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ABSTRACT

We investigate the performance of an uncoordinated 2 link MIMO
interference channel as a function of the number of antennas and the
average channel gains. The channel coefficients are random and un-
correlated, all links undergo Rayleigh fading, and the transmitters
have no channel state information. The analysis is done in terms
of ergodic capacity and outage probability. For non-asymptotic net-
works (i.e., when the number of transmit and receive antennas is
finite and small), we derive upper and lower bounds to both our per-
formance metrics. Moreover, the particular case of a MISO chan-
nel is considered, where exact expressions for the ergodic capac-
ity, distribution of the capacity, and outage probability are derived.
It is concluded theoretically, and somewhat surprisingly, that using
all transmit antennas is not always optimal. That is, depending on
the average channel gains and the requested communication rate, a
transmitter should apply its antennas in different ways in order to
minimize the outage probability.

1. INTRODUCTION

Multiple input multiple output (MIMO) systems have assumed great
popularity because of their ability to reach remarkably higher trans-
mission rates and better signal qualities compared to single input
single output (SISO) systems. While isolated MIMO systems have
been evaluated extensively in the literature, MIMO point-to-point
interference channels (ICs) have come in focus only in recent years.
An IC is a model for studying networks with two or more source-
destination pairs and where the source signals interfere with each
other at the receivers. One of the main qualities of the IC is the fact
that a change in some system parameters not only affects the perfor-
mance of the link under observation, but also the impact of this link
on the rest of the network. This complicates the prediction of how
nodes in an uncoordinated network will perform and thus the perfor-
mance of a link. However, understanding the behavior of ICs is of
great importance in today’s communication networks, as there is an
increasing demand for allowing simultaneous transmissions between
independent transmitter (TX) - receiver (RX) pairs.

Extensive work has been done on characterizing the degrees of
freedom in MIMO ICs when some coordination is allowed between
the transmitters [1], and understanding the impact of interference in
MIMO ad hoc and cellular networks using simulators and test beds
[2, 3]. In [4], the distribution of the capacity of a MISO broadcast
channel with a random beamformer is derived. However, the impact
of interference between users is ignored, as the broadcast channel
considers only a single TX. In point-to-point MIMO ICs, analytical
expressions are derived in [5] for the asymptotic ergodic capacity,
i.e., when the number of TX and RX antennas go to infinity. For
the non-asymptotic case, the performance of MIMO systems with

interference has been evaluated in [6], however only for the case
when the TXs have full channel state information (CSI).

Obtaining exact or even partial CSI at the TX is not always
feasible, due to delay constraints or hardware limitations. Only a
few works have studied the capacity of MIMO systems in the pres-
ence of co-channel interference when the TXs have no CSI. Most
of the works considering ICs rely on simulation results or approxi-
mations. In particular, in [7], a cellular system is simulated utilizing
3×3MIMO transmission techniques. The simulation results confirm
that co-channel interference can profoundly degrade the capacity of
MIMO links in cellular networks. Also in [8] and [9], the mutual
information of MIMO systems in the presence of co-channel inter-
ference is evaluated. It is concluded that for certain signal-to-noise
ratio (SNR) and signal-to-interference ratio (SIR), the use of mul-
tiple antennas in fact degrades the performance of the system com-
pared to SISO networks. These results are constrained to 2 TX and
2 RX antennas, and the observations are made through simulations
only. Also in [10] it is concluded that using fewer antennas can in
some scenarios improve the system performance. In the very recent
work of [11], Chiani et. al. evaluate the effect of interference on the
capacity of MIMO ICs. Closed-form expressions are derived for the
ergodic capacity of both single-user MIMO systems, andMIMO sys-
tems with multiple MIMO interferers. Our work serves as a parallel
to this work, where we extend the research domain to also consider
outage probability (OP), and evaluate the particular case of multiple
input single output (MISO) channels, where interesting behavior is
observed as the system parameters vary.

Despite the recent interest in applying MIMO in cellular and
ad hoc wireless networks, the performance of such networks is not
yet fully understood. The goal of this work is hence to establish an
understanding of the ergodic capacity and OP performance of MIMO
ICs with a finite number of antennas. Ergodic capacity is the average
capacity for each link, whereas outage is defined as the event when
the instantaneous capacity falls below the transmission rate required
for correct packet reception. We consider a 2 link MIMO IC, but our
results can be easily extnded toK links, as noted in Section 4.3. The
key contributions of this paper are as follows:

• Upper and lower bounds to the ergodic capacity and OP of 2
link MIMO ICs with arbitrary number of TX and RX anten-
nas are evaluated.

• The probability density function of the capacity of MISO ICs
with arbitrary number of TX antennas are derived.

• Exact expressions for the ergodic capacity and OP of MISO
ICs with arbitrary number of TX antennas are developed.

• Analysis is performed on the different behaviors observed in
the OP of MISO networks as the system parameters vary.
TDMA is introduced to improve the system performance.



2. SYSTEMMODEL

Consider a wireless network with two transmitting nodes, TX1 and
TX2 (these could be base stations), each communicating with its
own dedicated RX, RX1 and RX2 (e.g., mobile stations). Denote the
number of TX and RX antennas at each of the TXs and RXs by Nt

andNr , respectively. The channel response between each TX and its
RX is specified with an Nr ×Nt random matrixGi, whose random
process is presumed to be zero-mean and ergodic. The elements
of Gi are independent and identically distributed complex Gaus-
sian random variables, each with zero mean and constant variance
gi. Moreover, we define a normalized channel matrixHi with unit-
variance entries such thatGi =

√
giHi. Similarly, the channel be-

tween a RX i and its interfering TX j is denoted byGij =
√

gijHij .
At the TXs, the angular spread tends to be small, and the an-

tennas are assumed to be decorrelated. The transmitted signals are
assumed to be independent and equi-powered1 at the TX antennas.
TX1 transmits with power P1 and TX2 with P2. Perfect channel
estimation is assumed at the RXs, while the TXs have no CSI. The
channel entails additive white Gaussian noise (AWGN), and the in-
terference from the other link in the network adds to the impairment
of the received signal. Denoting the data to be transmitted by TX1

by x1, the data of TX2 by x2, and the noise signal by n, we have
that the signal at RX1 is:

y1 =
√

g1H1x1 +
√

g12H12x2 + n. (1)

In the following, we let TX1-RX1 be the link under observation, and
we refer to g1 andH1 by g andH, respectively.

With a sufficiently long coding horizon, we can code over the
short-term channel fluctuations. Assuming single user detection at
the RX, the ergodic capacity becomes

Cerg = E

{
log2 det

(
INr +

P1g

Nt
HH

†
Q

−1
)}

, (2)

where Q is the covariance of the channel impairment, consisting of
noise (with power σ2) plus interference;

Q =
P2g12

Nt
H12H

†
12 + σ2

INr . (3)

Outage occurs when the signal-to-interference-plus-noise ratio
(SINR) falls below a required threshold, or equivalently when the
rate required for correct reception is higher than the capacity of the
network. Thus, denoting the required rate at each RX antenna by R,
the OP is defined as:

Pout = Pr
{

log2 det
[
INr +

P1g

Nt
HH

†
Q

−1
]

< NrR
}

, (4)

where the sources of randomness in the probability expression are
the matricesH andQ.

3. MIMO INTERFERENCE CHANNELS

In this section, we evaluate the performance of the MIMO IC de-
scribed above in terms of ergodic capacity and OP. In order to derive
the OP, we need to know the distribution of the capacity. When there
are no interferers in the channel (equivalent to when g12 = 0, result-
ing in Q = σ2INr ), the distribution of the capacity is known [12].
However, with the addition of the interference term (i.e., as g12 in-
creases), these distributions are no longer valid. By decomposing
the capacity formula into terms with known distributions (e.g., the
determinant or trace of a Wishart matrix), we can derive bounds or
approximate expressions to the OP.

1This maximizes the mutual information when the TX has no CSI.

3.1. Trace Bound

In this section, we derive an upper bound to the ergodic capacity, and
equivalently a lower bound to the OP, by using the trace of the SINR
matrix. For this, we apply the arithmetic-geometric inequality(

min(Nt,Nr)∏
i=1

xi

)1/ min(Nt,Nr)

≤ 1

min(Nt, Nr)

min(Nt,Nr)∑
i=1

xi. (5)

Furthermore, we know that the trace of a square matrix is equal
to the sum of its distinct eigenvalues. Denoting the eigenvalues of
HH†Q−1 by λi, we have that

∑min(Nt,Nr)

i=1
λi = tr(HH†Q−1).

Let xi = (1 + P1g
Nt

λi) in Eq. (5). The ergodic capacity can then be
upper bounded as follows:

Cerg = E

[
log2

min(Nt,Nr)∏
i=1

(
1 +

P1g

Nt
λi

)]
(6)

≤ E

⎡
⎣log2

(
1

min(Nt, Nr)

min(Nt,Nr)∑
i=1

1 +
P1g

Nt
λi

)min(Nt,Nr)
⎤
⎦

= min(Nt, Nr)E

[
log2

(
1 +

P1g

Nt min(Nt, Nr)
tr(HH

†
Q

−1)

)]
.

Consequently, given the required rate for correct reception of
packets per RX antenna is R, the OP is lower bounded by

Pout ≤ Pr

[
tr(HH

†
Q

−1) <
Nt min(Nt, Nr)

P1g
(2

NrR
min(Nt,Nr) −1)

]
.

The distribution of tr(HH†Q−1) is unknown, meaning that for our
simulations in Section 3.3, we rely on Monte-Carlo simulations.

Note that when there is no interference, i.e., g12 = 0, the trace
bound yields a decent upper bound to the instantaneous capacity.
Knowing the distribution of the trace of a Wishart matrix [12], a
lower bound to the OP in the absence of interference is derived to be

P lb
out = 1 − 1

(NtNr − 1)!
Γ [NtNr, l] = e−l ·

NtNr−1∑
k=0

lk

k!
, (7)

where l = min(Nt,Nr)η
P1g/Nt

(2
NrR

min(Nt,Nr) − 1). As the interference in-
creases, this lower bound loses its tightness and is no longer valid.
Hence, we now take a step further to consider the determinant bound
to the ergodic capacity in Section 3.2.

3.2. Determinant Bound

Knowing that the determinant of a square matrix (here: HH†Q−1)
is equal to the product of its non-zero eigenvalues λi, we have that
the instantaneous capacity is:

Ci =
1

Nr
log2

min(Nt,Nr)∏
i=1

(
1 +

P1g

Nt
λi

)
. (8)

Assuming w.l.o.g. that Nr ≤ Nt, and applying the inequality [12]

Nr∏
i=1

(1 + xi) ≥

⎡
⎣1 +

(
Nr∏
i=1

xi

)1/Nr
⎤
⎦

Nr

∀ xi > 0, (9)
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Fig. 1. Simulated ergodic capacity, along with derived lower and
upper bounds, of a 2 link MIMO IC as a function of β = Nt/Nr ,
for both strong and weak interference.

we derive a lower bound on the instantaneous capacity:

Ci ≥ log2

⎧⎨
⎩1 +

P1g

Nt

(
Nr∏
i=1

λi

)1/Nr
⎫⎬
⎭

Nr

= Nr log2

{
1 +

P1g

Nt

(
det(HH

†
Q

−1)
)1/Nr

}

= Nr log2

{
1 +

P1g

Nt

(
det(HH†)

det(Q)

)1/Nr
}

. (10)

The distribution fX(x) of the determinant of a Wishart matrix,X =
det(HH†), is derived in [12] and [14]. Based on this, the distribu-
tion of Y = det(Q), denoted as fY (y), can also be easily derived.
Hence, the ergodic capacity is given as

Cerg =

∫ ∞

0

∫ ∞

0

Nr log2

[
1 +

P1g

Nt

(
x

y

) 1
Nr

]
fX(x)fY (y) dxdy.

Furthermore, the OP of the MIMO IC may be upper bounded by

P ub
out ≤ Pr

[
det(HH†)

det(Q)
<

(
Nt

P1g
(2R − 1)

)Nr
]

=

∫ ∞

0

Pr

[
X <

(
Nt

P1g
(2R − 1)

)Nr

Y |Y = y

]
·fY (y)dy.

=

∫ ∞

0

1 −
|Nt−Nr |∑

n=0

(
Nt−1∏
n=1

(Nr − n − k)!

(Nr − n)!

)

· (sy)kNt

k!
e
−

(Nr−Nt−k)!

(Nr−1−k)!
(sy)Nt

dy, (11)

where s = Nt
P1g

(2NrR/ min(Nt,Nr) − 1).

3.3. Numerical Results for MIMO Channels

In Fig. 1, the lower and upper bounds to the ergodic capacity of the
MIMO ICs are plotted along with Monte Carlo simulation results, as
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Fig. 2. Simulated ergodic OP, along with derived lower and up-
per bounds, of a 2 link MIMO IC when the interference is strong
(g01/g = 0.5) as a function of β = Nt/Nr .

a function of β = Nt/Nr , for Nr = 8. As can be seen from the
figure, the determinant bound is a reasonable lower bound, although
it loses its tightness as g12/g increases. The trace bound, on the
other hand, fails to give a decent upper bound, especially for higher
values of g12/g.

Futhermore, we observe that for β ≤ 1/2, the capacity increases
with β, because the total number of TX antennas in the network
(2 · Nt) does not exceed the number of RX antennas, Nr , and so
the RX approaches capacity by completely suppressing the inter-
fering signals while simultaneously detecting the desired signals.
For 1/2 < β ≤ 1, the number of RX antennas is less than the
combined number of desired and interfering antennas, and the RX
must hence compromise between assigning its degrees of freedom
to interference suppression and to signal detection. This means that
βopt = 1/2. For β > 1, the number of interfering antennas exceeds
Nr , meaning that the RX can no longer suppress the totality of the
interference, and the capacity is thus determined mainly by the SIR.

In Fig. 2, the OP of the MIMO IC is plotted as a function of
β = Nt/Nr , when the interference is strong. As expected, the OP is
minimized when Nt = Nr/2. The determinant upper bound works
reasonably, while the trace lower bound is clearly too loose to give
a correct picture of the network performance. This holds true also
for other values of g12/g. When the interference is weak, the OP
decreases abruptly in the same manner as the left part of the curve in
Fig. 2, and it continues reducing monotonically with β. In this case,
the determinant bound is extremely tight around the simulation re-
sults, while the trace bound still fails to give a decent representation
of the actual OP.

4. MISO INTERFERENCE CHANNELS

In this section, we consider the particular case of the MISO chan-
nel by assigning only a single antenna to the RX (i.e., Nr = 1) in
our network, while the TX still has Nt < ∞ antennas. The chan-
nel matrices H and H12 reduce to channel vectors h and h12. The
instantaneous capacity of this MISO channel is then

Ci = log2

[
1 +

P1g

Nt

hh†

σ2 + P2g12
Nt

h12h
†
12

]
. (12)

In the following, we derive Cerg and Pout of the 2 link MISO IC.



4.1. Ergodic Capacity

To find Cerg , we first derive the distribution of the capacity. We
consider an interference-limited network, and thus use that σ2 ≈
0. Since the elements of h and h12 are complex Gaussian random
variables, it follows that |hij | is Rayleigh distributed. Thus, we have
that |h|2 =

∑Nt

i,j
|hij |2 is χ2

k-distributed with k = 2Nt degrees

of freedom. Denote X = |h|2 and Y = |h12|2, yielding Ci =

log2

(
1 + P1gX

P2g12Y

)
. Using that dX

dC
= P2g12

P1g
Y 2C ln(2), we have

fC(c) =

∫ ∞

0

fC|Y (c|y)fY (y)dy =

∫ ∞

0

fX (x)fY (y)
dX

dC
dy.

=
P2g12

P1g
ln(2)2c

∫ ∞

0

y
yNt−1e−y/2

2Nt(Nt − 1)!

xNt−1e−x/2

2Nt (Nt − 1)!
dy

= kc

∫ ∞

0

y2Nt−1e−
1+(2c)P2g12/P1g

2 dy, (13)

where kc =
(

P2g12
P1g

)Nt ln(2)2c(2c−1)Nt−1

(2Nt (Nt−1)!)2
. Solving the integral yields

fC(c) =

(
P2g12

P1g

)Nt

ln(2)2c(2c − 1)Nt−1 (2Nt − 1)!

(Nt − 1)!2(
1

1 + (2c − 1)P2g12/P1g

)2Nt

. (14)

Having the distribution of the capacity of a MISO channel, we
can easily derive the ergodic capacity as Cerg =

∫∞

0
c fC(c) dc.

The closed form expression for the ergodic capacity is rather com-
plicated, and so, due to space constraint, we will not state this here.

4.2. Outage Probability

The OP of the 2 link MISO IC can be expressed as

Pout =

∫ ∞

0

Pr

[
|h|2 <

P2g12

P1g
(2R − 1)Y |Y = y

]
fY (y)dy.

Let s = P2g12
P1g

(2R − 1). The OP is then derived as

Pout =

∫ ∞

0

∫ sy/2

0

xNt−1e−xdx
yNt−1e−y/2

2NtΓ(Nt)2
dy. (15)

Expanding the inner integral of Eq. (15) into a series yields

Pout =

∫ ∞

0

− e−y(1+s)/2

2Nt(Nt − 1)!

Nt−1∑
k=0

y2Nt−k−2

(Nt − k − 1)!

(
s

2

)Nt−k−1

dy.

where we have used the result:
∫ sy/2

0
xNte−xdx =

−e−
sy
2

[(
sy
2

)Nt
+
∑Nt

k=1
Nt(Nt − 1)...(Nt − k + 1)

(
sy
2

)Nt−k
]
.

4.3. Numerical Results for MISO Channels

Fig. 3 shows the OP of the 2 link MISO channel. The analytical
results follow the simulations tightly, confirming our derived expres-
sions. As the figure illustrates, when s = P2g12

P1g
(2R−1) < 1, the OP

decreases with Nt. When s > 1, however, we observe an opposite
behavior, i.e., the OP increases as a function of Nt. This is because
the destruction from the reduction in randomness in the interference
from TX2 is greater than the diversity improvement that a higher Nt

provides in the desired signal. This is discussed further in Section 5.
Note that our results can be easily extended toK links, by applying
that the sum ofK χ2

2Nt
random variables is χ2

2KNt
distributed.
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Fig. 3. OP of a 2 link MISO IC as a function of Nt, both for s =
P2g12
P1g

(2R − 1) ≤ 1 and s > 1.

5. OPTIMAL USE OF ANTENNAS IN MISO CHANNELS

In Section 4.3, we observed different behaviors in the OP as a func-
tion of Nt depending on the parameter values. This gives rise to the
following theorem.

Theorem: In an uncoordinated 2 link MISO system with Gaus-
sian random uncorrelated channels,

• if P2g12
P1g

(2R − 1) ≤ 1, the maximum number of TX antennas

available should be applied, i.e.,Nopt
t = Nmax

t .

• if P2g12
P1g

(2R − 1) > 1, we have thatNopt
t = 1.

Proof: To find out for what ranges of the system parameters
the OP increases or decreases as a function of Nt, we evaluate the
following discrete differential

Pout(Nt + 1) − Pout(Nt) = ΔPout (16)

= − 1

2Nt(Nt − 1)!2

∫ ∞

0

Nt!

2N2
t

Nt∑
k=0

(
s

2

)Nt−k

xNt−k e−x(1+s)/2

(Nt − k)!

−(Nt − 1)!

Nt−1∑
k=0

(
s

2

)Nt−k−1

x2Nt−k−2 e−x(1+s)/2

(Nt − k − 1)!
dy,

where s = P2g12
P1g

(2R−1). Moreover, we have that
∫∞

0
yνe−μydy =

1
μν+1 Γ(ν+1)

. Inserting this into Eq. (16), setting the difference equal
to 0, and canceling out the constant terms, results in

1

Nts

Nt∑
k=0

(
s

1 + s

)−k+1 (2Nt − k)!

(Nt − k)!

=

Nt−1∑
k=0

(
s

1 + s

)−k−1 (2Nt − k − 2)!

(Nt − k − 1)!
. (17)

Now, this expression must remain valid for allNt. SettingNt =
1 and rearranging yields s = 0 or s = 1. Since s = 0 would
mean no signals are being received, the result is thatΔPout = 0 for
s = 1. That is, when s = P2g12

P1g
(2R − 1) ≤ 1, the OP decreases as

a function of Nt, and when s > 1, it increases withNt. �

To better understand why this is the case, we note that the in-
crease inNt decreases the randomness in the received signal. When
Nt → ∞, the expected capacity per link is: C∞=log2

(
1+ P1g

P2g12

)
.



For Nt < ∞, the capacity has a distribution around the mean C∞.
As Nt increases, the standard deviation shrinks, making the proba-
bility distribution more concentrated around C∞. Hence, depending
on whether the requested transmission rate R is greater or smaller
than C∞, the OP increases or decreases (respectively) with Nt.

The conclusion of Nopt
t = 1 when s > 1 indicates an in-

efficient use of the TX antennas. Hence, we must employ addi-
tional techniques in order to decrease the OP as a function of Nt.
Firstly, note that when the interference is strong, i.e., g12 > g, tra-
ditional interference cancelation techniques can be applied, making
the network interference-free. This leaves us with the region when

P1g
P2(2R−1)

< g12 ≤ g. Since the OP increases as a function of Nt, it
means that decreasing randomness when s > 1 is in fact hurting the
network performance. Hence, by introducing a random beamformer
at the TXs, we can improve the performance, as shown in Fig. 4.
However, although at lower rate, the OP still increases with Nt, and
our conclusion on Nopt

t = 1 remains intact. Also randomly choos-
ing one single TX antenna does not add to the randomness and the
OP does not reduce beyond the SISO channel OP.

Realizing that we cannot outperform the SISO channel by adding
randomness, we introduce TDMA into the system; Each time frame
is divided in two, and each link transmits over one of these sub-
frames, thus precluding interference between the links. The OP (in
the presence of noise) then becomes

Pout = − e−
stdma

2

(Nt − 1)!

Nt−1∑
k=0

1

(Nt − k − 1)!

(
stdma

2

)Nt−k−1

,

where stdma = σ2Nt
P1g

(22R − 1).
TDMA improves the performance of our MISO network consid-

erably, as seen in Fig. 4. This is because the channel of each link
becomes interference-free and the decrease in randomness in the de-
sired signal power yields a better performance. Comparing the OP
expressions of the MISO channel with and without TDMA, we ob-
tain that the addition of TDMA is advantageous when 22R−1

2R−1
σ2

P2g12
<∑Nt

j=1
|h1j |2 holds true. As Nt increases, TDMA becomes more

beneficial on average, as is also seen from the figure. TDMA can
also be applied for the case when g12 > g, if the system has no
interference cancelation abilities. Note that we obtain such great im-
provement with TDMA simply because we only have two links in
the system. If the number of links increases, dividing the time slot
between all users could become more hurtful than the amount of im-
provement it provides in the received signal.

6. CONCLUSIONS AND FUTUREWORK

The performance of the 2 link MIMO and MISO IC has been evalu-
ated in terms of ergodic capacity and outage probability (OP). In the
case of MIMO, upper and lower bounds to both metrics are derived.
It is seen that the determinant bound provides a decent lower (resp.
upper) bound on the capacity (resp. OP), while the trace bound fails
to yield a reasonable upper (resp. lower) bound. For the particu-
lar case of the MISO IC, exact analytical expressions are derived
for both the ergodic capacity and the OP, and we establish how our
expressions can be extended to K links. Monte Carlo simulation
results are generated to verify the analytical results. Interesting be-
havior is observed in the OP performance of MISO channels; when
s = P2g12

P1g
(2R − 1) ≤ 1, the OP decreases with the number of

transmit antennas, while for s > 1, it increases. As a consequence,
when s ≤ 1, the capacity achieving approach is to utilize all an-
tennas available, while for s > 1, the SISO channel provides the
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Fig. 4. OP of a 2 link MISO IC when s > 1, with various techniques
applied. TDMA between the links yields the lowest OP.

best performance. In the latter case, we introduce TDMA between
the links. This reduces the OP below that of the SISO channel, and
again using the maximum number of transmit antennas available is
optimal.
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