
Minimizing Retrieval Latency for Content Cloud
Mathias Björkqvist, Lydia Y. Chen

IBM Research Zurich Laboratory, Switzerland
{mbj,yic}@zurich.ibm.com

Marko Vukolić
Eurécom, France*
vukolic@eurecom.fr

Xi Zhang
Texas A&M University, USA
xizhang@ece.tamu.edu

Abstract—Content cloud systems, e.g. CloudFront [1] and
CloudBurst [2], in which content items are retrieved by end-
users from the edge nodes of the cloud, are becoming increasingly
popular. The retrieval latency in content clouds depends on
content availability in the edge nodes, which in turn depends
on the caching policy at the edge nodes. In case of local content
unavailability (i.e., a cache miss), edge nodes resort to source
selection strategies to retrieve the content items either vertically
from the central server, or horizontally from other edge nodes.
Consequently, managing the latency in content clouds needs
to take into account several interrelated issues: asymmetric
bandwidth and caching capacity for both source types as well as
edge node heterogeneity in terms of caching policies and source
selection strategies applied.
In this paper, we study the problem of minimizing the retrieval

latency considering both caching and retrieval capacity of the
edge nodes and server simultaneously. We derive analytical
models to evaluate the content retrieval latency under two source
selection strategies, i.e., Random and Shortest-Queue, and three
caching policies: selfish, collective, and a novel caching policy
that we call the adaptive caching policy. Our analysis allows the
quantification of the interrelated performance impacts of caching
and retrieval capacity and the exploration of the corresponding
design space. In particular, we show that the adaptive caching
policy combined with Shortest-Queue selection scales well with
various network configurations and adapts to the load changes
in our simulation and analytical results.

I. INTRODUCTION
Content distribution systems are becoming ever more popu-

lar in recent years, due to the evolution of Internet technology
from web services and peer-to-peer networks to today’s con-
tent clouds – the growing number of users of CloudFront [1]
is merely one example. To provide end-users with ubiquitous
content availability, a large amount of network and storage
resources need to be deployed; this typically involves a central
server and a network of edge nodes. The retrieval latency
depends on the way content items are managed and on the
distribution of retrieval loads across edge nodes and a central
server [3], [13]. As a result, two interrelated factors: 1) the
content caching policies and 2) the source selection strategies
at edge nodes (used for retrieving data in case of a cache miss),
are the main components in optimizing the retrieval latency in
a modern content cloud.
The hybrid architecture [5], [6] using horizontal and vertical

retrieval from the edge nodes and the server, respectively,
has been shown effective for delivering content items to end-
users. Fig. 1 illustrates the hybrid architecture of the content

*This work was done while the author was in the IBM Research Zurich
Laboratory.

distribution system we consider in this paper. In principle,
in the hybrid architecture, edge nodes contribute to better
scalability with increasing total retrieval traffic [18], whereas
the central server contributes with a greater bandwidth com-
pared to any given edge node. Moreover, due to the typically
smaller caching buffers, edge nodes can usually only cache a
subset of the content items, whereas the central server typically
stores all the relevant content items. The asymmetric properties
of caching and retrieval capacity of the edge nodes and the
server add another dimension of complexity to the designing
of caching policies.

��������������
������

����
	�
���

	
�
�
�����

����
����

����������
��
������

������
��
������

�������
������

Fig. 1. System schematics of a hybrid content distribution system.

Caching policies have been widely used for improving
content retrieval latency [15], [20], [23]. For example, the
popularity-based caching policy is applied to optimize the hit
ratio for a single node, so that the average latency of retrieving
content items is minimized. Analytical studies of caching [8],
[11] focus on the scalability of different policies regarding
the caching capacity of a single node. On the other hand,
practical caching policies [17], [19], [22] typically focus on
maximizing the hit ratio in the edge nodes and minimizing the
server retrieval traffic.
On the other hand, earlier studies on task assignment [9],

[12] have shown that highly distributed systems can benefit
from load-aware source selection strategies, e.g., sending a
request to the source with the fewest number of outstanding
requests. In contrast, load-oblivious source selection, e.g.,
sending requests to a random source, deteriorates system
performance when the number of edge nodes increases. The
analytical derivations of these results are based on homoge-
neous systems, in which all edge nodes cache all content items
and end-user retrieval requests can be sent to any edge node.

In this paper, we give the first analytical framework for
characterizing (and minimizing) latency in hybrid content
clouds that simultaneously considers the impact of different
caching policies and source selection strategies. The system
we consider is a general one that allows for heterogeneity in
edge nodes with respect to local caching and source selection
policies as well as asymmetric bandwidth and caching capacity
across edge nodes and the central server. In principle, we
characterize the average retrieval latency as the weighted
average of the server retrieval latency and the edge network
retrieval latency.
We put our analytical model to work by considering a)

two source selection strategies, namely random selection and
Shortest-Queue selection, and b) three caching policies: i)
a selfish policy, ii) a collective policy which adopts the
proportional replication policy from [19], and iii) a novel
caching scheme that we call the adaptive caching scheme.
Our adaptive caching scheme partitions content items into
three popularity classes: gold, silver and bronze, with items in
each class managed by different caching schemes. Concretely,
items in the gold class are always stored at the edge node,
whereas items in the bronze class as never stored. On the other
hand, items in the silver class are managed locally either by
a collaborative LRU (Least Recently Used) scheme, referred
to as Adapt-L, or by a random discarding scheme, referred
to as Adapt-R. In our experiments, we explore the scalability
of the combinations of caching policies and source selection
with various network configurations, i.e. the number of edge
nodes, the buffer size, and content popularity changes.
Therefore, the contributions of this paper can be sum-

marized as two-fold: i) we provide the analytical solution
for evaluating content retrieval latency influenced by caching
policies and source selection strategies in a hybrid content
distribution system, and ii) we propose an adaptive caching
policy that combined with a shortest-queue selection strategy,
itself adaptable to varying buffer limits as well as different
network loads and capacity, minimizes the latency of content
clouds in the space we consider.
The remainder of this paper is organized as follows: The

system specification and the description of the selfish and
collective caching policies are given in Section II. We describe
our retrieval latency model in Section III. We present our
adaptive caching policy and its analysis in Section IV. Section
V contains the experimental results. The related work is
presented in Section VI. Section VII concludes the paper.

II. SYSTEM, CACHING POLICIES, AND SOURCE
SELECTION STRATEGIES

We consider a generic, hybrid, content cloud architecture,
which has been studied in [5] and [3]. The architecture
(Fig. 1) comprises a central server and N tier-2 nodes, referred
to as the edge nodes (or, collectively, the edge network),
connected to the server and each other. The server is assumed
to have a sufficiently large buffer for storing all content items,
whereas edge nodes have a limited caching capacity of Be

content items. Consequently, a content management policy,

i.e., caching policy, is required to ensure a low retrieval latency
for end-users, who send retrieval requests to the edge node
they are connected to.
In the system there is a total of K unique content items,

denoted by subscript k = {1 . . .K}. Each node receives end-
users’ retrieval requests, following a Poisson distribution at
rate λ. All content requests are assumed to be uniformly
distributed among the edge nodes. Following previous work,
we assume the popularity of content item k, rk, follows a Zipf
distribution, rk = 1

kα [16]. To facilitate further analysis, we
normalize rk, so that

∑
k rk = 1. A single node thus receives

requests for content item k at the rate λrk , ∀k.
Upon receiving a request for a content item, an edge node

first tries to satisfy the request from the local cache; if it
is unable to do so, it queries the rest of the edge nodes to
retrieve the requested content item. Among the edge nodes
with the requested content item, one is chosen according to the
source selection criteria described in the following subsection.
A requested content can always be retrieved from the server if
it is unavailable in the edge network. Every node can sustain
Ce horizontal edge retrieval connections, and the server has Cs

vertical connections. In this paper we assume that the server
has a higher total bandwidth, and thus Cs > Ce.
We model the retrieval time of a content item from an

edge node and the server as exponential distributions with
means 1

μe
and 1

μs
, respectively. The retrieval requests join the

waiting queues of the selected edge nodes or the server, both
of which serve requests in a first-come, first-served manner.
Delays arising during the process of querying network nodes
to find out if they are storing a desired content item are out
of scope and excluded from our calculations.

A. Content Caching Policies
We now summarize the content management policies and

qualitatively discuss their optimality with respect to the system
and network architecture.
1) Selfish Caching: We refer to the caching policy that

optimizes for local requests only as selfish. Each edge node
statically stores the Be most popular content items with
request rate rk, k = {1 . . .Be}. As every node keeps the same
set of content items, there is no horizontal retrieval under
such a policy, and thus the corresponding retrieval capacity
of the system is underutilized. Consequently, the requests for
content items that are not cached locally will be retrieved
from the server, whose capacity is constant, independent of the
cloud size. Therefore, the performance using selfish caching
degrades with an increasing number of edge nodes as the
server becomes overloaded.
2) Collective Caching: In contrast to selfish caching, we

refer to the caching policy that ”centrally” optimizes requests
for the entire system as collective. Utilizing all the buffer space
in a centralized manner, the collective caching policy keeps
the optimal number of copies of content item k in the edge
network, nk∗, which in principle is proportional to the request
rate rk and which satisfies the following equations: (1) 0 ≤
nk∗ ≤ N and (2)

∑
k nk∗ = NB.

Since an edge node keep at most one copy of content item k,
the maximum number of content items is N . The total number
of content items cached in the system is equal to the total
system capacity, NB. Since server retrieval is not explicitly
considered when using this policy, it is possible that the server
retrieval capacity may be underutilized.
Optimal Caching in Content Clouds: In summary, to op-

timize the retrieval traffic and bandwidth consumption of the
edge network as well as the server [5], [6], the caching deci-
sion needs to consider the trade-offs between the local hit ratio,
the edge network hit ratio and the server hit ratio. However,
the server and edge network retrieval capacities and loads are
usually not caching criteria considered in optimizing retrieval
latency. In Section IV, we propose a load-aware hybrid caching
policy which combines the merits of the existing selfish
and collective caching policies. This hybrid caching policy
partitions the content items into different classes, to which
different caching policies are applied in order to optimize
the retrieval latency. We list key notations and corresponding
definitions in Table I.

TABLE I
NOTATIONS AND DEFINITIONS

Notation Definition
K number of content items
N number of edge nodes
B buffer space in edge nodes
rk request rate of content item k
λ total request arrival rate per node

μ{s,e} content retrieval rate from a connection of server/edge nodes
C{s,e} number of retrieval connections per server/edge node
πk steady state buffer occupancy of content item k

Ψl,s,e local hit ratio, the retrieval ratios of the server and the edge network
D{s,e} average latency of the server and the edge network

B. Source Selection

Source selection strategies have been well studied in the
context of optimizing response times in web-server and P2P
systems [5], [14]. The selection can be load-oblivious or load-
aware. Load-aware selection has been shown to be optimal
in minimizing the response time in generic and homoge-
neous multi-queue systems. In this paper, we use random and
Shortest-Queue selection among the edge nodes, which are
actually heterogeneous because of caching different content
items.
1) Random Selection: From nk edge nodes having content
item k, one is selected with the probability of 1

nk
.

In static caching, the overhead of applying random
selection is negligible as nk is fixed for all k, whereas it
has non-negligible overhead in dynamic caching because
the content distribution changes.

2) Shortest-Queue Selection: From nk nodes having con-
tent item k, the node which has the lowest number of
edge retrieval requests waiting in the queue is selected.
The implementation overhead depends on finding nk

using static as well as dynamic caching. Therefore, it has

the same order of implementation complexity as random
splitting in dynamic caching.

Note that existing analytical results regarding source se-
lection are based on the assumption that all edge nodes are
homogeneous, i.e., holding the same set of content items. The
analytical results of Shortest-Queue selections are based on
approximation, especially for larger number of homogeneous
queues/peers. To analytically obtain the retrieval latency in the
system considered here, the heterogeneous content distribution
needs to be factored into existing derivations of retrieval delay
for both source selection strategies.

III. RETRIEVAL LATENCY MODELING

Since we assume negligible latency of retrievals from
the local cache, the average content retrieval latency, D, is
the weighted average of the edge network retrieval latency,
De, and the server retrieval latency, Ds. The corresponding
weights, Ψe and Ψs, are the ratios of edge node and server
serviced requests to total content requests:

D = ΨeDe + ΨsDs. (1)

The ratio of locally-retrieved content items is denoted by Ψl,
and Ψl+Ψe+Ψs = 1. We provide the exact derivations of Ψe

and Ψs, and the arrival rates at the server and edge network
used for De and Ds are provided in the corresponding caching
subsections.

A. Server Retrieval Latency, Ds

The server retrieval is modeled as an M/M/Cs queueing
system, where the number of server retrieval connections is
Cs and there is one waiting queue. The total traffic arriving
at the server depends on the caching policy and equals

λs = NλΨs.

The overall service rate is Csμ
s, and the utilization (load

intensity) is ρs = λs

Csμs . The stability condition of the server
system is

NλΨs ≤ Csμ
s. (2)

Furthermore, the mean latency at the server is [4]:

Ds =
Qs

λs
, where (3)

Qs = Csρ
s +

ρs

1− ρs

(Csρ
s)Cs

Cs!(1− ρs)
· π0

π0 =

{
Cs−1∑
k=0

(Csρ
s)k

k!
+

(Csρ
s)Cs

Cs!

1

1− ρs

}−1

.

B. Edge Node Retrieval Latency, De

The edge network retrieval latency depends on the dynamics
of the load, which is controlled by the source selection
strategies. Each retrieval queue of an edge node can be an-
alyzed independently when random selection is used, whereas
Shortest-Queue selection requires all queues to be modeled
simultaneously.

1) Random Selection (De
rnd): The random retrieval selec-

tion is load-oblivious, so the edge retrieval traffic received
by each edge node is independent from that received by
other edge nodes. Therefore, one can analyze the entire edge
network as N independentM/M/Ce queueing systems, node
i ∈ {1 . . .N} of which receives retrieval traffic at the rate
λei , has a service rate of Ceμ

p and a corresponding retrieval
latency of Dei . As we here consider Ce = 1, we can simply
computeDei by applyingM/M/1 analysis [4] with ρei = λei

μe

on all retrieval queues of edge nodes. Then:

De
rnd = E[Dei] =

N∑
i=1

1/(μe − λei)

N
. (4)

It is important to notice that under the proposed hybrid
caching policy, all content items are uniformly distributed and,
therefore, all edge queues and their corresponding Dei are
identical. De

rnd can be computed by considering one queue as

De
rnd =

1

μe − λe
rnd

, and λe
rnd = λΨe. (5)

The retrieval latency increases with N and ρe [12] under
random splitting. This implies that given the fixed traffic
intensity, the more distributed a system gets (bigger N), the
higher the retrieval latency will be.
2) Shortest-Queue Selection (De

SQ): The edge network
here is similar to an M/M/CeN/JSQ queueing model [4],
where content items can be retrieved from all CeN edge
retrieval queues, and JSQ stands for Join Shortest Queue
and denotes the source selection strategy used here. Since
Ce = 1, we simply use N instead of CeN . The exact
analysis of M/M/N/JSQ is almost restricted to CeN = 2.
For CeN > 2, the approximated analysis is based on an
M/M/CeN queueing model, where there is only a single
queue for all Ce nodes. In general, the retrieval latency of
M/M/CeN/JSQ grows with increasing traffic intensity and
decreases with increasing CeN . The wider the distribution of
content items, the lower the retrieval latency. As every node
stores only a subset of content items (due to buffer size and
caching policy limitations), a requested content item can be
found and retrieved from a subset of N nodes. Hence, the
performance of this system differs significantly from a system
in which content items are retrievable from all N nodes.
Therefore, prior to obtaining the approximated retrieval latency
using M/M/CeN/JSQ analysis, it is critical to know how
many edge nodes hold the requested content items, or, in other
words, the distribution/dispersion of the content items within
the network. As edge network retrieval occurs for content k
with 0 < nk < N , we estimate N∗, the average number of
edge nodes available for edge network retrieval, by

N∗ = Ek∈{0<nk<N}[nk], (6)

where nk is the number of copies of content item k.
We are now ready to apply the approximated analysis of
M/M/CeN

∗/JSQ developed by Gupta et. al. [9] by using
the arrival rate λe

SQ = NλΨe, the service rate CeNμ
e, and

the traffic intensity ρe
SQ =

λe
SQ

CeNμe of the entire edge network.

C. Selfish Policy

In the selfish policy, all edge nodes are selfishly and stati-
cally storing the B most popular content items. As such, every
edge node needs to retrieve content items k > B from the
server, Ψs =

∑K
k=B+1

rk. The arrival rate of content retrieval
requests to the server is λs = NλΨs = Nλ

∑K
k=B+1

rk,
which is used to derive the server latency Ds in Eq. 3.
Following the stability condition in Eq. 2, we know that the
maximum system size is

N <
Csμ

s∑K
k=B+1

rk
.

The content items which are not cached locally can only be
found at and retrieved from the server, so Ψe = 0. Therefore,
no edge retrieval traffic is generated when using this policy,
and De = 0.

D. Collective Caching

Following the proportional replication principle described
in Section II, each node i is assigned a unique set of content
items, Fi, with cardinality |Fi| = B, and there are nk copies
of content item k in the network. The server retrieval ratio is
the sum of the request rates for content items of which there
are no copies stored in the edge network, i.e., nk = 0,

Ψs =
∑

k∈{nk=0}

rk.

Therefore, the arrival rate at the server is λs =
Nλ

∑
k∈{nk=0} rk , on which Eq. 3 can be applied to obtain

Ds. For content items k of which there are 1 ≤ nk < N
copies, edge retrieval requests are generated from the N −nk

nodes not holding content item k with the probability rk N−nk

N
.

Therefore, the overall edge network retrieval ratio is

Ψe =
∑

k∈{0<nk<N}

rk
N − nk

N
.

1) Random selection (De
rnd): An edge node i assigned with

a copy of content item k receives edge requests for this content
item with the probability 1/nk, meaning that the edge node
retrieval request rate for content item k here is λrk N−nk

nk
. The

total retrieval traffic received by node i is the sum of all the
edge node retrieval requests for content item k ∈ Fi,

λei = λ
∑
k∈Fi

rk
N − nk

nk

.

Therefore, the stability condition of the entire edge network is
maxi λ

∑
k∈Fi

rk
N−nk

nk
≤ μe. The retrieval latency of node i,

Dei , of Eq. 4 can then be used to derive De
rnd = E[Dei].

2) Shortest-Queue selection (De
SQ): As nk is deterministic

in collective caching, N∗ can be straightforwardly obtained
by N∗ =

∑
k ∈ {0 < nk < N}nk

K
. Taking λe = NλΨe

in M/M/CeN
∗/JSQ as described in Subsection III-B2, one

can obtain De
SQ.

IV. ADAPTIVE CACHING

For a hybrid content distribution system, we propose an
adaptive caching policy which adopts different degrees of
selfishness and altruism depending on the system and network
configuration. The adaptive caching policy partitions content
items into three classes: (1) gold content; (2) silver content;
and (3) bronze content, to each of which different caching
strategies are applied. Thresholds, T1 and T2, are used to
define each class. The gold content items, with k ≤ T1, are
the ones with the highest request rates, and these content items
are kept selfishly in all edge nodes. The bronze content items,
where k > T2, are the ones with the lowest request rates
and they are not kept in the edge network at all. Content
items where T1 < k ≤ T2 are the silver class. These content
items are always stored when received by a node. However,
to make room for new content items, the silver items are
also periodically discarded – the content item to discard is
chosen either by a collaborative LRU policy, or randomly. We
name the two variants of the proposed adaptive caching policy
Adapt-L and Adapt-R, respectively. The pseudo-code of the
caching algorithm is illustrated in Algorithm IV.
The threshold values T1 and T2 are chosen with the follow-

ing rationales: As the Zipf-distributed content request rates
result in high popularity of a few content items (items with
small k), we propose to use α percentage of a single buffer
to keep stand-alone copies of those popular content items at
each edge node. The specific α value should be subject to
the total number of content items, the available buffer space
and the retrieval rates from server/edges. For example, when
K = 300, B = 30, one can use α = 20% of the buffer space
to keep the most popular T1 = 6 (30·0.2) content items, which
guarantees a 50% (

∑k=6

k=1
rk = 50%) local hit ratio when

rk = 1

k1.2 and
∑

k rk = 1. The value of T2 is used to explicitly
take advantage of server utilization at a certain level, say β,
so that the demerits of low server utilization of collective
caching can be avoided. To utilize at least β percentage of
the server total retrieval capacity, we keep the total request
rates of bronze content items at Nλ

∑K

k=T2
= β(μsCs). The

β value is kept low here as silver class content items generate
additional server retrieval traffic. The optimal values of T1 and
T2 can be numerically evaluated using the analysis provided
in the following subsection.
To choose which silver class content items (T1 < k ≤ T2)

to discard from the local buffer, we apply either collaborative
LRU or random discarding. Collaborative LRU discarding
updates the LRU list upon receiving local requests and edge
requests. In light of the effectiveness of random discarding
schemes in unstructured edge networks [6], [21], we also use
random discarding policy as a less selfish alternative to LRU.
Note that the proposed adaptive caching policy is completely
distributed and can be optimized according to the received
request rate and the server and network retrieval and caching
capacity.

Algorithm 1 Adaptive Caching
if k ≤ T1 (Gold) then
Keep stand-alone content item k locally.

else
if T1 < k ≤ T2 (Silver) then
Always cache content item k.
When buffer is full,
(1) Collaborative LRU discarding (Adapt-L) or
(2) Random discarding (Adapt-R).

end if
else
if k > T2 (Bronze) then
Never cache.

end if
end if

A. Analysis of Retrieval Latency
To obtain the retrieval delay D, we first show the derivation

of Ψe and Ψs, based on the steady state probability of content
items being cached in a node, denoted as πk. We refer to πk as
content diffusion. The content retrieval requests can be fulfilled
by edges when the requested content item is not available
locally, which occurs with a probability 1 − πk, and at least
one of N − 1 edge nodes has the content item in question,
occurring with the probability 1 − (1 − πk)N−1. Thus, we
let the edge-retrieved probability of content item k be ψe

j =
(1− πk)(1− (1 − πk)N−1). On the other hand, an uncached
content item k is retrieved vertically from the central server
with the probability (1 − πk)N . Therefore, we can derive Ψe

and Ψs in the following:

Ψs =
∑

k

rk(1 − πk)N ,

Ψe =
∑

k

rkψ
e
k =

∑
k

rk(1− πk)(1− (1− πk)N−1).

The arrival rates used in Eq. 3, 5, Subsection III-B2 for Ds,
De

rnd, and De
SQ are

λs = NλΨs,

λe
rnd = λΨe,

λe
SQ = NλΨe.

The average content dispersion N∗ for computing De
SQ is

estimated by applying nk = Nπk in Eq. 6. We are now ready
to derive πk of the gold, silver and bronze classes, based on
their respective caching policies. Gold content items, k ≤ T1,
are always cached, so πk = 1, k ≤ T1, whereas bronze content
items, k > T2, are not cached in any edge nodes, and so πk =
0, k > T2. The πk of silver content items under collaborative
LRU and random discarding can be computed through the
iterative analysis shown in the following subsections. Note
that there are only B − T1 silver content items that can be
cached.
1) Collaborative LRU Discarding: The main idea behind

the following derivation is based on the conservation law
which states that, in the steady state, the rate at which an item
is brought into the buffer is the same as the rate at which it
is taken out of the buffer [8]. Let pk(j) denote the probability

that the content item k is at location j of the LRU list. As
such, pk(1) is the probability that the latest request access is
for content item k. As the local LRU list is updated by both
local requests and edge requests, access to content k includes
both of these request types. The local request rate of content
item k is essentially the original request rk , and edge request
rate is rkψe

k. Thus, pk(1) = rk(1 + ψe
k).

Let ak(j − 1) be the conditional probability that content
item k is moved from location j− 1 to location j in the LRU
stack after a request, given that a content item is moved from
location j−1 to j. The steady state of pk(j) can be effectively
approximated as pk(j) = ak(j − 1) as proposed by [8]. Let
bk(j) be the probability that content item k is contained in
one of the first j positions.

bk(j) =

j∑
l=1

pk(l). (7)

A content item is moved from location j − 1 to j due
to local requests and remote edge request for certain content
items which are not cached in the first j − 1 positions. For
the requests generated locally, content item k is pushed down
from location j−1 at the same rate as the rate at which content
item k is brought into the top j−1 positions, rk(1−bk(j−1)).
To satisfy remote edge requests, content item k needs to be
stored between the locations j and B − T1, so that the rate
at which it is moved from location j to j − 1 due to edge
requests is ψe

k(bk(B−T1)− bk(j)). We can then derive pk(j)
in the following:

pk(j) = ak(j − 1)

=
rk(1− bk(j − 1)) + ψe

k
(bk(B − T1)− bk(j))

e(j − 1)
, (8)

g(j − 1) =
∑

k

{rk(1− bk(j − 1)) + ψe
k(bk(B − T1)− bk(j))} .(9)

Finally,
πk = bk(B − T1).

One obtains πk by solving Equations 7-9 for all silver
content items and B − T1 buffer positions by setting initial
values of πk as rk. This solving procedure continues until the
πk values converge; our experiments show that this solving
procedure can be very efficient. The pseudo-code of the
iterative solving procedure is illustrated in Algorithm 2.
2) Random Discarding: A content item k is brought into

the local buffer at the rate of rk(1− πk), when end users ask
for content item k at rate of rk and such a content item is
not cached, which occurs with probability 1 − πk. Let U be
the total rate at which a content item is brought into the local
buffer,

U =
∑

k∈{Silver}

rk(1− πk). (10)

According to the conservation law, a content item k is
discarded at a rate of πk

B−T1

, which is proportional to its
occupancy in the buffer. A content item k is removed from

Algorithm 2 Iterative solving procedure for πk of silver
content in collaborative LRU discarding
Initialize πk = rk
while

∑
k∈{Silver} |πk − π

old
k
| ≤ δ do

πold
k

= πk

for j=1 to K − T1 do
for k= T1 + 1 to T2 do
if k = T1 then
pk(j) = rk(1 + ψ

p

k
)

else
Compute pk(j) = ak(j) in Eq. 9.

end if
Compute bk(j) in Eq. 7.

end for
Compute g(j) in Eq. 9.

end for
πk = bk(B − T1)

end while

the local cache at a rate of πk

B−T1

U . Therefore, the content
item k satisfies the conservation law in the following,

rk(1− πk) =
πk

B − T1

U.

We can then obtain

πk =
rk

U
B−T1

+ rk
. (11)

Equations 10 and 11 can be solved iteratively. We adopt the
iterative algorithm in [8] by initializing U = 1. The iteration
continues until the U value converges.

V. NUMERICAL AND SIMULATION RESULTS
To validate the proposed framework for analyzing the re-

trieval latency, we built an event-driven simulator in Java. The
focus here was on the scalability of the system, with respect to
the content retrieval latency under the retrieval selection and
caching policies considered. To manage transient popularity
changes, we further develop an online implementation of
Adapt-L and Adapt-R and present the simulation results in
the last section.
Our experience shows that selfish caching performs compa-

rably to adaptive caching only when the buffer size is small
and the number of edge nodes is kept low. However, we omit
these results, given that the selfish caching policy does not
scale to the number of nodes and buffer sizes considered in
the following experiments.
A hybrid system serving K = 300 content items is con-

sidered. The central server has Cs = 10 retrieval connections
with a mean retrieval time of 1

μs
= 1

10
unit time. Each edge

node has Ce = 1 connection with a mean retrieval time of
1

μe
= 1

8
unit time. The request arrival rate from end-users at

a node is λ = 0.22 per unit time. The values of the system
size N and caching capacity B are varied in the following
subsections.

A. Analytical v.s. Simulation
We first present the retrieval latency with increasing N ,

under the constant caching capacity of a single node, i.e.,
B = 20. To decide the threshold values of T1 and T2 in the

0 10 20 30 40 50 60 70
0

5

10

15
un

it
tim

e

N (number of edge nodes)

Server latency Ds

Ana.:Collect
Ana.:Adapt−L
Ana.:Adapt−R
Sim.:Collect
Sim.:Adapt−L
Sim.:Adapt−R

0 10 20 30 40 50 60 70
0

5

10

15

un
it

tim
e

N (number of edge nodes)

Server latency Ds

Ana.:Collect
Ana.:Adapt−L
Ana.:Adapt−R
Sim.:Collect
Sim.:Adapt−L
Sim.:Adapt−R

0 10 20 30 40 50 60 70
0

5

10

15

20

25
Edge network latency De

un
it

tim
e

N (number of edge nodes)

Ana.:Collect
Ana.:Adapt−L
Ana.:Adapt−R
Sim.:Collect
Sim.:Adapt−L
Sim.:Adapt−R

0 10 20 30 40 50 60 70
0

5

10

15
Edge network latency De

un
it

tim
e

N (number of edge nodes)

Ana.:Collect
Ana.:Adapt−L
Ana.:Adapt−R
Sim.:Collect
Sim.:Adapt−L
Sim.:Adapt−R

0 10 20 30 40 50 60 70
0

5

10

15

un
it

tim
e

Average latency D

N (number of edge nodes)

Ana.:Collect
Ana.:Adapt−L
Ana.:Adapt−R
Sim.:Collect
Sim.:Adapt−L
Sim.:Adapt−R

0 10 20 30 40 50 60 70
0

1

2

3

4

5

un
it

tim
e

Average latency D

N (number of edge nodes)

Ana.:Collect
Ana.:Adapt−L
Ana.:Adapt−R
Sim.:Collect
Sim.:Adapt−L
Sim.:Adapt−R

(a) Random selection (b) Shortest-Queue selection
Fig. 2. Latency: analytical derivation vs. simulation results with B = 20.

100 101 1020

0.2

0.4

0.6

0.8

1

k, content id

π k

N=20,analytical
N=50,analytical
N=20,simulation
N=50,simulation

100 101 1020

0.2

0.4

0.6

0.8

1

k, content id

π k

N=20,analytical
N=50,analytical
N=20,simulation
N=50,simulation

(a) Adapt-L (b) Adapt-R
Fig. 3. πk: analytical derivation vs. simulation of Adapt-L and Adapt-R.

adaptive caching, we apply the following simple principles: (1)
keep the server at least β = 50% utilized; and (2) use α = 25%
of the edge node buffer to keep static copies of popular content
items. As a result, T1 = 5 when B = 20 and T2 dynamically
increases with the number of edge nodes, thus maintaining a
constant degree of server utilization. Nevertheless, the optimal
values of T1 and T2 are not necessarily achieved by the
aforementioned principles.
Fig. 2 summarizes analytical and simulations results, based

on five independent runs. We can observe that the average
and server retrieval latencies obtained from the analytical
derivations match well with the simulation results. We further
validate the analysis of the proposed adaptive caching policies
with the steady state probabilities of buffer occupancy by
content items, πk, shown in Fig. 3 for system sizes N = 20
and N = 50. We conclude that proposed analysis is accurate

and can enable a more efficient design space exploration of
hybrid system deployment.
Comparing Fig. 2 (a) and (b), one can easily observe that

De increases as the number of edge nodes increases when
using random selection for all three caching policies, whereas
De is relatively stable when using Shortest-Queue selection.
Consequently, whenN = 70, the retrieval latency with random
selection is around twice as high as with Shortest-Queue
selection, around 20 compared to around 20. In fact, the traffic
intensity of the entire edge network ρe increases as the number
of edge nodes increases (from roughly ρe = 0.3 to ρe = 0.6)
for all caching policies. Shortest-Queue selection is extremely
effective in distributing the edge retrieval traffic, especially
in a larger distributed system. Moreover, when the number
of edge nodes increases, the difference in edge retrieval
latency between Adapt-L and Adapt-R increases under random
selection and decreases under Shortest-Queue selection. This
observation leads us to that: (1) when the retrieval selection
is load-oblivious, Adapt-L is more desirable due to its higher
percentage of local hit and lower edge retrieval ratios; and (2)
Adapt-R is more recommended under load-aware selection,
i.e., Shortest-Queue selection, especially in a larger system.
Moreover, the collective caching policy results in a constant

local hit ratio, an increasing edge network retrieval ratio and
a decreasing server retrieval ratio with an increasing number
of edge nodes N . The trend of increasing edge network
retrieval ratio and decreasing server retrieval ratio can also
be observed in Adapt-L and Adapt-R; however, their local hit
ratios decrease slightly due to the increasing T2. One can also
observe that given the same threshold values of T1 and T2,
Adapt-L consistently generates more server traffic and less
edge network traffic than Adapt-R. Since Adapt-L and Adapt-
R explicitly take advantage of the server retrieval capacity,
the edge network latency with the collective caching policy
is higher than with Adapt-L and Adapt-R, especially when
the size of the edge network is small. On the other hand, the
edge network retrieval capacity becomes significantly larger
than the server retrieval capacity in a larger edge network,
i.e., N > 50, and here collective caching can perform very
well by solely relying on edge network retrievals (which are
faster than the server retrieval). In summary, the performance
impact of source selection is much more prominent in a larger
edge network, whereas the performance impact of caching is
much more relevant in a smaller edge network.

B. Collaborative LRU vs. Random Discarding
For a fair comparison between the two proposed policies

Adapt-R and Adapt-L, we only apply Shortest-Queue selection
in this subsection.
1) Increasing Buffer: In this scenario, we have a fixed

number of edge nodes, N = 20, and increase the buffer size
B from 10 to 70 in increments of 10. We use α = 20%, so
that T1 = 0.2B. Fig. 4 (a) depicts π for Adapt-L and Adapt-
R. Clearly, Adapt-L has a higher πk for more popular content
compared to Adapt-R. This difference also increases with B.
The corresponding local hit ratioΨl, the edge network retrieval

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

k, content id

π k
B=10,Adapt−R
B=60,Adapt−R
B=110,Adapt−R
B=160,Adapt−R
B=10,Adapt−L
B=60,Adapt−L
B=110,Adapt−L
B=160,Adapt−L

B=10 B=60 B=110 B=160
0

20

40

60

80

100

%

Adapt−L:Ψs

Adapt−L:Ψe

Adapt−L:Ψl

Adapt−R:Ψs

Adapt−R:Ψe

Adapt−R:Ψl

(a) πk (b) Ψl, Ψe and Ψs

Fig. 4. Comparisons of Adapt-L and Adapt-R when N = 20.

ratio Ψe and the server retrieval ratio Ψs with increasing
values of B are summarized in Fig. 4 (b) – the bigger the
buffer, the higher the local hit ratio. The edge network retrieval
ratio and server retrieval ratio decrease with increasing B.
Moreover, the difference in the edge network retrieval ratio
and the server retrieval ratio between Adapt-L and Adapt-
R decreases with increasing B. When B = 160, Adapt-L
has only a slightly higher local hit ratio at a trade-off of a
slightly lower edge network retrieval ratio, compared to Adapt-
R. Overall, the retrieval latency significantly decreases with
larger buffer sizes.

0 100 200 300
0

0.2

0.4

0.6

0.8

1

π k

k, content id

N=10,Adapt−L
N=30,Adapt−R
N=10,Adapt−L
N=30,Adapt−R

0 100 200 300
0

0.2

0.4

0.6

0.8

1

π k

k, content id

N=50,Adapt−L
N=70,Adapt−R
N=50,Adapt−L
N=70,Adapt−R

(a) N = 10, 30 (b) N = 50, 70

Fig. 5. Comparing πk of Adapt-L and Adapt-R with increasing N .

2) Increasing N: Here the caching capacity is B = 50,
and the system size is N = {10, 30, 50, 70, 90}. Fig. 5 depicts
how πk changes with increasing N under Adapt-L and Adapt-
R with B = 50. The curves of πk are shown to converge
with increasing N . Meanwhile, the difference between the πk

curves of Adapt-L and Adapt-R decreases as N increases.
However, the difference between the edge network and the
server retrieval ratio of the two policies increases as shown in
Fig. 6 (a). This is because the largerN magnifies the difference
of πk . Adapt-R has visibly higher edge network retrieval traffic
at a trade off of negligible server retrieval traffic compared
to Adapt-L when N = 90. We also summarize the retrieval
latency in Fig. 6 (b), and Adapt-L performs slightly better
than Adapt-R for all N values compared. Similar to the edge
network retrieval ratio, the marginal gain in retrieval latency
for Adapt-L over Adapt-R decreases as N increases. From
our experiments, we observe that Adapt-R is simple yet very
robust, especially when the edge network is large.

C. Online Adaptive Caching
To adapt to changes in popularity among the content items

over time, we developed online algorithms for Adapt-L and

N=10 N=30 N=50 N=70 N=90
0

20

40

60

80

100

%

Adapt−L:Ψs

Adapt−L:Ψe

Adapt−L:Ψl

Adapt−R:Ψs

Adapt−R:Ψe

Adapt−R:Ψl

N=10 N=30 N=50 N=70 N=90
1

1.5

2

2.5

un
it

tim
e

Adapt−L
Adapt−R

(a) Ψl, Ψs, and Ψe (b) latency (D)
Fig. 6. Comparisons for Adapt-L and Adapt-R when B = 50.

Adapt-R. Two steps are required: (1) a frequency estimation
of rk; and (2) an adaptive threshold setting. We use a moving-
window average to periodically estimate the content popular-
ity. If the popularity has changed, we recalculate the gold (T1)
and bronze (T2) thresholds using the principles described in
Section IV.
1) Simulation Results: We simulate two types of content

popularity changes: (1) increasing the exponent of the Zipf
distribution from 1.2, 1.4, 1.5 and then decreasing it to 1.3
in a system where B = 20, N = 10 and λ = 0.22; and
(2) decreasing the exponent of the Zipf distribution from
1.2, 1.0, 0.9 and finally increasing it to 1.1 in a system
where B = 50, N = 10. Each of the exponent values
are simulated for an equal amount of time. The Shortest-
Queue selection is applied. The resulting retrieval latencies
obtained from online Adapt-L and Adapt-R are depicted in
Figure 7. The predefined values for gold and bronze thresholds
are α = 20% and β = 0.5. For comparison purposes, we
also study the system performance where the edge nodes
employ a collective caching policy where the fixed number
of content items in the network is based on an exponent
value of 1.2. In both cases, Adapt-L and Adapt-R can achieve
lower average retrieval latency by having lower edge network
retrieval latency and slightly higher server retrieval latency
compared to the collective policy. Another general observation
is that collective caching can be very robust with respect
to popularity changes when the total system buffer space
is sufficiently large. Since the proposed adaptive caching is
fully distributed, an online algorithm can be implemented to
adopt to popularity changes with negligible overhead. From
the results presented here, we believe that Adapt-L and Adapt-
R also have good potential to be used in highly dynamic hybrid
content distribution systems. Nevertheless, the performance of
Adapt-L and Adapt-R can be improved by tuning the control
parameters, such as α and β.

VI. RELATED STUDIES

Previous related work mainly addresses the lookup latency
under various content caching/replication policies and P2P
network topologies. Cohen and Shenker [7], [14] compared
and evaluated different replication strategies, namely uniform,
proportional and square root. The square root replication
strategy is proved to optimally minimize the expected search
size and can be carried out by their proposed path replication

edge nodes server average

2

4

6

8

10

12

14
un

it
tim

e
Collect
Adapt−L
Adapt−R

edge nodes server average

5

10

15

un
it

tim
e

Collect
Adapt−L
Adapt−R

(a) 1

k1.2
→

1

k1.4
→

1

k1.5
→

1

k1.3
(b) 1

k1.2
→

1

k1.0
→

1

k0.9
→

1

k1.1

Fig. 7. Comparison of the average retrieval latencies when request popularity
changes.

algorithm. In particular, [7], [14] do not consider LRU and
LFU (Least Frequently Used) strategies in their content delet-
ing process. Tewari and Kleinrock [18] showed that replicating
content in proportion to the request rate can minimize the
average retrieval time and also ensures fairness in the workload
distribution. They further showed that LRU can automatically
achieve near-optimal proportional replication in a distributed
manner and minimize the average network bandwidth used
per download [19]. However, the server retrieval capacity and
the impact of retrieval selection are not considered. There are
few analytical studies in the design of hybrid system with
a central server and one or more peer nodes. Ioannidis and
Marbach [10] developed a mathematical model to analyze the
scalability of the query searching time of a hybrid P2P network
under two query propagation mechanisms, the random walk
and the expanding ring. Borst et al. [5] have developed a
collaborative caching strategy in a hybrid system to optimize
bandwidth consumption. We focus on the retrieval delay of a
hybrid system from the perspective of the dynamics of loads,
which are influenced by both caching policies and retrieval
selection strategies.

VII. CONCLUDING REMARKS
In this paper we provide the analytical analysis for numeri-

cal evaluation of the data retrieval latency in a hybrid content
distribution system under interrelated caching policies and
source selection strategies. Our analysis captures important
system parameters, i.e., the size of edge network and asymmet-
ric retrieval and caching capacities of the central server and the
edge network. Our analysis is composed of the two main com-
ponents: 1) the retrieval loads derived from the steady-state
content distribution, and 2) the retrieval latency derived based
on the retrieval loads. Overall, the Shortest-Queue selection
strategy can greatly strengthen the scalability of a content dis-
tribution system, whereas the retrieval latency increases with
the number of edge nodes under random selection. Moreover,
our proposed distributed adaptive caching policies, Adapt-L
and Adapt-R, which are retrieval capacity aware, can attain
a good trade-off between local cache retrieval, edge network
retrieval and server retrieval, compared to selfish and collective
caching. In principle, we recommend Adapt-R combined with
Shortest-Queue selection and Adapt-L combined with random
selection for low complexity and robust retrieval latency. For
future work, we would like to further explore optimal threshold

values of the adaptive caching policies and develop asymptotic
results.

REFERENCES
[1] http://aws.amazon.com/cloudfront/.
[2] http://www-01.ibm.com/software/webservers/cloudburst/.
[3] M. Björkqvist and L. Y. Chen. Content Retrieval Delay Driven

by Caching Policy and Source Selection. In Proceedings of IEEE
MASCOTS, 2010.

[4] G. Bolch, S. Greiner, H. Meer, and K. Trivedi. Queueing Networks and
Markov Chains: Modeling and Performance Evaluation With Computer
Science Applications. Wiley, 2006.

[5] S.C. Borst, V. Gupta, and A. Walid. Distributed Caching Algorithms
for Content Distribution Networks. In Proceedings of IEEE INFOCOM,
2010.

[6] Y. Chen, M. Meo, and A. Scicchitano. Caching Video Content in IPTV
Systems with Hierarchical Architecture. In Proceedings of International
Conference on Communications (ICC), 2009.

[7] E. Cohen and S. Shenker. Replication Strategies in Unstructured Peer-
to-Peer Networks. SIGCOMM Comput. Commun. Rev., 32(4):177–190,
2002.

[8] A. Dan and D. Towsley. An Approximate Analysis of the LRU and
FIFO Buffer Replacement Schemes. SIGMETRICS Perform. Eval. Rev.,
18(1):143–152, 1990.

[9] V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt. Analysis of
Join-the-Shortest-Queue Routing for Web Server Farms. Perform. Eval.,
64(9-12):1062–1081, 2007.

[10] S. Ioannidis and P. Marbach. On the Design of Hybrid Peer-to-Peer
Systems. In Proceesings of SIGMETRICS, pages 157–168, 2008.

[11] P. R. Jelenkovic. Asymptotic Approximation of the Move-to-Front
Search Cost Distribution and Least-Recently Used Caching Fault Prob-
abilities. Ann. Appl. Probab., 9(2):430–464, 1999.

[12] H-C Lin and C.S. Raghavendra. An Approximate Analysis of the Join
the Shortest Queue (JSQ) Policy. IEEE Trans. Parallel Distrib. Syst.,
7(3):301–307, 1996.

[13] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang. Per-
formance Bounds for Peer-Assisted Live Streaming. SIGMETRICS
Perform. Eval. Rev., 36(1):313–324, 2008.

[14] Q. Lv, P. Cao, E. Cohen, K. Lai, and S. Shenker. Search and Replication
in Unstructured Peer-to-Peer Networks. In Proceedings of International
Conference on Supercomputing (ICS), pages 84–95, 2002.

[15] S. Podlipnig and L. Böszörmenyi. A Survey of Web Cache Replacement
Strategies. ACM Comput. Surv., 35(4), 2003.

[16] T. Qiu, Z. Ge, S. Lee, J. Wang, Q. Zhao, and J. Xu. Modeling Channel
Popularity Dynamics in a Large IPTV System. In Proceedings of
SIGMETRICS, pages 275–286, 2009.

[17] F. Simatos, P. Robert, and F. Guillemin. A Queueing System for
Modeling a File Sharing Principle. SIGMETRICS Perform. Eval. Rev.,
36(1):181–192, 2008.

[18] S. Tewari and L. Kleinrock. On Fairness, Optimal Download Perfor-
mance and Proportional Replication in Peer-to-Peer Networks. In IFIP
Networking, pages 709–717, 2005.

[19] S. Tewari and L. Kleinrock. Proportional Replication in Peer-to-Peer
Networks. In Proceedings of IEEE INFOCOM, 2006.

[20] S. Vanderwiel and D. Lilja. Data Prefetch Mechanisms. ACM Comput.
Surv., 32(2), 2000.

[21] V. Vishnumurthy and P. Francis. A Comparison of Structured and
Unstructured P2P Approaches to Heterogeneous Random Peer Selection.
In Proceedings of the USENIX Annual Technical Conference, pages 1–
14, 2007.

[22] D. Wu, Y. Liu, and K. Ross. Queuing Network Models for Multi-
Channel P2P Live Streaming Systems. In Proceedings of IEEE INFO-
COM, 2009.

[23] P. Yu and E. MacNair. Performance Study of a Collaborative Method
for Hierarchical Caching in Proxy Servers. Comput. Netw. ISDN Syst.,
30(1-7):215–224, 1998.

