
FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY ∗

PARTHA DUTTA† , RACHID GUERRAOUI‡ , RON R. LEVY§ , AND MARKO VUKOLIĆ¶

Abstract. We study efficient and robust implementations of an atomic read-write data structure
over an asynchronous distributed message-passing system made of reader and writer processes, as
well as a number of servers implementing the data structure. We determine the exact conditions
under which every read and write involves one round of communication with the servers. These
conditions relate the number of readers to the tolerated number of faulty servers and the nature of
these failures.

Key words. Atomic registers, Byzantine failures, Distributed algorithms, Fault-tolerance,
Time-complexity, Shared-memory emulations.

1. Introduction.

1.1. Background. Assigning a value to a variable or fetching a value from a
variable are probably the most common instructions of any program. When several
programs cooperate to achieve a common task, it is natural to provide them with
means to perform those instructions through shared variables.

The atomic read-write data structure allows concurrent processes, each possibly
running a different program, to share information through a common variable, as if
they were accessing this variable in a sequential manner. This abstraction, usually
called an atomic register or simply a register, is fundamental in distributed computing
and is at the heart of a large number of distributed algorithms [16, 5].

We study distributed implementations of this abstraction in an asynchronous
message-passing system with no actual physical shared memory: instead, a set of
server processes provide the illusion to a set of reader and writer processes (clients)
that the abstraction is a physical memory accessible to the client processes. We con-
sider robust [4] implementations where any read or write invocation by some client
process eventually returns, independently of (a) the operational status of other clients:
all of them might have stopped their computation (this aspect of robustness is also
called wait-freedom [16]); and (b) the failure of some of the servers. Such implemen-
tations have recently attracted a lot of interest as they underly reliable distributed
storage systems [25, 2, 17], which constitute appealing alternatives to traditional cen-
tralized storage infrastructures.

Ensuring both atomicity and robustness is not trivial. Informally, atomicity re-
quires that, even though each read or write operation may overlap and take an arbi-
trary period of time to complete, they appear to execute at some indivisible instant
during their respective period of execution [18]. This requires ordering operations in a
way that respects their real-time order as well as the expected sequential specification
of a read-write data structure: namely, a read should return the last written value.

∗This work is based on an earlier work: “How Fast can a Distributed Atomic Read be?” in
The Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing (PODC ’04).
c©ACM, 2004. http://doi.acm.org/10.1145/1011767.1011802
†IBM Research - India, India (parthdut@in.ibm.com).
‡School of Computer and Communication Sciences, EPFL, Switzerland

(rachid.guerraoui@epfl.ch).
§Quorius Ltd., Switzerland (ron.levy@gmail.com).
¶Eurécom, France (marko.vukolic@eurecom.fr). This work was partly done while this author

was working at IBM Research - Zurich.

1

2 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

To illustrate how an implementation can be robust yet achieve atomicity and
motivate our quest for fast implementations, consider the classical implementation
from [4] in a single-writer multi-reader case, also called a SWMR register implemen-
tation [18]. In [4], readers and servers are the same set, the writer is one of the servers,
a minority of processes may fail by crashing, i.e., halting all their activities without
warning, whereas the rest of the processes execute the algorithm assigned to them.

This implementation ensures atomicity by associating timestamps with every
written value. To write some value v, the writer increments its local timestamp,
and sends v with the new timestamp ts to all servers. Every server, on receiving such
a message, stores v and ts and then sends an acknowledgment (an ack) to the writer.
On receiving acks from a majority, the writer terminates the write. In a read oper-
ation, the reader first gathers value and timestamp pairs from a majority of servers,
and selects the value v with the largest timestamp ts. Then the reader sends v and
ts to all servers, and returns v on receiving acks from a majority of processes. Given
the single-writer setting, and since only the writer introduces new timestamps in the
system, the writer always knows the latest timestamp. Unlike the writer, a reader
does not know the latest timestamp in the system, and hence, needs to spend one
communication round-trip to discover the latest value, and then another round-trip
to propagate the value to a majority of servers. The second round-trip is “required”
because the latest value learned in the first round-trip might be present at only a
minority of servers: a subsequent read might thus miss this value. In a sense, every
read includes, in its second communication round-trip, a “write phase”, with the input
parameter being the value selected in the first round-trip.

It is easy to see how to reduce the time-complexity of a read by using a simple
decentralization scheme combined with a max-min technique. First, the reader sends
messages to all servers. Every server, on receiving such a message, broadcasts its
timestamp to all servers. On receiving timestamps from a majority of servers, ev-
ery server selects the maximum timestamp, adopts the timestamp and its associated
value, and sends the pair to the reader. On receiving such messages from a majority
of servers, the reader returns the value with the minimum timestamp. To see why
this ensures atomicity, observe that, when a write completes, its timestamp, say ts, is
stored at a majority of servers. In any subsequent read, every server sees a timestamp
that is at least ts, before the server sends the message to the reader. Hence, the read
returns a value that is not older than the written value. On the other hand, if a read
returns a value with timestamp ts, then a majority of servers have a timestamp at
least ts, and no subsequent read returns an older value.

But can we do better? Is there a fast implementation where none of the operations
(read or write) require more than one round-trip of communication between a client
and servers?

This would clearly be optimal in terms of time-complexity. Besides theoretical
interest, such implementation might for instance be of practical relevance in the con-
text of distributed storage systems where fast access to shared information might be
of primary importance [1, 7, 29].

Clearly, the difficulty is related to the multiplicity of readers. With a single reader,
it is easy to modify the algorithm of [4] such that the read takes only one round-trip
[18]: the read can return the latest value learned from the servers in the first round
trip, provided it is not older than the value returned in the previous read. Otherwise,

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 3

the reader returns the same value as in the previous read. Since there is only one
reader, this clearly orders the reads and ensures atomicity. To illustrate this case,
suppose the writer writes v with timestamp ts, and the write message is received only
by one server s (the write is incomplete). The first reader gets information from a
majority of servers that includes s. The read must return v because the reader does
not know whether the write of v is complete or not, and this reader has to return the
value of the last preceding write. Consider now the situation with two readers. The
second reader invokes a read, queries a majority of servers, and misses s. Clearly, the
second read returns a value with a timestamp lower than ts, violating atomicity: the
second read returns an older value than the preceding read.

At first glance, it seems impossible to have a fast implementation with two read-
ers when any minority of servers can be faulty. But what if we further restrict the
number of tolerated server failures?

1.2. Contributions. We show in this paper that, interestingly, the existence
of a fast SWMR implementation depends on the maximum number R of readers.
Notice here the focus on SWMR implementations; in this paper we, therefore, assume
R ≥ 2. We consider a general model of computation where t among the set S of
server processes on which the data structure is implemented can fail; in this paper,
we assume t ≥ 1. A server can fail by crashing, or even by deviating arbitrarily
from its algorithm and be malicious (also called Byzantine [26]). We denote by b
the number of arbitrary server failures, where 0 ≤ b ≤ t. In this paper, we consider
the authenticated arbitrary failure model in which processes can rely on unforgeable
digital signatures [28].

The main contribution of this paper is a theorem stating the following:

Theorem 1.1. There is a fast implementation of a SWMR register if and only
if the number of readers R is less than S+b

t+b − 2.
The paper proves this theorem by giving a fast implementation and then proving

it optimal (in terms of number of readers). Both the algorithm and the lower bound
proof are, we believe, interesting in their own rights. The algorithm uses a new
trace-based memory access technique whereas the lower bound uses a sieve-based run
construction scheme.

• Algorithm. Our fast implementation relies on the idea of traces left by
readers in the servers they access, even if they expedite their operation in one
round-trip. These traces are then used to determine which value to return
while preserving atomicity. It is important to notice at this point that this
idea has not been used in the register transformations literature e.g., [4] be-
cause, in a read/write shared memory, a process cannot read a value and at
the same time leave a trace. We exploit the idea to obtain a crash-stop fast
implementation (i.e., assuming b = 0 and R < S

t − 2) and then a Byzantine-
resilient one (i.e., assuming b 6= 0).

To get an intuition of the idea in the crash-stop case, consider the classical
algorithm of [4], sketched above, and the following observation: if a reader
sees the latest timestamp ts at x servers, then any subsequent reader sees ts
or a higher timestamp at x − t servers; this is because, in a fast implemen-
tation, the first reader does not propagate ts, and the second reader might
miss t servers seen by the first reader. A generalization of this observation

4 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

helps determine when some reader can safely return the value associated with
the latest timestamp. This is not entirely trivial because the atomicity of a
value cannot be simply deduced from the number of servers that has seen the
value. To determine whether a value is safe to return, we make every server
maintain, besides the latest value, the set of readers to which the server has
sent that value. This is the actual trace left by the readers.

• Lower bound. Consider S server processes, t among which can be faulty,
and none is Byzantine. We prove by contradiction that there is no fast im-
plementation with R ≥ S

t − 2 (recall here that we assume R ≥ 2 and t ≥ 1).
We illustrate the proof in Figure 1.1 for S = 4, t = 1 and R = 2.

(a) (b) (c)

Fig. 1.1. Sketch of the lower bound proof for S = 4, t = 1 and R = 2

Given a fast implementation with R ≥ S
t − 2, we consider a partial run

which contains a write(1) that misses t servers, to which we append a read
that misses t other servers (see Fig. 1.1(a)). Then we delete all the steps in
the partial run that are not “visible” to the reader (basically, the steps of
the t servers that the read missed). By atomicity, the read returns 1 in the
resulting partial run. Now we iteratively append reads, each acting like a
sieve, by distinct readers, and delete the steps in the partial run that are
not visible to the last reader, until we exhaust all the readers (Fig. 1.1(b)).
To ensure atomicity, the last read of each partial run returns 1. In the final
partial run (obtained after exhausting all readers) the steps of write(1) are
almost deleted. We modify this partial run to construct several additional
partial runs, one of which violates atomicity. In the special case shown in
Figure 1.1(c)) we obtain atomicity violation by reusing the first reader r1:
a) the first read invocation by r1, concurrent with that of reader r2, cannot
return 1 because it cannot read value 1 from any server (the response from
s3 is never received since s3 crashes) and b) for similar reasons, the following
read by r1 cannot return 1, however a preceding read by r2 already returned
1 — an atomicity violation.

The lower bound proof is then extended to the case where b ≤ t servers can
fail in an arbitrary manner: we show that a fast implementation is possible

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 5

only if the number of readers is less than S+b
t+b − 2.

Finally, to complete the picture, we prove that it is impossible to have a one-round
read algorithm with multiple writers [20] (MWMR atomic register) even if only one
server can fail and it can only do so by crashing.

1.3. Roadmap. The paper is organized as follows. Section 2 gives the system
model. Section 3 defines atomic (and fast) register implementations. We present a
fast implementation assuming R < S

t − 2 in Section 4. We prove a tight bound for
R in Section 5. Section 6 extends the previous results to the arbitrary failure model.
Section 7 considers the multi-writer case. We discuss related work in Section 8.
Section 9 summarizes the main results of the paper.

2. System Model.

2.1. Basics. The distributed system we consider consists of three disjoint sets
of processes: a set servers (also denoted by Σ) of cardinality S containing processes
{s1, ..., sS}, a set writer containing a single process {w} (we discuss the multi-writer
case in Section 7), and a set readers of cardinality R containing processes {r1, ..., rR}.
We refer to the elements from writer∪readers as clients. We also denote a set Σ\Σ′,
where Σ′ ⊆ Σ by Σ′. Every pair of processes communicate by message-passing using
a bi-directional reliable communication channel. Notice that the reliable channels
assumption is needed to ensure wait-freedom, but not atomicity (we define these
notions later). We also assume the existence of a global clock; however, processes
cannot access the global clock.

A distributed algorithm A is a collection of automata, where Ap is the automata
assigned to process p [22]. Computation proceeds in steps of A. A run is an infinite
sequence of steps of A. A partial run is a finite prefix of some run. A (partial) run
r extends some partial run pr if pr is a prefix of r. At the end of a partial run, all
messages that are sent but not yet received are said to be in transit. In any given
run, any number of readers, the writer, and t out of S servers may crash. We extend
our failure model to allow for arbitrary failures in Section 6.

2.2. Details of the System Model. The state of communication channels
is viewed as a set of messages mset containing messages that are sent but not yet
received. We assume that every message has two tags which identify the sender and
the receiver of the message. A distributed algorithm A is a collection of automata,
where Ap is the automata assigned to process p. Computation proceeds in steps of
A. A step of A is denoted by a pair of process id and message set < p,M > (M
might be ∅). In step < p,M >, process p atomically does the following: (1) remove
the messages in M from mset, (2) apply M and its current state stp to Ap, which
outputs a new state st′p and a set of messages to be sent, and then (3) p adopts st′p
as its new state and puts the output messages in mset.

Given any algorithm A, a run of A is an infinite sequence of steps of A such that
the following properties hold for each process p: (1) initially, mset = ∅, (2) the current
state in the first step of p is a special state Init, (3) for each step < p, M >, and for
every message m ∈ M , p is the receiver of m and mset contains m immediately before
the step < p, M > is taken, and (4) (reliable channels) if there is a step that puts a
message m in mset such that p is the receiver of m and both p and the sender of m
take an infinite number of steps, then there is a step < p, M > such that m ∈ M .

A partial run is a finite prefix of some run. We say that a process is correct in a
run if it takes an infinite number of steps in that run. Otherwise the process is faulty.
In a run of our model, any number of readers or the writer may be faulty, and at most

6 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

t ≤ S servers might be faulty. We say that a (faulty) process p crashes at step sp in
a run, if sp is the last step of p in that run. Notice that the assumption of reliable
channels does not guarantee that correct processes always receive messages sent by
faulty processes.

For presentation simplicity, we do not explicitly model the initial state of a pro-
cess, nor the invocations and responses of operations. We assume that the algorithm
A initializes the processes, and schedules invocation/response of operations (i.e., A
modifies the states of the processes accordingly). However, we say that p invokes an
operation op at step sp, if A modifies the state of a process p in step sp so as to invoke
an operation (and similarly for response).

In any run, we say that an operation op1 precedes operation op2 (or op2 follows
op1) if the response step of op1 precedes the invocation step of op2 in that run. If
neither op1 nor op2 precedes the other, the operations are said to be concurrent. We
say that an operation is complete in a (partial) run if the run contains a response
step for that operation. We assume that all (partial) runs are well-formed, i.e., no
process p invokes a new operation before all operations previously invoked by p have
completed.

A history of a partial run is a sequence of invocation and response steps of opera-
tions in the same order as they appear in the partial run. An incomplete operation in
a history H is an operation whose invocation step is in H, but the matching response
step is not in H. We say that a history H1 completes history H2 if H1 can be ob-
tained through the following modification of H2: for each incomplete operation op in
H2, either invocation step of op is removed from H2, or any valid matching response
for that invocation is appended to the end of H2.

3. Atomic Register. A sequential register is a data structure accessed by mul-
tiple processes in a non-concurrent manner (i.e., no two operations on a sequential
register are concurrent). It provides two operations: write(v), which stores v in the
register, and read(), which returns the last value stored. Only readers invoke reads on
the register and only the writer invokes writes on the register. We further assume that
there is a special write wr0 operation that initializes the register by writing a special
value ⊥ (which is not a valid input value for other writes) such that wr0 precedes all
other operations.

An atomic register is a distributed data structure that may be concurrently ac-
cessed by multiple processes and yet provides an “illusion” of a sequential register to
the accessing processes. An algorithm implements an atomic register if every run of
the algorithm satisfies termination and atomicity properties, defined in the following.

3.1. Definition. Termination states that if a correct process invokes an opera-
tion, then eventually the operation completes (even if all other client processes have
crashed).

A run satisfies atomicity, if for every history H ′ of any of its partial runs, there is a
history H that completes H ′ and H satisfies the properties A1-A3 below (Lemma 13.16
of [21]). Let Π be the set of all operations in H. There is an irreflexive partial ordering
≺ of all the operations in H such that: (A1) if op1 precedes op2 in H then it is not
the case that op2 ≺ op1, (A2) if op1 is a write operation in Π and op2 is any other
operation in Π, then either op1 ≺ op2 or op2 ≺ op1 in Π, and (A3) the value returned
by each read operation is the value written by the last preceding write operation
according to ≺.

In our single writer setting assuming well-formed runs, atomicity properties A1-
A3 can be simplified. Namely, in the single-writer case, the relation precedes totally

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 7

orders write operations (and, likewise, the values stored by these). Before we give
the equivalent definition of atomicity in the single writer setting, we introduce some
additional notation.

In a given run, we denote by wrk the write that is preceded by exactly k writes
(including the initial write wr0). In other words, for k ≥ 1, wrk denotes the kth write
by the writer in a given run (note that wr0 is not invoked by the writer). Then, we
say that an operation op returns a timestamp k, if: a) op is wrk, or b) op is a read
that returns the value stored by wrk.

Consider a relation ≺ such that op1 ≺ op2 if and only if the timestamp returned
by op1 is smaller than the timestamp returned by op2. Then, it is straightforward to
show that the ≺ is a partial ordering that satisfies atomicity properties A1-A3, if the
following properties are satisfied:

(SWA1) If a read returns, it returns a non-negative timestamp.
(SWA2) If a read rd returns timestamp l and rd follows write wrk, then l ≥ k.
(SWA3) If a read rd returns timestamp k, then rd does not precede wrk.
(SWA4) If reads rd1 and rd2 return timestamps l1 and l2, respectively, and if rd2

follows rd1, then l2 ≥ l1.

Indeed, it is straightforward to see that Property A1 of ≺ is implied by Proper-
ties SWA2 and SWA4, whereas property A3 is implied by properties SWA1, SWA2
and SWA3. Finally, Property A2 follows immediately from our definition of ≺, the
ordering of write operations (well-formedness) and SWA1. Hence, to show that a
single writer register implementation satisfies atomicity, it is sufficient to show that
it satisfies the properties SWA1-SWA4.

3.2. Time-Complexity of Implementations. We define the time-complexity
of atomic register implementation in terms of communication round-trips. An opera-
tion op invoked by client c consists of a sequence of round-trips, where a round-trip
contains the following three phases.

1. Client c sends messages to a subset of processes in a step. (In the first round-
trip of the operation, the invocation step of operation precedes this send
step.)

2. Upon receiving a message m in step sp1 =< p, M > (m ∈ M), where m
is sent by the client c in phase 1 of the round-trip, a process p replies to c
either in step sp1 itself, or in a subsequent step sp2, such that p does not
receive any message in any step between sp1 and sp2, including sp2. (In
other words, upon receiving m, p replies to the client before receiving any
other messages. Intuitively, this requirement forbids the processes to wait for
some other message before replying to m.)

3. Upon receiving a sufficient number of above replies, client c either returns
from op or moves to the next round-trip.

We would like to note the following points to emphasize the generality of the
above definition: (1) steps from phase 2 and phase 3 of a round-trip may interleave,
(2) round-trips of different operations (by different clients) may overlap, and (3) there
is no requirement on the communications between a pair of processes both of which
are distinct from the client (e.g., the servers may communicate among themselves
using any message exchange pattern). Also, note that the above definition is close
to the time-complexity definition in [13], where a round-trip in the above definition
corresponds to a round in [13].

8 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

3.3. Fast Implementations. A read or a write operation is fast if it completes
in one communication round-trip. We say that an atomic register implementation is
fast if both its read and write operations are fast.

Recall that implementations need to tolerate the crash of any client and up to t
servers. Hence, in order to ensure termination in a fast implementation, a reader (or
a writer) cannot wait for replies from any other client, or more than S − t servers, in
the first round-trip of the operation. For an implementation that has fast reads, we
can say without ambiguity that the messages sent by a reader, on invoking a read,
are of type read, and the reply sent by a process to the reader, on receiving a read
message, are of type readack. Similarly, we define write and writeack messages
for fast writes.

We would like to note that no register implementation can have all its write
invocations return in the first round-trip before receiving any writeack message.
Suppose by contradiction that a write(v) by writer w returns in the first round-trip
before receiving any writeack message. Then, w cannot distinguish this operation
from another incomplete operation where all write messages of the operation are
in transit. In the latter operation, suppose the operation returns before any write
message is received, w crashes, and no write messages are ever received. Then,
no subsequent read can recover and return v. Thus, in terms of worst-case time-
complexity, it is not possible to improve over fast implementations.

4. A Fast Atomic Register Implementation. In the following, we first de-
scribe our fast implementation assuming R < S

t − 2 and then prove its correctness.
For simplicity of presentation, we first present our algorithm assuming that the writer
writes timestamps, and the readers read back timestamps. Later we explain how to
simply generalize our algorithm such that the writer and the readers associate some
value with a timestamp.

4.1. Algorithm. The pseudocode of our fast implementation is given in Fig-
ure 4.1. The write procedure is similar to that of [4]. On invoking a write, the
writer increments its timestamp (initialized to 0) and sends a write message with
the timestamp to all servers (lines 4-5). Upon receiving the message, servers update
the timestamp and send writeack messages back to the writer (lines 22-29). The
writer returns ok once it has received writeack messages from S − t servers (lines
6-7).

Implementing a fast read is more involved. Like several previous atomic register
implementations, our read procedure collects timestamps from S−t servers (by sending
read messages and receiving readack messages from the servers), and selects the
highest timestamp, denoted by maxTS in line 15, Figure 4.1. However, notice that in
our fast implementation server si, besides storing the highest received timestamp in
its local variable tsi, maintains also the set updatedi that contains all clients to which
si has sent the current value of tsi. Basically, updatedi contains all clients to which
si has sent an update (in the form of a readack or a writeack message) about
its highest timestamp. This information is read in our read procedure along with the
timestamps. Hence, a reader collects timestamps and sets updated∗ from S− t servers
using read and readack messages (lines 12-13 and 32).

Upon receiving S − t readack messages (collected in the set rcvMsg, line 14),
the read is precluded from waiting for more messages (the remaining t servers may be
faulty). Moreover, in order to have a fast implementation, the read may only perform
some local computations and then it must return the value. In our fast implementa-
tion, the essence of this local computation is captured by predicate admissible (line 8)

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 9

0: at the writer w:

1: procedure initialization:
2: ts ← 0
3: procedure write()
4: ts ← ts + 1
5: send(write, ts) to all servers
6: wait until receive(writeack, ts) from S − t servers
7: return(ok)

at each reader ri:

8: admissible(TS, Msg, a) ≡ ∃µ ⊆ Msg, ∀m ∈ µ :
(m.ts = TS) ∧ (|µ| ≥ S − at) ∧ (|⋂

m′∈µ
m′.updated| ≥ a)

9: procedure initialization:
10: maxTS ← 0
11: procedure read()
12: send(read, maxTS) to all servers
13: wait until receive(readack, ∗, ∗) from S − t servers
14: rcvMsg ← {m|ri received (readack, ∗, ∗) in line 13}
15: maxTS ← Max{ts| (readack, ts, ∗) ∈ rcvMsg}
16: if ∃a ∈ [1, R + 1] : admissible(maxTS, rcvMsg, a) then
17: return(maxTS)
18: else
19: return(maxTS − 1)

at each server si:

20: procedure initialization:
21: tsi ← 0; updatedi ← ∅
22: procedure update(ts, c)
23: if ts > tsi then
24: tsi ← ts; updatedi ← {c}
25: else
26: updatedi ← updatedi ∪ {c}
27: upon receive(write, ts) from writer w do
28: update(ts, w)
29: send(writeack, tsi) to w

30: upon receive(read, ts) from reader rj do
31: update(ts, rj)
32: send(readack, tsi, updatedi) to rj

Fig. 4.1. Fast SWMR atomic register implementation with R < S
t
− 2

10 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

which relies on the sets updated∗ to evaluate whether the highest received timestamp
maxTS may be returned. Namely, if there is an integer a (1 ≤ a ≤ R + 1), such
that admissible(maxTS, rcvMsg, a) holds in line 16 (we simply say that maxTS is
admissible (with degree a)), the read returns maxTS (line 17). Otherwise, if maxTS
is not admissible, a read returns maxTS − 1. In any case, maxTS is cached locally,
and is written back by the reader in its following invocation of read (line 12).

In the following, we give an intuition behind the predicate admissible() which is
the heart of our fast implementation. The predicate is designed to guarantee that:

(a) maxTS = k is admissible in read rd whenever wrk precedes rd — this is vital for
ensuring “read-write” atomicity, captured by Property SWA2, Section 3.1, and

(b) if maxTS = k is admissible in read rd, then no rd′ that follows rd returns a
timestamp smaller than k — this is vital for ensuring “read-read” atomicity, captured
by Property SWA4, Section 3.1.

First, we explain how our predicate guarantees (a). Consider the following partial
run, pr1. In pr1, write wrk (k ≥ 1) completes by writing k to all servers from some
set Σ1 containing S− t servers. There are no writes in pr1 that follow wrk. Moreover,
read rd (by some reader ri), that follows wrk, reads from set Σ2 of S − t servers that
intersects in S − 2t servers with Σ1, i.e., rd misses t servers in Σ1. By atomicity, rd
must return k in pr1, and it must do so without waiting for messages from servers
from Σ2 or the writer, since these may be faulty. In this case: (i) in line 15 of rd,
maxTS = k, and (ii) for every message m received by ri in rd from servers from
Σ1 ∩Σ2, we have m.ts = maxTS and {w, ri} ⊆ m.updated. Since |Σ1 ∩Σ2| ≥ S − 2t,
maxTS is admissible in rd with degree a = 2.

On the other hand, the key to guaranteeing (b) is the following invariant (here-
after, maxTSop denotes maxTS computed in line 15 of the read operation op):

Lemma 1. Let rd′ be a complete read (by reader rj) that follows a complete read

rd (by ri). If maxTSrd is admissible with degree ard ≤ R + 1, then:

• maxTSrd′ > maxTSrd, or

• maxTSrd′ = maxTSrd and maxTSrd′ is admissible with degree ard + 1 or

degree 1 in rd′.
Here, we sketch the proof of Lemma 1 (the full correctness proof of our imple-

mentation can be found in Section 4.2), and illustrate it in Figure 4.2.
Proof. By the definition of the predicate admissible (line 8), there is a set of

readack messages µrd, sent by servers from the set Σrd to reader ri, such that, for
every message m in µrd, m.ts = maxTSrd, |Σrd| = |µrd| ≥ S − ardt and |Πrd| ≥ ard,
where Πrd =

⋂
m∈µrd

m.updated. Notice that, since ard ≤ R + 1 and R < S
t − 2, we

have |Σrd| ≥ t + 1. Moreover, since (a) rd′ follows rd, (b) |Σrd| ≥ t + 1 and (c) rd′

reads from S − t servers, rd′ receives a readack from at least 1 server from Σrd.
Hence, maxTSrd′ ≥ maxTSrd.

If maxTSrd′ = maxTSrd = k, we distinguish two cases:
Case (i), Fig. 4.2(a), rj /∈ Πrd (note that this case is possible only if ard ≤ R). It is
not difficult to see that k is admissible in rd′ with degree ard + 1. Indeed, rd′ will
miss at most t servers from Σrd, receiving at least S − (ard + 1)t readack messages
containing the timestamp k, and the updated∗ fields of these messages will be a su-

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 11

(a) In this case rj /∈ Πrd =
⋂

m∈µrd
m.updated = {w, ri, rk}. Since read rd′ is

guaranteed to readack messages from at least 2 servers in {s1, s2, s6} and these

servers add rj in their updated sets, maxTSrd′ = 2 is admissible with degree 4

in rd′ (Πrd = {w, ri, rk, rj})

(b) In this case rj ∈ Πrd =
⋂

m∈µrd
m.updated = {w, ri, rj}. Hence, all servers

from {s1, s2, s6} send a readack message with ts = 2 to rj before rd′ is invoked

and maxTSrd′′ = 2 in some read rd′′ by rj that precedes rd′. Hence, in rd′, rj

sends read message with ts = 2 and maxTSrd′ = 2 is admissible with degree 1

in rd′ (Πrd = {rj})

Fig. 4.2. Illustration of the proof of Lemma 1, for a run with R = 3 readers, S = 6 servers and

t = 1. readack messages that allow timestamp 2 to be admissible in reads rd and rd′ are highlighted

in grey. In both cases, in read rd, maxTSrd = 2 is admissible with degree 3 (notice the readack

messages received from servers s1, s2 and s6).

12 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

perset of Πrd ∪ {rj}, hence each containing at least ard + 1 clients.

Case (ii), Fig. 4.2(b), rj ∈ Πrd (which indicates that rd′ is not the first read by rj). In
this case, all servers from Σrd, at least t+1 of them, have sent a readack message to
rj containing the timestamp k before rd′ is invoked. At least one of those must have
been received by rj in read rd′′ that immediately precedes rd′. Hence, maxTSrd′′ = k,
and maxTS in line 12 of rd′ equals k. Finally, S−t servers send readack to rd′ with
the timestamp equal to k and the set updated that contains {rj} (see lines 22-26),
i.e., k is admissible with degree 1 in rd′.

Finally, to help distinguish read and readack messages from different reads
of the same reader, we implicitly (for better readability of pseudocode) assume that
every reader rj maintains a local variable rdCntj that rj increments at the beginning
of every read invocation. Reader rj includes rdCntj in each read message (line 12)
and servers reply including rdCntj in a readack message (line 32). Servers cache the
highest seen rdCntj for every reader rj ; namely, before sending a readack message
to rj , a server stores locally rdCntj and does not reply to read messages from rj

that contain rdCnt′j < rdCntj . Hence, once server si replies to read rd invoked by
reader rj , si replies only to those reads of rj that follow rd. To refer to this invariant,
we say that servers ignore old reads.

This completes the brief description of the register implementation. We now
describe how to modify the algorithm so as to associate values with timestamps. In
the modified algorithm, in each write, the writer attaches two tags with the timestamp,
containing the current value to be written and the value of the immediately preceding
write. If the reader returns maxTS in the original algorithm, then it returns the
current value attached to maxTS in the modified algorithm. If the reader returns
maxTS − 1 in the original algorithm, it returns the other tag attached to maxTS in
the modified algorithm.

4.2. Correctness of the Fast Implementation. It is obvious that the read/write
time-complexity is one communication round-trip. To show atomicity, we need to
prove Properties SWA1-SWA4 of Section 3.1. In the proof, we use the following
notation:

Definition 4.1.

1. rcvMsgop denotes the set of received readack messages the reader collects

in read operation op (lines 13-14);

2. Σop denotes the set of servers from which the reader received readack mes-

sages in rcvMsgop (in case op is a read), or the set of servers from which the

writer received writeack messages in line 6 of op (in case op is a write).

Notice that, for every operation op, |Σop| = S − t;

3. maxTSold
op denotes the value of maxTS in line 12 in read op. Moreover,

maxTSop denotes maxTS computed by the reader in line 15, in op (i.e., the

highest timestamp in messages in rcvMsgop).

4. µop,a denotes, in case maxTSop is admissible with degree a in op, the subset

of rcvMsgop, such that (see line 8, definition of predicate admissible):

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 13

(a) |µop,a| ≥ S − at,

(b) ∀m ∈ µop,a, m.ts = maxTSop, and

(c) |⋂
m∈µop,a

m.updated| ≥ a.

5. Πop,a denotes the set of servers
⋂

m∈µop,a
m.updated; and

6. Finally, Σµop,a denotes the set of servers that sent messages in µop,a.

We start with two simple observations that we use in the rest of the proof.
Lemma 4.2. If a server sets its local variable ts to x at time T , then the server

never sets ts to a value that is lower than x after time T .
Proof. By trivial server code inspection.
Lemma 4.3. A read operation rd may only return either maxTSrd or maxTSrd−

1.
Proof. By lines 16-19 and the definition of maxTSrd.
The following lemma captures the “writeback” mechanism of our algorithm and

states, roughly, that read operations invoked by the same reader cannot violate atom-
icity. This lemma is crucial for proving Properties SWA1 and SWA2.

Lemma 4.4. A read rd cannot return a value smaller than maxTSold
rd .

Proof. Recall that maxTSold
rd denotes maxTS sent in read message in rd (line

12). By lines 23-24, every readack message received by a reader in rd from some
server sj is with tsj ≥ maxTSold

rd . Hence, maxTSrd ≥ maxTSold
rd . There are the

following two cases to consider. (1) If maxTSrd > maxTSold
rd , by Lemma 4.3, the

return value is not smaller than maxTSold
rd . (2) If maxTSrd = maxTSold

rd . then every
readack message in rcvMsgrd has a timestamp equal to maxTSold

rd and ri ∈ updated.
Since rd receives S− t readack messages, maxTSold

rd is admissible with degree a = 1
(µrd,1 = rcvMsgrd). By lines 16-17, rd returns maxTSold

rd .
Lemma 4.5. (SWA1) If a read returns, it returns a non-negative timestamp.
Proof. To prove the lemma, it is sufficient to show that there is no read rd in

which maxTSold
rd < 0 (then, the lemma follows from Lemma 4.4).

To see this, assume by contradiction that there is a read rd by reader ri in which
maxTSold

rd < 0. By lines 9-10, this is not the first read by ri, i.e., there is a read
rd′ by ri that (immediately) precedes ri such that maxTSrd′ < 0, i.e., S − t servers
sent readack message in rd′ with ts∗ < 0. However, since server timestamps are
initialized to 0, this contradicts Lemma 4.2.

Lemma 4.6. “read-write” atomicity (SWA2). If a read rd returns timestamp
l and rd follows write wrk, then l ≥ k.

Proof. Denote by ri the reader that invoked rd and let Σ′ = Σwrk
∩ Σrd. Since

|Σwrk
| = S − t and |Σrd| = S − t, we have |Σ′| ≥ S − 2t.

When a server sj in Σwrk
(and, hence, in Σ′) replies to a write message from

wrk, its tsj is at least k (server timestamp is not smaller than k due to the condition
in line 23). Since wrk precedes rd, by Lemma 4.2, servers in Σ′ reply with ts∗ ≥ k to
rd. Hence, maxTSrd ≥ k. There are the following two cases to consider:

1. maxTSrd > k
By Lemma 4.3, rd does not return a timestamp lower than k.

2. maxTSrd = k
Let µ′ be the set of readack messages sent by servers in Σ′ to rd. By
definition of Σrd and since Σ′ ⊆ Σrd, we have µ′ ⊆ rcvMsgrd. Since (a)
every server sj ∈ Σ′ replies to rd with tsj ≥ k, (b) µ′ ⊆ rcvMsgrd and (c)

14 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

maxTSrd = k, we have that every server sj ∈ Σ′ replies with tsj = k to rd
(and rj receives these replies).
Moreover, since every server sj ∈ Σ′ replies tsj = k to wrk (since Σ′ ⊆ Σwrk

)
before sending tsj = k to rd (since wrk precedes rd), for every message
m in µ′, w ∈ m.updated. Furthermore, since sj replies with tsj = k to
rd, by line 26, ri ∈ m.updated. Thus, {w, ri} ⊆ ⋂

m∈µ′
m.updated. As

|Σ′| ≥ S − 2t, maxTSrd is admissible in rd with degree a = 2. Hence,
rd returns maxTSrd = k.

The following lemma helps prove Property SWA3.
Lemma 4.7. If maxTSrd ≥ k, then rd does not precede wrk.
Proof. We focus on the case k ≥ 1, since the proof for k = 0 follows from the

definition of wr0. To prove the lemma, it is sufficient to show that no server sets its
local timestamp to a value greater or equal to k, before wrk is invoked. Assume, by
contradiction, that there is such server si that is, moreover, the first server to set its
local timestamp tsi to l ≥ k according to the global clock (at time T), i.e., no server
sets its local timestamp to l before time T .

It is obvious that wrk and wrl (which might be the same operations) are invoked
after T . Hence, si must have set tsi to l after receiving a read message in a read rd′

invoked by reader rj in which maxTSold
rd′ = l. Since l ≥ k ≥ 1, there is a read rd′′ by

rj that immediately precedes rd′ in which maxTSrd′′ = l. Since rd′′ precedes rd′, rd′′

completes before time T . By definition of maxTSrd′′ , some server had set its local
timestamp to l before rd′′ completed. A contradiction with the assumption that no
server sets its local timestamp before time T .

Lemma 4.7 has the following important corollary.
Corollary 4.8. If maxTSrd = k ≥ 1 then write wrk−1 completes before read

rd completes.
Lemma 4.9. (SWA3) If a read rd returns timestamp k (k ≥ 1), then rd does

not precede wrk.
Proof. By Lemmas 4.3 and 4.7.
We now proceed towards proving Property SWA4 of Section 3.1 (“read-read”

atomicity). The following 2 auxiliary lemmas are related to the predicate admissible
and to the sizes of the relevant subsets of the set rcvMsg.

Lemma 4.10. If maxTSrd is admissible in rd with degree a, then Σµrd,a
contains

at least t+1 servers.
Proof. By Definition 4.1 and inequalities a ≤ R + 1 and R < S

t − 2, we have
|Σµrd,a

| ≥ S − at > (R + 2)t− (R + 1)t = t.
Lemma 4.11. Assume that maxTSrd is admissible with degree a ∈ [1, R + 1] in

some read rd and that a complete read rd′ follows rd. Then, the number of servers
in Σµrd,a

∩Σrd′ is at least S − (a + 1)t. Moreover, Σµrd,a
∩Σrd′ contains at least one

server.
Proof. Since |Σµrd,a

| = |µrd,a| ≥ S − at and |Σrd′ | = S − t, it follows that
|Σrd′ ∩ Σµrd,a

| ≥ S − (a + 1)t. Moreover, since a ∈ [1, R + 1] and t < S/(R + 2), we
have S − (a + 1)t ≥ 1.

The following Lemma proves the key invariant used in the proof of Property
SWA4 of Section 3.1.

Lemma 4.12. Assume that:

1. maxTSrd is admissible with degree a ∈ [1, R + 1] in some read rd,

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 15

2. a complete read rd′ by reader rj follows rd,

3. there is a set X ⊆ Σµrd,a
of at least t + 1 servers, such that for all si ∈ X, si

sends message mi ∈ µrd,a with rj ∈ mi.updated.
Then, rd′ does not return a value smaller than maxTSrd.

Proof. Since the messages in µrd,a are sent before the completion of rd (and hence,
before the invocation of rd′) and since, there is a server si that sends mi ∈ µrd,a with
rj ∈ mi.updated, rj has invoked at least one read before rd′. Let rd′′ be the last read
by reader rj which precedes rd′. Since |X| ≥ t+1 and |Σrd′′ | = S− t, there is at least
one server sk in X ∩ Σrd′′ , such that the readack message m sent by sk is received
by rj in rd′′. In the following paragraph, we show that m.ts ≥ maxTSrd.

By contradiction, assume m.ts < maxTSrd. Since servers ignore old reads, there
is a read rdα by rj , such that rdα follows rd′′ and sk sends a readack message mα

to rdα, before sk sends mk ∈ µrd,a, i.e., before rd′ is invoked. Hence, rd′′ is not the
last read by reader rj which precedes rd′. A contradiction.

Since m.ts ≥ maxTSrd and m ∈ rcvMsgrd′′ , we have maxTSrd′′ ≥ maxTSrd.
Since rd′ follows rd′′, it follows that rj in rd′ sends read messages with ts ≥
maxTSrd. By Lemma 4.4, rd′ returns a timestamp greater than or equal to maxTSrd.

Lemma 4.13. “read-read” atomicity (SWA4). If reads rd1 and rd2 re-
turn timestamps retrd1 and retrd2 , respectively, and if rd2 follows rd1, then retrd2 ≥
retrd1 .

Proof. Without loss of generality we can assume (to facilitate the notation) that
read rd1 (resp., rd2) is invoked by reader r1 (resp., r2). Suppose r1 = r2. Then, in
the read that immediately follows rd1, r1 sends a read message with ts ≥ retrd1 , and
hence, by Lemma 4.4, the read returns a value greater than or equal to retrd1 . Using
Lemma 4.4 and a simple induction, we can derive that any read by r1 which follows
rd1 (including rd2) returns ts ≥ retrd1 . Therefore, in the rest of the proof we assume
that r1 6= r2. We distinguish the following two cases:

1. maxTSrd1 is not admissible in rd1.
It follows that retrd1 = maxTSrd1−1. By Lemma 4.5, retrd1 ≥ 0 and, hence,
maxTSrd1 ≥ 1. By Corollary 4.8, wrretrd1

completes before rd1 is completes.
Since rd1 precedes rd2, it follows that wrretrd1

precedes rd2. By Lemma 4.6,
rd2 returns retrd2 ≥ retrd1 .

2. maxTSrd1 is admissible in rd1.
It follows that retrd1 = maxTSrd1 , and there is some a ∈ [1, R + 1] such that
retrd1 is admissible in rd1 with degree a. By Lemma 4.11, there is at least
one server si ∈ Σµrd1,a

∩ Σrd2 . Since rd1 precedes rd2, si first replies with
tsi = retrd1 to rd1 before si replies to rd2. Finally, by Lemma 4.2, it follows
that si replies to rd2 with tsi ≥ retrd1 , i.e., maxTSrd2 ≥ retrd1 .
We distinguish the following three exhaustive cases:
(a) maxTSrd2 > retrd1

By Lemma 4.3, we have retrd2 ≥ retrd1 .
(b) maxTSrd2 = retrd1 and maxTSrd2 is admissible in rd2

By lines 16-17, retrd2 = maxTSrd2 = retrd1 .
(c) maxTSrd2 = retrd1 and maxTSrd2 is not admissible in rd2

We show that this case is impossible by exhibiting appropriate contra-
dictions.
In this case, by lines 16-19, retrd2 = maxTSrd2 − 1 = retrd1 − 1 =

16 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

maxTSrd1 − 1. By Lemma 4.11, there is at least one server in Σµrd1,a
∩

Σrd2 . Since rd1 precedes rd2 and servers in Σµrd1,a
reply with ts∗ =

retrd1 to rd1, by Lemma 4.2, servers in Σµrd1,a
∩Σrd2 reply to rd2 with

ts∗ ≥ retrd1 . Since retrd2 + 1 = retrd1 = maxTSrd2 , every server in
Σrd2 ∩Σµrd1,a

replies to rd2 with ts = retrd1 = retrd2 +1. There are the
following two cases to consider:

i. a ≤ R
In this case, by Lemma 4.11, the number of servers in Σµrd1,a

∩Σrd2

is greater than t. Let µ1 be the set of readack messages sent from
servers in Σµrd1,a

∩ Σrd2 to rd1. There are two cases to consider:
A. r2 /∈ ⋂

m∈µ1
m.updated

Denote
⋂

m∈µ1
m.updated by Π1. Notice that, by definitions of

µ1 and µrd1,a, µ1 ⊆ µrd1,a. Hence, we have Π1 ⊇ Πrd1,a and
|Π1| ≥ a.
Let µ2 be the set of messages received by rd2 from servers
in Σµrd1,a

∩ Σrd2 . For any server si ∈ Σµrd1,a
∩ Σrd2 , let m1

and m2 be the messages sent by si in µ1 and µ2 respectively.
Since we know that m1.tsi = m2.tsi = retrd1 and since m1

is sent before m2, we have m1.updated ⊆ m2.updated. Hence,
Π1 ⊆ ⋂

m∈µ2
m.updated. Since every server which replies to

r2 in rd2, adds r2 to its updated set before replying to r2,
r2 ∈

⋂
m∈µ2

m.updated.
Since r2 /∈ Π1, |

⋂
m∈µ2

m.updated| ≥ |Pi1| + 1 ≥ a + 1. Since
(a) the number of messages in µ2 equals the number of servers
in Σµrd1,a

∩ Σrd2 and (b) a + 1 ≤ R + 1, by Lemma 4.11 and
the definition of predicate admissible (line 8), we have that
retrd1 = retrd2 +1 is admissible in rd2 with degree a+1. Hence,
the timestamp returned by rd2 is retrd2+1, a contradiction (with
the assumption that rd2 returns retrd2).

B. r2 ∈
⋂

m∈µ1
m.updated

Denote by X the set Σµrd1,a
∩Σrd2 . By definition of µ1, messages

in µ1 are sent by processes in X. By Lemma 4.11 and since
a ≤ R, it follows that the number of servers in X is greater than
t. Hence, by Lemma 4.12, retrd2 ≥ maxTSrd1 . A contradiction
with retrd2 = maxTSrd1 − 1.

ii. a = R + 1
Since |{w, r1, ..., rR}| = R+1 and |⋂

m∈µrd1,a
m.updated| ≥ a = R+

1, we have r2 ∈
⋂

m∈µrd1,a
m.updated. By Lemma 4.10, Σµrd1,a

con-
tains at least t+1 servers. Replacing X with Σµrd1,a

in Lemma 4.12,
it follows that retrd2 ≥ maxTSrd1 . A contradiction with retrd2 =
maxTSrd1 − 1.

Finally, we combine the above lemmas to prove the correctness of our fast imple-
mentation.

Theorem 4.14 (Fast atomic register). The algorithm of Figure 4.1 is a fast
implementation of an atomic SWMR register.

Proof. Atomicity follows from Lemmas 4.5, 4.6, 4.9 and 4.13. Moreover, it is

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 17

obvious that our implementation satisfies Termination (conditions in lines 6 and 13
are non-blocking). Finally, our implementation is fast: all operations involve a single
communication round-trip between a client and servers.

5. Lower Bound. The following proposition states that the resilience required
by our fast implementation is indeed necessary.

Proposition 5.1. Let t ≥ 1 and R ≥ 2. If R ≥ S
t − 2, then there is no fast

atomic register implementation.
Preliminaries. Recall first that w denotes the writer, ri for 1 ≤ i ≤ R denote the
readers, and si for 1 ≤ i ≤ S denote the servers. Suppose by contradiction that
R ≥ S

t − 2 and that there is a fast implementation I of an atomic register. Given
that t ≥ S/(R + 2), we can partition the set of servers into R + 2 subsets, which we
call blocks, denoted by Bi (1 ≤ i ≤ R + 2), each of size less than or equal to t.

For instance, one such partition is: for 1 ≤ i ≤ R + 1, Bi = {sj | (b S
R+2c(i −

1) + 1) ≤ j ≤ (b S
R+2ci)}, and BR+2 = {sj | (b S

R+2c(R + 1)) ≤ j ≤ S}. However,
if R > S − 2 then the above partitioning is not possible. In that case we consider a
system where the number of readers is S− 2 and the set readers is {r1, ..., rS−2}, and
show the impossibility. The impossibility still holds if we add more readers to this
system (i.e., R > S − 2).

Notice that our model does not require that a message sent by a faulty process
is received by the receiver. Hence, in any (partial) run, it is possible any message
sent by a faulty process remains in transit (i.e., that such a message is never received
by the receiver). In our proof we construct (partial) runs in which, unless explicitly
stated otherwise, all messages sent by faulty processes are in transit.

We say that an incomplete operation op skips a set of blocks BS in a partial run,
where BS ⊆ {B1, ..., BR+2}, if (1) no server in any block Bi ∈ BS receives any read
or write message from op in that partial run, (2) all other servers receive the read
or the write message from op and reply to that message, and (3) all these reply
messages are in transit. We say that a complete operation op skips a block Bi in a
partial run, if (1) no server in Bi receives any read or write message from op in
that partial run, (2) all servers that are not in Bi receive the read or write message
from op and reply to that message and (3) the invoking process receives all these reply
messages and returns from the invocation.

Block diagrams. To depict our proof, we use block diagrams (see Fig. 5.1). We
depict an operation op through a set of rectangles, (generally) arranged in a single
column. In the column corresponding to some operation op, we draw a rectangle in
the ith row, if all servers in block Bi have received the read or write message from
op and have sent reply messages, i.e., we draw a rectangle in the ith row if op does
not skip Bi.

We illustrate a particular instance of the proof in Figure 5.2 and Figure 5.3, where
R = 3 and the set of servers are partitioned into five blocks, B1 to B5.

We now proceed to the proof of Proposition 5.1.
Proof. To show a contradiction, we construct a partial run of the fast implemen-

tation I that violates atomicity: a partial run in which some read returns 1 and a
subsequent read returns an older value, namely, the initial value of the register, ⊥.

Partial writes. Consider a partial run wr in which w completes write(1) on the register.
The operation skips BR+2. We define a series of partial runs each of which can be

18 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

wr3: detailed diagram

B1

B2

B3

B4

w

wr3 : block diagram

wr1: detailed diagram

B1

B2

B3

B4

w

wr1 : block diagram

B1

B2

B3

w

B5 B5

B4

B5

B1

B2

B3

w

B4

B5

Fig. 5.1. Block diagrams

extended to wr. Let wrR+2 be the partial run in which w has invoked the write and
has sent the write message to all processes, and all write messages are in transit.
For 1 ≤ i ≤ R + 1, we define wri as the partial run which contains an incomplete
write(1) that skips {BR+2} ∪ {Bj |1 ≤ j ≤ i − 1}. We make the following simple
observations: (1) for 1 ≤ i ≤ R, wri and wri+1 differ only at servers in Bi, (2) wr
is an extension of wr1, such that, in wr, w receives the replies (that are in transit in
wr1) and the write completes, and hence, (3) wr and wr1 differ only at w. A sample
partial writes, wr1 and wr3 are presented in Figure 5.1.

Appending reads. Partial run pr1 extends wr by appending a complete read by r1 that
skips block B1. By atomicity, the read returns 1. Observe that r1 cannot distinguish
pr1 from some partial run 4pr1, that extends wr2 by appending a complete read by
r1 that skips B1. To see why, notice that wr and wr2 differ at w and at block B1, and
r1 does not receive any message from these processes in both runs. Thus r1’s read
returns 1 in 4pr1.

Starting from 4pr1, we iteratively define the following partial runs for 2 ≤ i ≤ R.
Partial run pri extends 4pri−1 by appending a complete read by ri that skips Bi.
Partial run 4pri is constructed by deleting from pri, all steps of the servers in block
Bi. Since the last read in pri by reader ri skips block Bi, ri cannot distinguish pri from
4pri. More precisely, partial run 4pri extends wri+1 by appending the following i

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 19

(a) pr1 (b) pr1 7→ 4pr1 (c) pr2 7→ 4pr2

(d) pr3 7→ 4pr3

Fig. 5.2. Partial runs: pri (including the crossed out rectangles) and 4pri (excluding the

crossed out rectangles)

reads one after the other: for 1 ≤ h ≤ i, rh does a read that skips {Bj |h ≤ j ≤ i}.
Here, the first i− 1 appended reads are incomplete whereas the last one is complete.
Figure 5.2 depicts block diagrams of pri and 4pri with R = 3. (The deletion of steps
to obtain 4pri from pri is shown by crossing out the rectangles corresponding to the
deleted steps.)

Reader r1’s read in 4pr1 returns 1. Since pr2 extends 4pr1, by atomicity, r2’s
read in pr2 returns 1. However, as r2 cannot distinguish pr2 from 4pr2, r2’s read in
4pr2 returns 1. In general, since pri extends 4pri−1, and ri cannot distinguish pri

from 4pri (for all i such that 2 ≤ i ≤ R), it follows from a trivial induction that ri’s
read in 4pri returns 1. In particular, rR reads 1 in 4prR.

Partial run prA. Consider the partial run 4prR: wrR+1 extended by appending R
reads by each reader rh (1 ≤ h ≤ R) such that rh’s read skips {Bj |h ≤ j ≤ R}. The
read by r1 is incomplete in 4prR: only servers in BR+1 and BR+2 send replies to r1,
and those reply messages are in transit. Observe that, in 4prR, only the servers in
BR+1 receive the write message from the write(1) operation. Consider the following
partial run prA which extends 4prR as follows. After 4prR, (1) r1 receives the replies

20 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

B1

B2

B3

w r1 r2 r3

<>pr3

B4

B5

B1

B2

B3

w r2 r3 r1

B4

B5

B1

B2

B3

r2 r3 r1

B4

B5

prA prB

B1

B2

B3

w r2 r3 r1 r1

B4

B5

prC

B1

B2

B3

B4

B5

prD

blocks that reply to the first read of r1 and r1 receives the replies

block that replies to the first read of r1 but r1 does not receive the replies

blocks that reply to the second read of r1 and r1 receives the replies

r2 r3 r1 r1

Fig. 5.3. Partial runs: prA, prB, prC and prD

of its read messages from BR+2 (that were in transit in 4prR), (2) the servers in B1

to BR receive the read message from r1 (that were in transit in 4prR) and reply to
r1, (3) reader r1 receives these replies from servers in B1 to BR, and then r1 returns
from the read invocation. (Notice that, r1 received replies from R + 1 blocks, and so,
must return from the read.) However, r1 does not receive the replies from servers in
BR+1 (that were in transit in 4prR). Figure 5.3 depicts block diagrams for prA with
R = 3.

Partial run prB. Consider another partial run prB with the same communication
pattern as prA, except that write(1) is not invoked at all, and hence, servers in BR+1

do not receive any write message (Figure 5.3). Clearly, only servers in BR+1, the
writer, and the readers r2 to rR can distinguish prA from prB . Reader r1 cannot
distinguish the two partial runs because it does not receive any message from the
servers in BR+1, the writer, or other readers. By atomicity, r1’s read returns (the
initial value of the register) ⊥ in prB because there is no write(∗) invocation in prB ,
and hence, r1’s read returns ⊥ in prA as well.

Partial runs prC and prD. Notice that, in prA, even though r1’s read returns ⊥
after rR’s read returns 1, prA does not violate atomicity, because the two reads are

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 21

concurrent. We construct two more partial runs: (1) prC is constructed by extending
prA with another complete read by r1, which skips BR+1, and (2) prD is constructed
by extending prB with another complete read by r1, which skips BR+1 (Figure 5.3).
Since r1 cannot distinguish prA from prB , and r1’s second read skips BR+1 (i.e., the
servers which can distinguish prA from prB), it follows that r1 cannot distinguish prC

from prD as well. Since there is no write(∗) invocation in prD, r1’s second read returns
⊥ in prD, and hence, r1’s second read in prC returns ⊥. Since prC is an extension of
prA, rR’s read in prC returns 1. Thus, in prC , r1’s second read returns ⊥ and follows
rR’s read which returns 1. Clearly, partial run prC violates atomicity.

6. Arbitrary Failure Model. In this section we consider fast implementations
that tolerate arbitrary failures of servers and readers, but the writer can fail only
by crashing (intuitively, in our single-writer setting, arbitrarily faulty writer could
make the shared data structure useless). An arbitrary failure can either correspond
to a crash or a malicious behavior. A process is malicious if it deviates from the
algorithm assigned to it in a way that is different from simply stopping all activities
(crashing). We allow for any number of arbitrarily faulty readers and distinguish two
resilience thresholds for server failures: b and t [19]. Just as in the crash-stop model,
a maximum number of t servers can fail. However, out of these t servers, at most b
can be malicious. We therefore always have b ≤ t. In the literature, the special case
where b = t is usually considered. However, by considering b and t separately we can
directly generalize the results in the previous sections (i.e. with b = 0).

In our arbitrary failure model, malicious processes an deviate arbitrarily from
automata assigned to them, with the restriction with respect to creation of digital
signatures of other processes as detailed below. In the remainder of this Section, we
say that a process is faulty if it fails by crashing or if it is malicious (otherwise, a
process is called correct). We also say that a process is non-malicious if it is correct
or fails by crashing.

In this paper, we assume that a process can produce cryptographic digital sig-
natures (e.g., [28]). The functionality of the digital signature scheme provides two
operations: σ for signing and V er for signature verification. The invocation of σ
takes a process ID, say p and a bit string m as parameters and returns a bit string
sig, called signature. The verification operation V er takes a process ID p, and two bit
strings m and sig as parameters and returns a boolean. The verification function has
the property that V er(p,m, sig) invoked by a benign process evaluates to true if and
only if process p executed σ(p,m) in some previous step. Furthermore, no process
(including Byzantine ones) other than p may invoke σ(p,m) (we say signatures are
unforgeable); hence, alternatively, we also write σ(p,m) as σp(m).

Finally, given that we allow for arbitrarily faulty readers, we require atomicity to
hold in a given run only on the subset of non-malicious read/write operations invoked
by non-malicious clients (i.e., when read invocations/responses at malicious readers
are removed from a run). For simplicity of presentation, we refer to an operation
invoked by a non-malicious client as to a non-malicious operation.

6.1. A Fast Implementation. We describe in this section a fast implementa-
tion in the arbitrary failure model assuming S > (R+2)t+(R+1)b which is equivalent
to R < S+b

t+b −2 (Figure 6.1). The algorithm is similar to the one presented in Section 4
except for a few key differences. First of all, the writer digitally signs each value it
sends to servers. Apart from the addition of digital signatures, the write mechanism is
unchanged and the writer waits for the response of S − t servers. Server code related

22 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

0: at the writer w:

1: procedure initialization:
2: ts ← 0
3: procedure write()
4: ts ← ts + 1
5: send (write, ts, σw(ts)) to all servers
6: wait until receive (writeack, ts) from S − t servers
7: return(ok)

at each reader ri:

8: admissible(TS, Msg, a) ≡ ∃µ ⊆ Msg, ∀m ∈ µ :
(m.ts = TS) ∧ (|µ| ≥ S − at− (a− 1)b) ∧ (|⋂

m′∈µ
m′.updated| ≥ a)

9: procedure initialization:
10: maxTS ← 0; sig ← ⊥
11: procedure read()
12: send(read, maxTS, sig) to all servers
13: wait until receive (readack, ts′, sig′, updated′) from S− t servers, such that:

ts′ ≥ maxTS and ri ∈ updated′ and V er(w, ts′, sig′)
14: rcvMsg ← {m|ri received (readack, ∗, ∗, ∗) in line 13 }
15: maxTS ← Max{ts| (readack, ts, ∗, ∗) ∈ rcvMsg}
16: sig ← sigmaxTS : (readack, maxTS, sigmaxTS , ∗) ∈ rcvMsg
17: if there is a ∈ [1, R + 1]: admissible(maxTS, rcvMsg, a) then
18: return(maxTS)
19: else
20: return(maxTS − 1)

at each server si:

21: procedure initialization:
22: tsi ← 0; updatedi ← ∅; sigi ← ⊥
23: procedure update(ts, sig, c)
24: if ts > tsi then
25: tsi ← ts; sigi ← sig; updatedi ← {c}
26: else
27: updatedi ← updatedi ∪ {c}
28: upon receive(write, ts, sig) from writer w and V er(w, ts, sig) do
29: update(ts, sig, w)
30: send(writeack, tsi) to w

31: upon receive(read, ts, sig) from reader rj and V er(w, ts, sig) do
32: update(ts, sig, rj)
33: send(readack, tsi, sigi, updatedi) to rj

Fig. 6.1. Fast atomic storage implementation with S ≥ (R + 2)t + (R + 1)b + 1

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 23

to write operation is also unchanged, except that servers store the digital signature of
every value they store in addition to the value itself.

Our read procedure begins with servers issuing a read message containing the
highest timestamp encountered in the previous read invocation (line 12) along with
the respective signature of the writer. In a way, the reader writes back this timestamp,
signed by the writer, to all servers. During the first read invocation, the reader issues
a read message with the default timestamp 0, which is also the initial timestamp
at servers and writer. We assume that this initial value is known to all readers
(and hence, needs not be digitally signed by the writer). Then, the reader collects
responses from S − t servers containing the latest timestamps encountered by the
servers (including the one being written back by the reader); all the timestamps need
to be accompanied with the verifiable signature of the writer (line 13). The reader then
selects the highest such timestamp, maxTS (line 15). Moreover, the reader stores the
corresponding writer’s signature into variable sig (line 16). The pair (maxTS, sig)
will be written back by the reader in its next read invocation (lines 12, 23-27 and
31-33).

Apart from using digital signatures as described above, the mechanism of the
read procedure is very similar to our crash-tolerant algorithm of Figure 4.1 (Sec. 4.1).
The additional difference is related to predicate admissible in line 8, which checks if
the latest value has been seen by a sufficient number of servers, and which is slightly
modified. Namely, in order for maxTS (i.e., the highest timestamp received in a read)
to be admissible with degree a, maxTS must have been reported to the reader by at
least S − at − (a − 1)b servers. This is to be contrasted with at least S − at reports
needed in the crash-only case (notice here that the number of servers S is not identical
in the crash-only and the arbitrary failure cases, being higher in the latter). To see
why our algorithm requires S − at − (a − 1)b confirmations from different servers,
consider the case of a write with timestamp ts that is followed by a read. In the first
partial run pr1, the write completes by writing ts at S − t servers, out of which at
least S − t − b are non-malicious; denote this set of servers by S1. Subsequently, a
reader reads from a set S2 (of S− t servers) that overlaps in S−2t−b (non-malicious)
servers with S1, i.e., the reader misses t servers in S1. By atomicity, the read returns
ts. In the second partial run pr2, with a failure pattern different from pr1, the write
is incomplete and the writer writes ts only to S − 2t− b servers (possibly malicious)
in S1 ∩ S2. A subsequent reader that reads from S2 cannot distinguish pr1 from pr2,
and returns ts. If we extend each partial run with another read by a distinct reader
that misses t servers from S1 ∩ S2, and accounting for the possibility that another b
servers are malicious, it is easy to see that the new read has to return ts, even if it
sees ts at S − 3t− 2b servers that have already replied to both the write and the first
read. This can be extrapolated further depending on the number of the readers in the
system. Hence the need for as few as S − at − (a − 1)b different confirmations for a
timestamp to be admissible (with degree a).

We now prove the correctness of the fast implementation depicted in Figure 6.1.

6.2. Correctness of the Fast Implementation. The skeleton of the proof
follows the proof of our crash-tolerant algorithm (Sec. 4.2); differences in two proofs
account for counteracting possible actions of malicious processes, the use of digital
signatures and modifications of predicate admissible. In the following, we omit cor-
rectness proofs of those lemmas that can be trivially obtained from the proof of their
counterparts from Section 4.2, by inserting the attribute “non-malicious” before ev-
ery occurrence of “server”, “reader” and “read” and by replacing every reference to

24 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

Lemma/Corollary 4.x, by Lemma/Corollary 6.x. However, for completeness, we re-
peat the statement of each of the lemmas in the arbitrary failure context. In our proof,
we maintain the assumption that non-malicious servers ignore old reads as explained
in Sec. 4.1.

First we modify some notation of the Definition 4.1 as follows (other notation
from Def. 4.1 remains):

Definition 6.1.

• µop,a denotes, in case maxTSop is admissible with degree a in op, the subset

of rcvMsgop, such that (see line 8, Fig. 6.1):

(a) |µop,a| ≥ S − at− (a− 1)b,

(b) ∀m ∈ µop,a, m.ts = maxTSop and

(c) |⋂
m∈µop,a

m.updated| ≥ a .
Lemma 6.2. If a non-malicious server si sets its local variable tsi to x at time

T , then si never sets tsi to a value that is lower than x after time T .
Lemma 6.3. A read operation rd may only return either maxTSrd or maxTSrd−

1.
Lemma 6.4. A non-malicious read rd cannot return a value smaller than maxTSold

rd .

Proof. By line 24, every readack message received by a non-malicious reader in
rd from a non-malicious server is with a timestamp at least maxTSold

rd . The reader
awaits for S−t readack messages before returning a value. Moreover, reader discards
all readack messages that have a timestamp less than maxTSold

rd (line 13), as those
readack messages are clearly from malicious servers. Eventually, since we assume at
most t server failures, rd receives readack messages from S− t non-malicious servers
that satisfy conditions in line 13. Clearly, maxTSrd ≥ maxTSold

rd . There are the
following two cases to consider. (1) If maxTSrd > maxTSold

rd , then, by Lemma 6.3,
the return value is not smaller than maxTSold

rd . (2) If maxTSrd = maxTSold
rd , then

every readack message in rcvMsgrd, at least S− t of them, has timestamp equal to
maxTSold

rd and has ri ∈ updated (possibly different readack messages from malicious
servers are discarded in line 13). Hence, predicate admissible holds for maxTSrd with
degree a = 1 and rd returns maxTSold

rd .
Lemma 6.5. (SWA1) If a non-malicious read returns, it returns a non-negative

timestamp.
Proof. To prove the lemma, it is sufficient to show that there is no non-malicious

read rd in which maxTSold
rd < 0 (then, the lemma follows from Lemma 4.4).

To see this, assume by contradiction that there is a read rd by non-malicious
reader ri in which maxTSold

rd < 0. Moreover, without loss of generality, we can fix
rd such that there is no read rd′ by ri such that rd′ precedes rd and maxTSold

rd′ < 0.
By lines 9-10, this rd is not the first read by ri, i.e., there is a read rd′ by ri that
(immediately) precedes ri such that maxTSrd′ < 0 and maxTSold

rd′ ≥ 0. However,
this contradicts the condition in line 13 that requires maxTSrd′ ≥ maxTSold

rd′ .
Lemma 6.6. “read-write” atomicity (SWA2). If a non-malicious read rd

returns timestamp l and rd follows write wrk, then l ≥ k.
Proof. Denote by ri the non-malicious reader that invoked rd and let Σ′ =

Σwrk
∩ Σrd and let ΣNM be the subset of Σ′ that contains only non-malicious (NM)

servers. Obviously, |ΣNM | ≥ S − 2t− b.

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 25

When a non-malicious server sj in Σwrk
(and, hence, in ΣNM) replies to a write

message from wrk, its tsj is at least k (the timestamp is not smaller than k due to the
condition in line 24). Since wrk precedes rd, by Lemma 6.2, servers in Σ′ reply with
ts∗ ≥ k to rd. Hence, maxTSrd ≥ k. There are the following two cases to consider:

1. maxTSrd > k
By Lemma 6.3, rd does not return a timestamp lower than k.

2. maxTSrd = k
Let µNM be the set of readack messages sent by servers in ΣNM to rd. By
definition of Σrd and since ΣNM ⊆ Σrd, we have µNM ⊆ rcvMsgrd. Since (a)
every server sj ∈ ΣNM replies to rd with tsj ≥ k, (b) µNM ⊆ rcvMsgrd and
(c) maxTSrd = k, we have that every server sj ∈ ΣNM replies with tsj = k
to rd (and rj receives these replies).
Moreover, since every server sj ∈ ΣNM replies ts = k to wrk (since ΣNM ⊆
Σwrk

) before sending ts = k to rd (since wrk precedes rd), for every message
m in µNM , w ∈ m.updated. Furthermore, since sj replies with tsj = k
to rd, by line 27, ri ∈ m.updated. Thus, {w, ri} ⊆

⋂
m∈µ′

m.updated. As
|ΣNM | ≥ S − 2t− b, maxTSrd is admissible in rd with degree a = 2. Hence,
rd returns maxTSrd = k.

Lemma 6.7. If maxTSrd ≥ k in a non-malicious read rd, then rd does not
precede wrk.

Proof. In case k = 0, the lemma follows directly from the definition of wr0. In
case k ≥ 1, the proof follows directly from the unforgeability of writer’s signatures
and the fact that the writer does not sign any value greater or equal to k before it
invokes wrk. Hence, no timestamp k′ ≥ k can pass the signature verification check in
line 13 before wrk is invoked.

Corollary 6.8. If maxTSrd = k ≥ 1 in a non-malicious read, then write wrk−1

completes before read rd completes.
Lemma 6.9. (SWA3) If a non-malicious read rd returns timestamp k (k ≥ 1),

then rd does not precede wrk.
Lemma 6.10. If maxTSrd is admissible with degree a in non-malicious read rd,

then Σµrd,a
contains at least t+1 non-malicious servers.

Proof. By Definitions 4.1 and 6.1, and inequalities a ≤ R + 1 and R < S+b
t+b − 2,

we have |Σµrd,a
| ≥ S−at− (a−1)b > (R+2)t+(R+1)b− (R+1)t−Rb > t+b. Since

we assume at most b malicious servers, Σµrd,a
contains at least t+1 non-malicious

servers.
Lemma 6.11. Assume that maxTSrd is admissible with degree a ∈ [1, R + 1] in

some non-malicious read rd and that a complete non-malicious read rd′ follows rd.
Then, the number of non-malicious servers in Σµrd,a

∩Σrd′ is at least S−(a+1)t−ab.
Moreover, Σµrd,a

∩ Σrd′ contains at least one non-malicious server.
Proof. Since |Σµrd,a

| = |µrd,a| ≥ S − at − (a − 1)b and |Σrd′ | = S − t, it follows
that |Σrd′ ∩ Σµrd,a

| ≥ S − (a + 1)t − (a − 1)b. Furthermore, since at most b servers
are malicious, Σµrd,a

∩ Σrd′ contains at least S − (a + 1)t− ab servers.
Moreover, since a ∈ [1, R + 1] and R < S+b

t+b − 2, we have S − (a + 1)t− ab ≥ 1.

Lemma 6.12. Assume that:

1. maxTSrd is admissible with degree a ∈ [1, R + 1] in some non-malicious read

rd,

26 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

2. a complete non-malicious read rd′ by reader rj follows rd,

3. there is a set X ⊆ Σµrd,a
of at least t+1 non-malicious servers, such that for

all si ∈ X, si sends message mi ∈ µrd,a with rj ∈ mi.updated.
Then, rd′ does not return a value smaller than maxTSrd.

Lemma 6.13. (“read-read” atomicity (SWA4). If non-malicious reads rd1

and rd2 return timestamps retrd1 and retrd2 , respectively, and if rd2 follows rd1, then
retrd2 ≥ retrd1 .

Theorem 6.14. The algorithm of Figure 6.1 is a fast implementation of an
atomic SWMR register in the arbitrary failure model.

Proof. Atomicity follows from Lemmas 6.5, 6.6, 6.9 and 6.13. Moreover, it is
obvious that our implementation satisfies Termination — conditions in lines 6 and
13 are non-blocking since we assume at least S-t correct (and non-malicious) servers.
Finally, our implementation is fast: all operations involve a single communication
round-trip between a client and servers.

6.3. Optimality. The following proposition states that the resilience required
by our fast implementation is indeed necessary.

Proposition 6.15. Let t ≥ 1, b ≥ 0 and R ≥ 2. If (R+2)t+(R+1)b ≥ S, then
there is no fast atomic register implementation.

This proof is similar to the one in Section 5: we suppose by contradiction that
(R+2)t+(R+1)b ≥ S and that there is a fast implementation I of an atomic register
(even if I makes use of digital signatures). We construct a partial run of the fast
implementation I that violates atomicity: a partial run in which some read returns 1
and a subsequent read returns an older value, namely, the initial value of the register,
⊥. This run is different from the one in the previous proof.

Proof. Given that (R + 2)t + (R + 1)b ≥ S, we can partition the set of servers
into 2R + 3 subsets, which we call blocks, denoted by Ti (1 ≤ i ≤ R + 2) and Bj

(1 ≤ j ≤ R + 1), such that each of the blocks Ti (resp., Bj) is of size less than or
equal to t (resp., b). We illustrate a particular instance of the proof in Figure 6.2 and
Figure 6.3, where R = 3 and the set of servers are partitioned into nine blocks, T1 to
T5 and B1 to B4. In these figures, we denote the arbitrary failure of Bi by @.

Partial writes. Consider a partial run wr in which w completes write(1). The operation
skips TR+2. We define a series of partial executions each of which can be extended
to wr. Let wrR+2 be the partial run in which w has invoked the write and has
sent the write message to all processes, and all write messages are in transit. For
1 ≤ i ≤ R+1, we define wri as the partial run which contains an incomplete operation
write(1) that skips {TR+2} ∪ {Tj |1 ≤ j ≤ i − 1} ∪ {Bj |1 ≤ j ≤ i − 1}. We make the
following simple observations: (1) for 1 ≤ i ≤ R, wri and wri+1 differ only at servers
in Ti∪Bi, (2) wr is an extension of wr1, such that, in wr, w receives the replies (that
are in transit in wr1) and the write completes, and hence, (3) wr and wr1 differ only
at w.
Appending reads. Partial run pr1 extends wr by having block B1 failing upon comple-
tion of write(1) and appending a complete read by r1 that skips block T1 (Fig. 6.2(a)).
B1 fails in such a way that it behaves as if it never received any write message (i.e., a
message from operation write(1)). We say that B1 fails and loses its memory. Observe
that r1 cannot distinguish pr1 from some partial run 4pr1, that extends wr2 by ap-
pending a complete read by r1 that skips T1. To see why, notice that (a) wr and wr2

differ at w and at blocks T1 and B1, (b) r1 does not receive any message from writer

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 27

T1

B1

B2

T3

B3

T4

B4

T5

T2

w

@

r1

(a) pr1

T1

B1

B2

T3

B3

T4

B4

T5

T2

w

@

r1

(b) pr1 7→ 4pr1

T1

B1

B2

T3

B3

T4

B4

T5

T2

w r1

@

r2

(c) 4pr1 7→ pr2

T1

B1

B2

T3

B3

T4

B4

T5

T2

w r1

@

r2

(d) pr2 7→ 4pr2

T1

B1

B2

T3

B3

T4

B4

T5

T2

w r1 r2

@

(e) 4pr2 7→ pr3

T1

B1

B2

T3

B3

T4

B4

T5

T2

w r1

@

r3r2

(f) pr3 7→ 4pr3

Fig. 6.2. Partial runs pri and 4pri

w and block T1 in both executions and (c) r1 received the same message from block
B1 in both executions. By wait-freedom property and since w can fail by crashing,
r1’s read in 4pr1 must return some value x, since it cannot wait for the completion
of the writer’s invocation, nor a message from w. Since r1 cannot distinguish 4pr1

from pr1, r1 returns the same value x in pr1 as well, and by atomicity, in pr1, x must
equal 1. Therefore, in 4pr1, r1 also returns 1.

Starting from 4pr1, we iteratively define the following partial executions for 2 ≤
i ≤ R. Partial run pri extends 4pri−1 by: (1) block Bi failing in such a way that
it behaves as if it never received any message (loses memory) and (2) appending a
complete read by ri that skips Ti. Partial run 4pri is constructed by deleting from
pri all steps of the servers in block Ti and all steps of servers in block Bi up to the
instant in which Bi lost its memory (including that particular step). Since the last
read in pri by reader ri skips block Ti, ri cannot distinguish pri from 4pri, as in both
executions ri receives the same messages from Bi. More precisely, partial run 4pri

28 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

T1

B1

B2

T3

B3

T4

B4

T5

T2

w r1 r3r2

(a) 4pr3

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

T1

B1

B2

T3

B3

T4

B4

T5

T2

w

@

r1 r3r2 r1

(b) prA

���
���
���
���

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

T1

B1

B2

T3

B3

T4

B4

T5

T2

r1 r3r2 r1

(c) prB

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

T1

B1

B2

T3

B3

T4

B4

T5

T2

w

@

r1 r3r2 r1 r1

(d) prC

���
���
���
���

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

T1

B1

B2

T3

B3

T4

B4

T5

T2

r1 r3r2 r1 r1

(e) prD

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

non−malicious block that replies to the first read of r1, but r1 does not receive replies

malicious block that replies to the first read of r1 and r1 receives the replies

non−malicious block that replies to the first read of r1 and r1 receives the replies

non−malicious block that replies to the second read of r1 and r1 receives the replies

malicious block that replies to the second read of r1 and r1 receives the replies

(f) Legend

Fig. 6.3. Partial executions: prA, prB, prC and prD

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 29

extends wri+1 by appending the following i reads one after the other: for 1 ≤ h ≤ i−1,
rh does a read that skips {Tj |h ≤ j ≤ i}∪{Bj |h+1 ≤ j ≤ i} and ri does a (complete)
read that skips Ti. Here, the first i − 1 appended reads are incomplete whereas the
last one is complete. Figure 6.2 depicts block diagrams of pri and 4pri with R = 3.
(The deletion of steps to obtain 4pri from pri is shown by crossing out the rectangles
corresponding to the deleted steps.)

Reader r1’s read in4pr1 returns 1. By wait-freedom, in4pr2 r2 must return some
value, say x2. However, since r2 cannot distinguish pr2 from 4pr2, r2 must return a
value x2 in pr2 as well. Since pr2 extends 4pr1, by atomicity, r2’s read in pr2 must
return x2 = 1. Therefore, r2’s read in 4pr2 returns 1. In general, since pri extends
4pri−1, and ri cannot distinguish pri from 4pri (for all i such that 2 ≤ i ≤ R), in
which it must return a value, it follows by trivial induction that ri’s read in 4pri

returns 1. In particular, rR reads 1 in 4prR. Moreover, note that in 4prR no object
is faulty.

Partial run prA. Consider again partial run 4prR, i.e., partial run wrR+1 extended
by appending R reads by each reader rh (1 ≤ h ≤ R − 1) such that rh’s read skips
{Tj |h ≤ j ≤ R− 1} ∪ {Bj |h + 1 ≤ j ≤ R− 1}, whereas a read by reader rR skips TR

only. The read by r1 is incomplete in 4prR: only servers in B1, TR+1, BR+1 and TR+2

send replies to r1, and those reply messages are in transit. Observe that, in 4prR,
only servers in TR+1 and BR+1 receive the write message from write(1). Consider
the following partial run prA which differs from 4prR in the following:

1. Upon reception of message from write(1) operation, BR+1 fails arbitrarily in
such a way that, from that point on, it sends replies to all processes but r1

as if it was not faulty, and to r1 as if it never received a write(1) message.
Moreover, after completion of read by rR,

2. r1 receives the readack messages from TR+2 and B1 (that were in transit in
4prR) and BR+1 (i.e., from the Byzantine faulty objects),

3. servers in T1 to TR and B2 to BR receive the read message from r1 (that
were in transit in 4prR) and reply to r1, and

4. reader r1 receives these replies from servers in T1 to TR and B2 to BR, and
then r1 returns from the read invocation.

Notice that r1 received replies from all blocks but TR+1, and so, must return from
the read; however, r1 does not receive the replies from servers in TR+1, i.e., from the
only benign servers whose state was modified by write(1).

Partial run prB. Consider another partial run prB with the same communication
pattern as prA, except that write(1) is not invoked at all and block BR+1 is not faulty.
Hence, servers in TR+1 do not receive any write message (Figure 6.3). Clearly, only
servers in TR+1, BR+1, the writer, and the readers r2 to rR can distinguish prA from
prB . Reader r1 cannot distinguish the two partial executions because it does not re-
ceive any message from the servers in TR+1, the writer, or other readers and it receives
the same message from the servers in BR+1 in both executions. By atomicity, r1’s read
returns (the initial storage value) ⊥ in prB because there is no write(∗) invocation in
prB , and hence, r1’s read returns ⊥ in prA as well.

Partial executions prC and prD. Notice that, in prA, even though r1’s read returns
⊥ after rR’s read returns 1, prA does not violate atomicity, because the two reads
are concurrent. We construct two more partial executions: (1) prC is constructed by

30 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

extending prA with another complete read by r1, which skips TR+1 (as in prA, in prC

BR+1 always replies to r1 as if it never received any write message), and (2) prD

is constructed by extending prB with another complete read by r1, which skips TR+1

(Figure 6.3). Since r1 cannot distinguish prA from prB , and r1’s second read skips
TR+1 (i.e., servers which can distinguish prA from prB), it follows that r1 cannot
distinguish prC from prD as well. Since there is no write(∗) invocation in prD, r1’s
second read returns ⊥ in prD, and hence, r1’s second read in prC returns ⊥. Since
prC is an extension of prA, rR’s read in prC returns 1. Thus, in prC , r1’s second read
returns ⊥ and follows rR’s read which returns 1. Clearly, partial run prC violates
atomicity.

7. Multiple Writers. In the impossibility proof below, we use two simple prop-
erties of MWMR atomic register which can be easily deduced from atomicity (see
Section 3.1):

• (Property P1) in any partial run, if a write wr that writes v, precedes some
read rd, and all other writes precede wr, then if rd returns, it returns v, and

• (Property P2) in any partial run, if there are two reads such that all writes
precede both reads, then the reads do not return different values.

The proposition below states that there cannot exist a fast multi-writer atomic
register implementation (in the following, W denotes the number of writers). The
proof is written for the crash-stop model. But by extension the impossibility directly
applies to the arbitrary failure model.

Proposition 7.1. Let t ≥ 1, R ≥ 2 and W ≥ 2. Any atomic register implemen-
tation has a run in which some complete read or write is not fast.

Proof. It is sufficient to show the impossibility in a system where W = R = 2,
and t = 1. Let the writers be w1 and w2, and the readers be r1 and r2. Let s1 to
sS be the servers. Suppose by contradiction that there is a fast implementation of
an atomic register in this system. To show the desired contradiction, we construct a
series of runs, each consisting of two writes followed by a read.

Since the writer, any number of readers, and up to t servers might crash in our
model, the invoking process can only wait for reply messages from S−t servers. Given
that we assume a fast implementation, on receiving a read (or a write) message, the
servers cannot wait for messages from other processes, before replying to the read
(or the write) message. We can thus construct partial runs of a fast implementation
such that only read (or write) messages from the invoking processes to the servers,
and the replies from servers to the invoking processes, are delivered in those partial
runs. All other messages remain in transit. In particular, no server receives any
message from other servers, and no invoking process receives any message from other
invoking processes. In our proof, we only construct such partial runs.

We say that a complete operation op skips a server si in a partial run if every
server distinct from si receives the read or the write message from op and replies
to that message, op receives those replies and returns, and all other messages are in
transit. In other words, only si does not receive read or write message from op.
Since t = 1, any complete operation may skip at most one server. If a complete
operation does not skip any servers, we say that the operation is skip-free.

Consider a partial run run1 constructed with the following three non-concurrent
operations: (1) a skip-free write(2) by w2, that precedes (2) a skip-free write(1) by w1,
that in turn precedes (3) a skip-free read() by r1. From property P1, the read returns
1.

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 31

We now construct a similar partial run run2 in which the order of the two writes
are interchanged: (1) a skip-free write(1) by w1, that precedes (2) a skip-free write(2)
by w2, that in turn precedes (3) a skip-free read() by r1. From property P1, the read
returns 2.

Consider a series of partial runs runi, where i varies from 1 to S + 1. We define
run1 to be run1. We iteratively define the remaining partial runs. We define runi+1

to be identical to runi except in the following: si receives the write message (and
replies to that message) from w1 before the message from w2 (i.e., the replies of si are
sent in the opposite order in runi+1 from that in run1). Since servers do not receive
any message from other servers in the partial runs we construct, the only server that
can distinguish runi from runi+1 is si. Also w1, w2 and r1 can distinguish the two
partial runs. It is easy to see that no server can distinguish runS+1 from run2, and
hence, r1 can not distinguish between the two runs as well. Thus r1 returns 2 in
runS+1, and runS+1 and run2 differ only at w1 and w2. Since r1 returns 1 in run1,
2 in rS+1, and either 1 or 2 in runi (2 ≤ i ≤ S), there are two partial runs, runi1 and
runi1+1, such that 1 ≤ i1 ≤ S and the read by r1 returns 1 in runi1 and returns 2 in
runi1+1.

Consider a partial run run′ which extends runi1 with a read by r2 that skips si1.
From property P2, it follows that r2 returns 1. Similarly we construct a partial run
run′′ which extends runi1+1 with a read by r2 that skips si1. Recall that, only w1,
w2, r1 and si1 can distinguish runi1 from runi1+1. Since r2 skips si1 in both run′

and run′′, r2 cannot distinguish the two partial runs. Thus r2 returns 1 in run′′.
However, r1 returns 2 in runi1+1, and hence, in returns 2 in run′′ as well. Clearly,
runi1+1 violates property P2.

To see why the above proof does not apply to the single writer case, observe that
in most partial runs in the above proof, the two writes are concurrent. However, in
our system model, a process can invoke at most one operation at a time. Thus we
cannot construct partial runs with concurrent writes in the single-writer case.

8. Related Work. A seminal SWMR crash-tolerant atomic register implemen-
tation assuming a majority of correct processes, known as ABD, was presented by
Attiya, Bar-Noy and Dolev in [4]. In ABD, all write operations are fast; however,
read operations always take two communication round trips between a client and
servers. In this paper, we show that having fast read operation in a SWMR atomic
implementation is possible, yet it comes with a somewhat steep price — a limited
number of readers.

In [20, 10], ABD was extended to quorum system-based implementations of
MWMR atomic register. In both these MWMR implementations, a read or write
operation requires at least two rounds trips. In [23], Lynch and Shvartsman imple-
ment a MWMR register in a dynamic system, where processes can join or leave the set
of servers implementing the register. However, even in executions where no process
joins or leaves the set of server, a read or write operation in [23] requires at least
two round-trips. Thus, the time-complexities of these implementations are consistent
with our result on the impossibility of fast MWMR implementations when servers
may fail.

Our results adapt the classical theorem “atomic reads must write”, stated in
a shared-memory context [18, 5], to a message-passing context. In particular, to
simulate a multi-reader atomic register from single-reader atomic registers, at least
one of the readers must write into some single-reader register [5]. A similar result
appears in the context of atomic register implementations over weaker regular ones

32 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

[18]. Namely, in such atomic register implementations, a process that reads a value v
also needs to write it, in order to make sure that no other process will subsequently
read an older value v′, which is possible when reading from regular registers.

Assuming a message-passing system, Fan and Lynch show [11] that every atomic
read must modify the state of at least t servers, which might be interpreted as a need
for a second communication round-trip. However, in such a system, any message
received by a server can potentially modify the server’s state. Hence, even in one
round-trip, a read can modify at least S − t > t servers (assuming a majority of
correct servers).

There is a prolific line of research in Byzantine fault tolerant atomic register im-
plementations in message-passing systems, e.g., [24, 25, 6, 14, 3, 15], with a typical
focus on providing optimal resilience (in our model, this amounts to S = 2t + b + 1
servers [25]). The work of Malkhi and Reiter [24] casts the ABD algorithm to the
MWMR Byzantine context, featuring both two round-trip writes and two round-trip
reads, using writer’s digital signatures, which we also use in the Byzantine-tolerant
version of our implementation. A MWMR implementation by Martin et al. [25]
introduces the “Listeners” pattern in which readers, roughly speaking, subscribe to
updates from servers. Like in [25], in our implementation readers modify the servers’
states, but receive no updates since this would, intuitively, violate the requirement for
a fast implementation. Cachin and Tessaro propose in [6] a Byzantine-tolerant vari-
ant of Rabin’s information dispersal algorithm [27] to minimize the storage blowup
inherent to data replication. To this end, a MWMR implementation of [6] relies on
communication among servers which, in a sense, prohibits fast operations. SWMR
implementations that allow fast “best-case” read/write operations, i.e., operations
that execute in synchronous periods, with few failures and no read/write concur-
rency, were presented in [14, 15]. In contrast, in this paper we consider the problem
of allowing all operations to be fast while assuming the general, unrestricted asyn-
chronous system. Not surprisingly, our limitations related to the number of readers
are incurred by worst-case interleaving among different, concurrent operations, with
roots in asynchrony and (possible) failures. Note that [14, 15] as well as the MWMR
implementation of Aiyer et al. [3], renounce digital signatures. In this light, it is
important to note that the existence of fast Byzantine-resilient atomic register imple-
mentations that do not rely on digital signatures remains an open problem.

After the appearance of the preliminary version of this work [8], several papers
extended the notion of fast implementations. For SWMR implementations where the
servers can only fail by crashing, Georgiu et al. propose in [13] how to circumvent
our fast implementation lower bound (R < S

t − 2) by permitting some reads that
are not fast (called slow reads). More specifically, in the semi-fast implementation
of [13], the readers are grouped into virtual nodes where readers in the same node
possess the same virtual identifiers. Then, as long as there are at most S

t − 2 virtual
identifiers in the system (irrespective of the number of readers), most read operations
are fast (and there is at most one slow read operation per write operation). In [12], the
same authors investigate quorum system-based fast and semi-fast implementations.
The paper shows that for robust quorum systems (i.e., quorum systems that remains
available when one of the servers fails) and in presence of arbitrary number of readers,
it is impossible to implement fast or semi-fast SWMR registers. The paper then
presents a weak-semifast implementation that allows multiple slow read operations
per write operation. In a recent work [9], Englert et al. investigate the possibility of
MWMR implementations where most operations are fast, by assigning some additional

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 33

responsibilities at server for ordering operations.
Thus, our results in this paper have initiated a line of work that investigates the

trade-off between the efficiency of atomic register implementations and the bounds on
the number of readers and writers. This is not surprising since: a) atomic read/write
registers are seen as a fundamental abstraction in building practical distributed stor-
age and file systems (see e.g., [30, 29]) and b) our results demonstrate a fundamental
limitation on the number of readers that an asynchronous fast SWMR atomic im-
plementations can support, as well as the impossibility of fast MWMR atomic im-
plementations. In a sense, the line of research that stems from our work seeks for
practically applicable atomic register implementations by circumventing our results,
while possibly allowing for some operations to be fast.

9. Summary. This paper establishes the exact conditions required for a fast
implementation (an implementation in which all operations complete in a single round-
trip) of an atomic read-write data structure, also called a register.

In the case of multiple writers, we proved that a fast implementation is impossible
even if only one server can fail, and it can only do by crashing.

In the case of a single-writer where t out of S servers can fail by crashing, the
number of readers must be smaller than S/t − 2. In the general arbitrary failure
model, this number must be smaller than (S + b)/(t + b) − 2 where up to b out of t
servers can be malicious.

Finally, it would be interesting to look into optimal register implementations with
respect to other complexity metrics (e.g., message complexity). This is left as future
work.

REFERENCES

[1] Michael Abd-El-Malek, William V. Courtright II, Chuck Cranor, Gregory R. Ganger, James

Hendricks, Andrew J. Klosterman, Michael Mesnier, Manish Prasad, Brandon Salmon,

Raja R. Sambasivan, Shafeeq Sinnamohideen, John D. Strunk, Eno Thereska, Matthew

Wachs, and Jay J. Wylie. Ursa minor: versatile cluster-based storage. In Proceedings of

the 4th conference on USENIX Conference on File and Storage Technologies, pages 59–72,

2005.

[2] Ittai Abraham, Gregory V. Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk Paxos:

optimal resilience with Byzantine shared memory. Distributed Computing, 18(5):387–408,

2006.

[3] Amitanand S. Aiyer, Lorenzo Alvisi, and Rida A. Bazzi. Bounded wait-free implementation of

optimally resilient Byzantine storage without (unproven) cryptographic assumptions. In

Proceedings of the 21st International Symposium on Distributed Computing, pages 7–19,

2007.

[4] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing

systems. Journal of the ACM, 42(1):124–142, 1995.

[5] Hagit Attiya and Jennifer Welch. Distributed Computing. Fundamentals, Simulations, and

Advanced Topics. McGraw-Hill, 1998.

[6] Christian Cachin and Stefano Tessaro. Optimal resilience for erasure-coded Byzantine dis-

34 P. DUTTA, R. GUERRAOUI, R. R. LEVY, AND M. VUKOLIĆ

tributed storage. In Proceedings of the International Conference on Dependable Systems

and Networks, pages 115–124, 2006.

[7] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit, Hakim Weatherspoon, M. Frans

Kaashoek, John Kubiatowicz, and Robert Morris. Efficient replica maintenance for dis-

tributed storage systems. In Proceedings of the 3rd conference on Networked Systems

Design & Implementation, pages 45–58, 2006.

[8] Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Arindam Chakraborty. How fast can

a distributed atomic read be? In Proceedings of the 23rd annual ACM symposium on

Principles of distributed computing, pages 236–245, 2004.

[9] Burkhard Englert, Chryssis Georgiou, Peter M. Musial, Nicolas C. Nicolaou, and Alexander A.

Shvartsman. On the efficiency of atomic multi-reader, multi-writer distributed memory.

In Proceedings of the 13th International Conference on Principles of Distributed Systems,

pages 240–254, 2009.

[10] Burkhard Englert and Alexander A. Shvartsman. Graceful quorum reconfiguration in a robust

emulation of shared memory. In Proceedings of the The 20th International Conference on

Distributed Computing Systems, pages 454–463, 2000.

[11] R. Fan and N. Lynch. Efficient replication of large data objects. In Proceedings of the 17th

International Symposium on Distributed Computing, pages 75–91, 2003.

[12] Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman. On the robustness of

(semi) fast quorum-based implementations of atomic shared memory. In Proceedings of the

22nd International symposium on Distributed Computing, pages 289–304, 2008.

[13] Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman. Fault-tolerant semifast

implementations of atomic read/write registers. J. Parallel Distrib. Comput., 69(1):62–79,

2009.

[14] Rachid Guerraoui, Ron R. Levy, and Marko Vukolić. Lucky read/write access to robust atomic

storage. In Proceedings of the International Conference on Dependable Systems and Net-

works, pages 125–136, 2006.

[15] Rachid Guerraoui and Marko Vukolić. Refined quorum systems. Distributed Computing,

23(1):1–42, 2010.

[16] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages

and Systems, 13(1):124–149, 1991.

[17] Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free shared

objects. Journal of the ACM, 45(3):451–500, 1998.

[18] Leslie Lamport. On interprocess communication. Distributed computing, 1(1):77–101, 1986.

[19] Leslie Lamport. Lower bounds for asynchronous consensus. Future Directions in Distributed

Computing, pages 22–23, 2003.

[20] Nancy Lynch and Alexander Shvartsman. Robust emulation of shared memory using dynamic

quorum-acknowledged broadcasts. In Proceedings of the 27th Annual International Sym-

posium on Fault-Tolerant Computing, pages 272–281, 1997.

[21] Nancy A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

[22] Nancy A. Lynch and Mark R.Tuttle. An introduction to input/output automata. CWI Quar-

terly, 2(3):219–246, 1989.

FAST ACCESS TO DISTRIBUTED ATOMIC MEMORY 35

[23] Nancy A. Lynch and Alexander A. Shvartsman. Rambo: A reconfigurable atomic memory

service for dynamic networks. In Proceedings of the 16th International Conference on

Distributed Computing, pages 173–190, 2002.

[24] Dahlia Malkhi and Michael K. Reiter. Secure and scalable replication in phalanx. In Proceedings

of the 17th Symposium on Reliable Distributed Systems, pages 51–58, 1998.

[25] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal Byzantine storage. In

Proceedings of the 16th International Conference on Distributed Computing, pages 311–

325, October 2002.

[26] M. Pease, R. Shostak, and L. Lamport. Reaching agreements in the presence of faults. Journal

of the ACM, 27(2):228–234, 1980.

[27] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault

tolerance. Journal of the ACM, 36(2):335–348, 1989.

[28] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,

1978.

[29] Yasushi Saito, Svend Frolund, Alistair Veitch, Arif Merchant, and Susan Spence. Fab: building

distributed enterprise disk arrays from commodity components. SIGOPS Oper. Syst. Rev.,

38(5):48–58, 2004.

[30] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for large computing clusters.

In Proceedings of the 1st USENIX Conference on File and Storage Technologies, pages 231–

244, 2002.

