An integrated data lookup eequlication scheme
in mobile ad hoc networks,” iBPIE ITCom, Denver, CO, August 2001.

D. Braginsky and D. Estrin, “Rumor routing algorithnr feensor networks,”
in ACM WSNA, Atlanta, GE, September 2002.

J. B. Tchakarov and N. H. Vaidya, “Efficient content lGoa in wireless ad
hoc networks,” inlEEE International Conference on Mobile Data Manage-
ment (MDM), Berkeley, CA, January 2004.

C. Casetti, C.-F. Chiasserini, M. Fiore, C.-A. La, andMRchiardi, “P2P
cache-and-forward mechanisms for mobile ad hoc netwonk$EEE |SCC,
Sousse, Tunisia, July 2009.

29



