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Abstract. In this paper, we address the problem of comparing the peeoce
perceived by end users when they use different technoltgeeess the Internet.
We focus on three key technologies: Cellular, ADSL and FTUBers primarily
interact with the network through the networking applioat they use. We tackle
the comparison task by focusing on Web search serviceshvane arguably a
key service for end users. We first demonstrate that RTT ackbpsoss alone are
not enough to fully understand the observed differencestesities of perfor-
mance between the different access technologies. We tlesendran approach
based on a fine-grained profiling of the data time of trangfeassheds light on
the interplay between service, access and usage, for #re alid server side. We
use a clustering approach to identify groups of connectemqeriencing similar
performance over the different access technologies. €htmique allows to at-
tribute performance differences perceived by the cliepasately to the specific
characteristics of the access technology, behavior oféheeg and behavior of
the client.
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1 Introduction

Telecommunication operators offer several technologigbeir clients for accessing
the Internet. We have observed an increase in the offeringlbflar and Fiber-To-The-
Home (FTTH) accesses, which now compete with the older AD&L @able modem

technologies. However, until now it is unclear what are tkaceé implications of the

significantly different properties of these access teabgiiek on the quality of service
observed by clients.

Our main objective in this paper is to devise a methodologyotmpare the perfor-
mance of a given service over different access technologiesonsider three popular
technologies to access the Internet: Cellular, ADSL, and@iHETWe use traces of end
users traffic collected over these three types of accesonewnder the control of a
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major European ISP. We focus on an arguably key service fensudVeb search en-
gines, esp. Google and Yahoo.

In this paper, we present a methodology to separately atéoutihe impact of ac-
cess, service usage, and application on top. The methogislbgsed on breaking down
the duration of an entire Web transaction into sub-comptsnghich can be attributed
to network or either of the end points. This kind of approachital because the typical
performance metrics such as average latency, averagegtipat) and packet loss only
give an overview of the performance but do not say much abbat tihe origins are.

Our methodology can be applied in different ways dependmthe objectives of
the study. For example, a service provider might only warirtalyze the performance
contribution of the server, while an ISP could be more ird@ in the (access) net-
work’s contribution. In both cases, the focus of the studyldde the performance
observed by the majority of clients or, alternatively, toteshooting through identifica-
tion of performance anomalies. We exemplify various uses&sr Yahoo and Google
Web search services.

2 Related Work

Comparing the relative merits of different access techgie®has been the subject of
a number of studies recently. In [1], the authors analyzsipadraffic measurements
from ADSL and FTTH commercial networks under the controlre same ISP. They
demonstrate that only a minority of clients and flows realget advantage of the high
capacity of FTTH access. The main reason is the predominafng2p protocols that
do not exploit locality and high transmission capacitiesthier FTTH clients.

In [2], the authors investigate the benefits and optimizetiof TCP splitting for
accelerating cloud services, using web search as an exgngalse study and through
an experimental system deployed in a production envirormidéey report that a typi-
cal response to an average search query takes between A ®aatond (between the
TCP SYN and the last HTTP packet). The RTT between the cliedtthe data-center
during the measurement period was around 100 millisecdes.ch time within the
data-center ranges almost uniformly between 50 and 400%mBear TCP windows
are required to transfer the result page to the client wheretts no packet loss. The
total time taken in this case is 5RTT + search time.

In [3], the authors present results from a measurement dgmfiax GPRS, EDGE,
cellular, and HSDPA radio access, to evaluate the perfocmahweb transfers with
and without caching. Results were compared with the onesstéredard ADSL line
(down:1Mb/s; up:256kb/s). Benchmarks reveal that theie v$sible gain introduced
by proxies within the technologies: HSDPA is often close @S\ but does not out-
perform it; In EDGE, the proxy achieves the strongest imprognt, bringing it close
to HSDPA performance.

In [4], the authors quantify the improvement provided by a&8Bess compared to
2G access in terms of delays and throughput. They demomshat for wired access
networks (ADSL and FTTH) the average number of servers aecgger subscriber is

1 We observe a significant fraction of values outside of thigjesin Section 6.
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one order of magnitude lower on the mobile trace, esp. becaithe absence of P2P
traffic. Focusing on the user experience when viewing meltiia content, they show
how their behavior differs and how the radio access typeenites their performance.

In [5] authors analyze Web search clickstreams by extrgdtie HTTP headers
and bodies from packet-level traffic. They found that mogrigs consist of only one
keyword and make little use of search operators, users Bsuverage four search
queries per session, of which most consecutive ones anedlistelying on a developed
Markov model that captures the logical relationships ofatbeessed Web pages authors
reported additional insights on users’ Web search behavior

In [6] Stamou and all studied how web information seeker& fiie search key-
words to describe their information needs and specificalhngne whether query key-
word specifications are influenced by the results the usetiswed for a previous
search. Then, they propose a model that tries to captureethdts’ influence on the
specification of the subsequent user queries.

3 Data Sets

We study three packet level traces of end users traffic fromjamfrench ISP involving
different access technologies: ADSL, cellular and FTTH.SADand FTTH traces cor-
respond to all the traffic of an ADSL and FTTH Point-of-Prase(PoP) respectively,
while the cellular trace is collected at a GGSN level, whithie interface between the
mobile network and the Internet. The cellular correspond®3 and 3G/3G+ accesses
as clients with 3G/3G+ subscriptions can be downgraded td€i&nding on the base
station capability. Table 1 summarizes the main charasttesiof each trace.

cellular FTTH ADSL

Date 2008-11-222008-09-3(2008-02-04
Starting Capture 13:08:27 | 18:00:01 |14:45:02:03
Duration 01:39:01 | 00:37:46 | 00:59:59

Number of Connectiong 1772683 | 574295 594169
Well-behaved connectiohs1236253 | 353715 381297
Volume Upload(GB) 11.2 51.3 4.4
Volume Download(GB) 50.6 74.9 16.4

Table 1. Traces Description

In the present work, our focus is on applications on top of ;M@Hch carries the
vast majority of bytes in our 3 traces, and close to 100% ferdéllular technology.
We restrict our attention to the connections that corredgorpresumably valid and
complete transfers, that we term well-behaved connectidesi-behaved connections
must fulfill the following conditions: (i) A complete thre@ay handshake; (ii) At least
one TCP data segment in each direction; (iii) The connectiast finish either with a
FIN or RESET flag. Well-behaved connections carry betweear2D125 GB of traffic
in our traces (see Table 1).

4 Web search Traffic: A First Look

In this section, we focus on the traffic related to Google Weér&h engine, which is the
dominant Web Search engine in our traces. We focus here oovdrall performance
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metrics before introducing our methodology for finer graim@alysis in Section 5. We
compare the Google and Yahoo cases in Section 6.

To identify traffic generated by the usage of Google seargmnenwe isolate con-
nections that contain the string www.google.com/fr in th€T TP header. Relying sim-
ply on information at the IP and TCP layers would lead to ipcoate in our data set
other services offered by Google like gmail or Google mapgtvlare serviced by the
same IPs.

To identify Google search traffic for the upstream and doveash directions, we
use TCP port numbers and remote address resolution. Tabla@arizes the amount
of Google search traffic we identified in our traces. We oleegthat FTTH includes
the smallest number of such connections among the thresstrane explanation of this
phenomenon was the short duration of the FTTH trace.

CellulafFTTH| ADSL
Well-behaved Connectioh29874 | 1183| 6022
Data Packets Upload [ 107201] 2436 18168
Data Packets Download 495374 7699139129
Volume Upload(MB) | 74.472| 1.66 | 11.39
Volume Download(MB) |[507.747 8 |[165.79

Table 2. Google Search Traffic in the Traces

4.1 Connection Size

Figure 1(a) depicts the cumulative distribution of welhbged Google search connec-
tion size in bytes. It appears that data transfer sizes ayesimilar for the three access
technologies. This observation constitutes a good stppoint since the performance
of TCP depends on the actual transfer size. RTTs and lossehedvily influence TCP
performance, as the various TCP throughput formulas inel{@a8]. Also, the available
bandwidth plays a role. With respect to these metrics, weexhe performance of a
service to be significantly influenced by the access teclyyodince available band-
width, RTTS and losses are considerably different over ADSL, FTTH antiuGe.
However, as we demonstrate in the remaining of this sedtimse metrics alone fail to
fully explain the performance observed in our traces.

CELL
—FTTH
---ADSL

CDF

10° 10" 10"

10°

10’ 10° 10°
Data (Bytes) RTT (Milliseconds)

(a) Connections Size (b) RTT Estimation

Fig. 1. General Performances

2 As noted in several studies on ADSL [9] and Cellular netwfi@} the access technology
often contributes to a significant fraction of overall RTT.
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4.2 Latency

Several approaches have been proposed to accurately testheaRTT from a single
measurement point [11-15]. We considered two such teckridthe first method is
based on the observation of the TCP 3-way handshake [12]fimtecomputes the
time interval between the SYN and the SYN-ACK segment, ards dd the latter the
time interval between the SYN-ACK and its corresponding AGKe second method
is similar but applied to TCP data and acknowledgement saetgrtieansferred in each
direction®. One then takes the minimum over all samples as an estimste &TT. It
is important to note that we take losses into account in oalyais (see next section).
We observed that both estimation methods (SYN-/SYN-ACKBATA-ACK) lead
to the same estimates except for the case of cellular aceessige of a Performance
Enhancing Proxy (PEP) which biased the results from the $¥¥N-ACK method, as
the PEP responds to SYN packets from the clients on behaleoérvers. We thus
rely on the DATA-ACK method to estimate RTTs over the 3 tedbgis. Figure 1(b)
depicts the resulting RTT estimations for the 3 traces (foo@e Web search service
only). It clearly highlights the impact of the access tedbgg on the RTT. FTTH access
offer very low RTT in general — less than 50 ms for more than 3§%onnections.
This finding is in line with the characteristics generallwardised for FTTH access
technology. In contrast, RTTs on the Cellular technologyrastably longer than under
ADSL and FTTH.

4.3 Packet Loss

To assess the impact of TCP loss retransmission times orettiermance of Google
Web search traffic, we developed an algorithm to detectnstnitted data packets,
which happen between the capture point and the server orebattihne capture point
and the client. This algorithrhis similar to the one developed in [11].

CELL
—FTTH
---ADSL

CELL
—FTTH
---ADSL

CDF

if
10° 10' 10° 10° 03 10° 10 10
Retransmission Times (Milliseconds) Response Time (Milliseconds)

(a) Retransmission Time per Connection (b) Transfer Time

Fig. 2. Immediate Access Impacts

If ever the loss happens after the observation point, wergbdehe initial packet
and its retransmission. In this case, the retransmisaioa i$ simply the duration be-

3 Keep in mind that we focus on well-behaved transfers for whiere is at least one data
packet in each direction. Hence, we can apply the secondogheth

4 The used loss’ detection algorithm is available on htiptrbase.eurecom.fr/tmp/papers.html.
People are invited to check the correctness of our algorithdetect losses



6 Aymen Hafsaoui et al.

tween those two epochsVhen the packet is lost before the probe, we infer the epoch
at which it should have been observed, based on the sequemt®ers of packets. We
try to separate real retransmission from network out of sage events by eliminating
durations smaller than the RTT of the connection.

Figure 2(a) depicts the cumulative distribution of retraission time per connec-
tion for each trace. Retransmissions are clearly more &eqfor the cellular access
with more than 25% of transfers experiencing losses condptrdess than 6% for
ADSL and FTTH accesses. From previous works, we noticedsinaral factors ex-
plain high loss ratio for cellular access. In fact, in [16{laurs recommend to use a loss
detection algorithm, which uses dumps of each peer of thaeexion (this algorithm
is not adapted for our case because our measurements hawvedileeted at a GGSN
level) to avoid spurious Retransmission Timeouts in TCRddition, authors report in
[10] that spurious retransmission ratio, for SYN and ACK ks, in cellular networks
is more higher for Google servers than other ones, due ta shplemented Timeouts.

Most of the transfers are very short in terms of number of pecknd we know
that for such transfers, packet loss has a detrimental intpathe performance[17].
Thus, the performance of these transfers are dominatedehyatket loss. In Sections
5.3 and 6, we analyze all connections, including the onesetifzerience losses by first
removing recovery times from their total duration.

4.4 Application Level Performance

Our study of the two key factors that influence the througlopTiCP transfers , namely
loss rate and RTT, suggest that, since Google Web seardfdramave a similar pro-
file on the 3 access technologies, the performance of thisceeover FTTH should
significantly outperform the one of ADSL, which should innusutperform the one
of Cellular. It turns out that reality is slightly more coreglas can be seen from Fig-
ure 2(b) where we report the distribution of transfer timgae (figure for throughput
is qualitatively similar but we prefer to report transfenés since Web search is an
interactive service). Indeed, while the Cellular techggloffers significantly longer
response time, in line with RTT and loss factors, FTTH and AD&@ve much closer
performance than RTT and loss were suggesting.

In the next section, we propose a new analysis method thatversthe impact of
specific factors like the application and the interactiothwiser, and thus informs the
comparison of access technology.

5 Interplay Between Application, Usage and Access

The analysis method that we use consists in two steps. Inrthetiép, the transfer time
of each TCP connection is broken down into several factaswe can attribute to
different causes, e.g., the application or the end-to-exth. pn a second step, we use
a clustering approach to uncover the major trends withindifferent data sets under
study.

5 Those epochs are computed at the sender side by shiftingrteeeries according to our RTT
estimate.
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5.1 Step 1: Data Time Break-down

For this first step, we introduce a methodology that has b&gally proposed in [17].
The objective is to reveal the impact of each layer that doumtes to the overall data
transfer time, namely the application, the transport, dedeind-to-end path (network
layer and layers below) between the client and the server.

The starting point is that the vast majority of transferssisinof dialogues between
the two sides of a connection, where each party talks in this.means that application
instances rarely talk simultaneously on the same TCP cdioned7]. We call the
sentences of these dialoguesns.

» Google

i

W_up B: Data
— personalize search
ch page
5 qe searE page
| o —Goo¥
T e

We-up A: Put key Coogle
words

results

é::ﬁ IW-up B: Prepare
.=z
wery results (8%

- results Y
uery ¥&°
«— on top or the

ey
 vesults 3| network

Pacing B: Time
added by application

| . —Quer
W-up A: Modify I

key words -
Send .
I e €quest papy
1—a

Pacing A: Time
added by application —
on top or the network Ze0d reguogy paris
|

Fig. 3. Data Time Break-Down

We term A and B the two parties involved in the transfer (A is ihitiator of the
transfer) and we break down the data transfer into three ocoeys: warm-up time,
theoretical time and pacing time. Figure 3 illustrates tirisak down in the case of a
Google search where A is a client of the ISP and B is a Googleser

A warm-up corresponds to the time taken by A or B before anis\geo the other
party. It includes durations such as thinking time at the s&te or data preparation at
the server side. For our use case, a warm-up of A corresporitie time spent by the
client to type a query and to browse through the results bdfsuing the next query
(if any) or clicking on a link, whereas a warm-up of B corresgs to the time spent by
the Google server to prepare the appropriate answer to guese

Theoretical time is the duration that an ideal TCP transfaulal take to transfer an
amount of packets from A to B (or from B to A) equal to the totalaunt of packets
exchanged during the complete transfer. Theoretical tamebe seen as the total trans-
fer time of this ideal TCP connection that would have all théadavailable right at the
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beginning of the transfer. For this ideal transfer, we fertassume that the capacity of
the path is infinite and an RTT equal RY'T'4_ g (or RTTi_ 4).

Once warm-up and theoretical times have been substraciedtfre total trans-
fer time, some additional time may remain. We term that remagitime pacing time.
While theoretical time can be attributed to charactessticthe path and warm-up time
to applications and/or user, pacing factors effects dueetb the access link or some
mechanism higher up in the protocol stack. Indeed, as werassuthe computation of
theoretical time that A and B have infinite access bandwidéhin fact assume that we
can pack as many MSS size packets within an RTT as needed) 8Mmot necessarily
true due to a limited access bandwidth. In this case, tha &rtie will be factored in the
pacing time. Similarly, if the application or some middlexes are throttling the trans-
mission rate, this will also be included in the pacing timecdktextual interpretation
that accounts for the access and application charactaristithus needed to uncover
the cause behind observed pacing time. The above breakdawtabtransfer time is
computed for each side A and B separately.
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0,014 Emdlmg-aﬂ = ica [S“PEDEDI TCP: http-alt » ica [5YN, ACK] Seq=0 Ack=1 Win=17520 Len=0 M§5=1450 her GET and
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5,216 le;lylj'iwl.l 2000 (B HrTr:
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4.5 seconds of idleness
before the server start sending
the object (a png image)

Wireshark reports correct reception
at this time, when all TCP packets
have been received

Fig. 4. Abnormal Long Response Time at The Server Side (Warm-up teyal

We report on Figure 4 an example of observed large warm-ue &trthe server
side, for a client behind an ADSL access. We noticed that th@@vledgement re-
ceived from the server indicates that the query (GET re{juest been correctly re-
ceived by the server, but it takes about 4.5 seconds beferditnt starts to receive the
requested object (a png image in this case). As we can seérnegttion 5.3, an easy
identification of these extreme cases can be a useful atiphaaf our methodology.

5.2 Step 2: Data Clustering

The second analysis step is new as compared to our previokg1vg. For this second
step, we use clustering approaches to obtain a global piofithe relation between the
service, the access technology and the usage.
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At the end of step 1, each well-behaved Google search cdnnésttransformed
into a point in a 6-dimensional space (pacing, theoretindl ain time of the client
and the server). To mine this data, we use a clustering tgokrio group connections
with similar characteristics. We use an unsupervised etig} approach as we have
no a priori knowledge of the characteristics of the data tahalyzed, e.g., a model
of normal and abnormal traffic. We chose the popular Kmeagarighm. A key issue
when using Kmeans is the choice of the initial centroids d&lrtumber of clusters
targeted. Concerning the choice of the centroids, we parfame hundred trials and
take the best result, i.e., the one that minimizes the sumath&usters of the distances
between each point and its centroid.

To assess the number of clusters, we rely on a visual dimeaigtp reduction
technique, t-SNE (t-Distributed Stochastic Neighbour Eading)[18]. t-SNE projects
multi-dimensional data on a plane while preserving the inmeéghbouring character-
istics of data. Application of t-SNE to our 6-dimensionataléeads to the right plot
of Figure 5(a). This figure indicates that a natural clusggexists within our data. In
addition, a reasonable value for the number of clusterdlaeen 5 and 10. Last but
not least the right plot of Figure 5(a) suggests that somstets are dominated by a
specific access technology while some others are mixed. ¥egia value of 6 for the
number of clusters in Kmeans. Note that we use the matlakeim@htation of Kmeans
[19].

5.3 Results

Figure 5(b) depicts the 6 clusters obtained by applicatfdtnoeans. We use boxpldts
to obtain compact representations of the values correspgma each dimension. We
indicate, on top of each cluster, the number of samples irclirger for each access
technology. We use the same number of samples per acceaslagyto prevent any
bias in the clustering, which limits us to 1000 samples, dudé¢ short duration of the
FTTH trace. The ADSL and Cellular samples were chosen rahdamong the ones in
the respective traces. We also plot in Figure 6(b) the sizkeofransfers of each cluster
and their throughptt

We first observe that the clusters obtained with Kmeans ageda agreement with
the projection obtained by t-SNE as indicated in the left pfd-igure 5(a), where data
samples are indexed using their cluster id in Kmeans.

Before delving into the interpretation of the individualsters, we observe that
three of them carry the majority of the bytes. Indeed, Fidgi{ed indicates that clusters
1 and 2 and 6 represent 83% of the bytes. Let us first focus se tdheminant clusters.

Clusters 1, 2 and 6 are characterized by large warm-up A saluge, long waiting
time at the client side in between two consecutive requésis warm-up A values are

5 Boxplots are compact representations of distributions:céntral line is the median and the
upper and lower of the box the 25th and 75th quantiles. Exdresues -far from the waist of
the distribution - are reported as crosses.

" We compute the throughput by excluding the tear down timéghus the time between the last
data packet and the last packet of the connection. Thisfapewitric that we term Application
Level (AL) throughput offers a more accurate view of the wesgrerience [17].
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in the order of a few seconds, which are compatible with huawdions. This behavior
is in line with the typical use of search engines where the fisst submits a query
then analyzes the results before refining further her quermiicking on one of the
links of the result page. Thus, the primary factor that infleess observed throughputs
in Google search traffic is the user behavior. In fact, iderttivalues in clusters 1, 2 and
6 of Warm-up A are in line with results in [6] of the time betweguery submission
and first click, where authors identified different useradie
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We can further observe that clusters 1 and 2 mostly consistlbflar connections
while cluster 6 consists mostly of FTTH transfers. This nsetdwat the clustering algo-
rithm first based its decision on the Warm-up A value; theis,iththe access technology
that impacts the clustering. As ADSL offers intermediatarelateristics as compared
to FTTH and Cellular, ADSL transfers with large Warm-up Awas are scattered on
the three clusters.

Let us now consider clusters 3, 4 and 5. Those clusters, whilging a tiny frac-
tion of traffic, feature several noticeable charactesstiirst, we see almost no cellular
connectionsin those clusters. Second, they total twoghifthe ADSL and FTTH con-
nections, even though they are smaller than the ones irectust 2 and 6 — see Figure
6(b). Third, those clusters, in contrast to clusters 1, 2@&hdve negligible Warm-up A
values. From a technical viewpoint, Kmeans separates tlasedon the RTT as cluster
5 exhibits larger ThA and ThB values and also based on Pacizl s. After a further
analysis of these clusters we observed that they corresgongery short connection
with an exchange of 2 HTTP frames, Google servers finish ntio@nnection after an
idle period of 10 seconds. Moreover, cluster 3 presentsaaken client opens Google
web search page in their Internet browser without perfognainy search request, then
after a time-out of 10 seconds Google server close the ctionem other hand, cluster
4 and 5 corresponds to Get request and HTTP OK response wiffeutive search,
the main difference between cluster 4 and 5 were RTT and abionesize.

More generally, we expect that our method, when applied aéilprother services,
will lead to some clusters that can be easily related to theder of the service under
study while some others will relate anomalous or unsual Wietsthat might require
further investigation. For the case of Google search engieedo not believe cluster
3,4,5 are anomalies per se that affects the quality of ezpeei of users since the large
number of connections in those clusters would prevent tbblem from flying below
the radar. We found only very few cases where the server'sdtp the performance
was dominating and directly impacting the quality of expede of the end user. Ob-
serving many such cases would have indicated issues, @lysewice implementation
or provisioning.

6 Contrasting Web Search Engines

The main idea in this section is to contrast Google results athers Web search ser-
vices. For the case of our traces, we observed that the setmmohant Web Search
engine is Yahoo, though with an order of magnitude less octiores. This low num-
ber of samples somehow limits the applicability of our cdustg approach as used in
the Google case. We restrict our attention to the followingsiions: (i) Do the two
services offer similar traffic profile? (ii) Are services pigioned in a similar manner?
Architecture of Google and Yahoo data-centers are obwoadifflerent but they must
both obey the constraint that the client must receive itsvan$o a query in a maximum
amount of time that is in the order of a few hundreds of mitsads [2]. We investigate
the service provisioning by analyzing the Warm-up B valwkstg preparation time at
server) offered by the two services.
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6.1 Traffic Profiles
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Fig. 7. Yahoo vs. Google Web search services

Figure 7(a) shows cdfs of data connections size for CelIBEFH and ADSL traces
for both Google and Yahoo. We observe for our traces that &¢aeb search connec-
tions are larger than Google ones. An intuitive explanakiehind this observation is
that Yahoo Web search pages contain, on average, more mruddsanners than ordi-
nary Google pages.

Figure 7(b) plots cdfs of RTTs. We can observe that RTT vatuegach access
technology are similar for the two services, which suggéststhe servers are located
in France and that it is the latency of the first hop that doteina

We do not present clustering results for Yahoo due to thelsmatber of samples
we have. However, a preliminary inspection of those reseligaled the existence of
clusters due to long Warm-up A values, i.e. long waiting sna¢ the client side — in
line with our observations with the Google Web search ser\itthe next section, we
focus on the waiting time at the server side.

6.2 Data preparation time at the server side

Figure 8(a) presents the cdf of warm-ug Balues for both Yahoo and Google for the
ADSL and Cellular technology (we do not have enough sampieSTorH for Yahoo
to present them). We observe an interesting result: for Watioo and Google, the time
to craft the answer is longer for cellular than for the ADStheology. It suggests that
both services adapt the content to cellular clients. A simay to detect that the remote
clientis behind a wired or wireless access is to check its bvetvser-User Agent as re-
ported in the HTTP header. This is apparently what Googles dsd-igure 8(b) reveals
(again, due to a low number of samples on Yahoo, we are nottalseport a similar
breakdown). Indeed, cellular clients featuring a laptepkdop Windows operating sys-
tem (Vista/XP/2000) experience similar warm-up B as ADSerds while clients using
Iphones or a Windows-CE operating system experience wdyehigarm-up B. As the
latter category (esp. Iphones: more than 66% of Google adiums) dominates in our

8 We have one total warm-up B value per connection, which isdts observed warm-up B for
each train.
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dataset they explain the overall cellular plot of Figure) 8iéote that further investiga-
tions would be required to fully validate our hypothesisofitent adaptation. We could
think of alternative explanations like a different load be servers at the capture time
or some specific proxy in the network of the ISP. However, & imerit of our approach
to pinpoint those differences and attribute them to someipeomponents like the
servers here.

~" [—ADSL

---CELL: Windows
CELL: Iphone

- - CELL: Windows-CE

---CELL - Yahoo
—CELL - Google}
---ADSL - Yahoo
—ADSL - Google

0.8

0.6

CDF

0.4-

0.2

B 4
10° 10° 10 10° 10
Warm-up B (Milliseconds) Warm-up B (Milliseconds)

(a) Yahoo vs. Google (b) Google

Fig. 8. Warm-up B

7 Conclusion

In this paper, we tackled the issue of comparing networkpylieations over different
access technology — FTTH, ADSL and Cellular. We focused ensghecific case of
Web search services. We showed that packet loss, latertyharway clients interact
with their mobile phones all have an impact on the perforreanetrics on the three
technologies. We devised a technique that (i) automajiealiracts the impact of each
of these factors from passively observed TCP transfers @ngréup together, with
an appropriate clustering algorithm, the transfers thag lexperienced similar perfor-
mance over the three access technology. Application oftétisnique to the Google
Web search service demonstrated that it provides easdyprétable results. It enables
for instance to pinpoint the impact of usage or of raw charéstics of the access tech-
nology. We further compared Yahoo and Google Web searcficteafd provided evi-
dences that they are likely to adapt content to the termamgaébility for cellular clients
which impacts the performance observed. As future work, \lleapply our approach
to the profiling of other network services, which should vaightforward since our ap-
proach is application agnostic (we did not make any hypddhtesGoogle Web search
to profile it). We intend to profile, among others, applicaiovhich are more bandwidth
demanding like HTTP streaming. We also would like to invgstie the usefulness of the
method at higher levels of granularity, such as sessionemtdevel.
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