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Abstract— In this paper1, we propose a resource allocation
scheme based on a utility/pricing strategy with the objective to
maximize a defined utility function subject to minimize the mutual
interference caused by secondary users (SUs) with protection for
primary users (PUs). Specifically, we formulate a utility function
to reflect the needs of PUs by verifying the outage probability
constraint, and the per-user capacity by satisfying the signal-
to-noise and interference ratio (SNIR) constraint, as well as
to limit interference to PUs. Furthermore, the existence of the
Nash equilibrium of the proposed game is established, as well
as its uniqueness under some sufficient conditions. Theoretical
and simulation results based on a realistic network setting,
and a comparison with a previously published binary power
allocation method will be provided in this paper. The reported
results demonstrate the efficiency of the proposed technique
in terms of cognitive radio network (CRN) deployment while
maintaining quality-of-service (QoS) for the primary system, and
its superiority to the binary power allocation.

Keywords—Cognitive Radio, Resource Allocation, Game The-
ory, User Selection.

I. INTRODUCTION

Over the years, the licensed use of the radio spectrum has
limited the number of technologies using it. Even though all its
actors made a priority of using the spectrum at its maximum
efficiency, the analysis of a portion of the spectrum showed
three conclusions [1]:
• Some frequency band in the spectrum are largely unoc-

cupied most of the time;
• Some other frequency bands are only partially occupied;
• The remaining frequency bands are heavy used.

Cognitive radio (CR) is an emerging technology in wireless
technology that uses software-defined radio to aim to the effi-
cient use of the spectrum by exploiting the unused frequency
bands at the time and space [2].

1The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement SACRA (Spectrum and energy efficiency through
multi-band cognitive radio) n◦249060, and was partially supported by the
Hassan II Foundation for the Moroccans residing abroad.

In this paper we will combine CR with game theory. Game
theory was at first a mathematical tool used for economics,
political and business studies. It helps understand situations
in which decision-makers interact in a complex environment
according to a set of rule [3]. Many different types of game
exists which are used to reflect to analyzed situation for
example potential games, repeated game, cooperative or non-
cooperative games. In the cognitive radio network (CRN),
the formal game model for the power control can be defined
as follows:

• Players: are the cognitive users (secondary users (SUs)).
• Actions: called also as the decisions, and are defined by

the transmission power allocation strategy.
• Utility function: represents the value of the observed

quality-of-service (QoS) for a player, and is defined later
in this section.

The central idea in game theory is how the decision from
one player will affects the decision-making process from all
other players and how to reach a state of equilibrium that
would satisfy most of the players. A well known contributor
in the field is Nash for the Nash equilibrium [4]. The theory
shows that you can reach a state equilibrium for your system
where all decisions are set, unchanging and is the best possible
situation for the players.

CR need to perform sophisticated adaptation and dynam-
ically learn from the environment. This situation makes the
learning process a very complicated one comparable to sit-
uation found in economics. Game theory is already used in
other field of communication to better understand for example
congestion control, routing, power control, topology control
and trust management [5]. Our interests rest in its use for
power control as it can be considered a game with fixed
number of players where each tries to optimize their power
levels. There are a number of properties that makes this
problem appropriate for a cognitive radio game model:

• The player’s payoff is a function of her own transmit
power level and her signal-to-noise and interference ratio
(SINR). The player’s SINR is a function of her own
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transmit power and the transmit powers of the other
players in the cell.

• When a player increases her power level, this will in-
crease her own SINR, but will decrease the SINRs of all
other players.

• For a fixed SINR, the players prefer lower power levels
to higher ones. That is, players wish to conserve power
and extend their battery life when possible.

• For a fixed power level, players prefer higher SINR to
lower one. That is, players want the best possible channel
conditions for a given expenditure of power.

There are many ways to cope with these issues such as to
add restriction to the use of the power resource by charging
it to users. This is done by adding a cost component to the
payoff function to add fairness to the network. Another idea
is to model the scenario as a repeated game [5].

In this paper we formulate the problem of resource allo-
cation in the context of a CRN to reflect the needs of PUs
and SUs. We consider the primary uplink of a single CRN,
where cognitive transmitters transmit signals to a number of
SUs, while the primary BS receives its desired signal from
a primary transmitter and interference from all the cognitive
transmitters.

To resolve the problem of resource allocation, we propose
a utility function that meets the objective to maximize the SUs
capacity, and the protection for PUs. Specifically, we define
a payoff function that represents the SNIR constraint, and a
price function specifies the outage probability constraint. The
utility function is defined as:

utility function = payoff function− price function

We introduce a payoff to express the capacity need of SU
m, and a price function to represent the protection for PUs
by means of the outage probability. And each SU adjusts its
transmitted power to maximize its utility function. Therefore,
we will present in this paper a power allocation algorithm
that maximize the defined utility function to compute the
transmitted power of each SU.

The paper is organized as follows. In Section II we describe
the channel model and introduce the proposed game theory
strategy. In Section III, the power allocation algorithm is pre-
sented. The existence of the Nash equilibrium of the proposed
game is established in Section IV, as well as its uniqueness
under some sufficient conditions. Simulation results and a
comparison with a previously published binary power allo-
cation method are provided in Section V, and Section VI
concludes the paper.

II. CHANNEL MODEL

Consider the uplink of a CRN that consists of a PU, a base
station (BS), and M pairs of SUs randomly distributed over
the system [2]. The channel gains are i.i.d random variable.
Throughout this paper, we will use the following notation:
• the index of SUs m lies between 1 and M ,
• hl,m denotes the channel gain from SU l to the desired

user m,

Fig. 1. The Cognitive Radio Network with one PU and M = 4 secondary
transmitters attempting to communicate with their respective receivers in an
ad-hoc manner during an uplink transmission of the PU, subject to mutual
interference.

• the data destined from SU m is transmitted with power
pm and a maximum power Pmax,

• hpu,m denotes the channel gain from the PU indexed by
pu to the desired user m,

• the data destined from the primary system is transmitted
with power ppu.

In the coverage area of the primary system, there is an
interference boundary within which no SUs can communicate
in an ad-hoc manner. Thus, as can be seen in Fig. 1, for the
impairment experienced by the primary system to be as small
as possible, a SU must be able to detect very reliably whether
it is far enough away from a primary base station, i.e., in the
area of possible cognitive radio operation. The expression of
the PU instantaneous capacity is

Cpu = log2




1 +
ppu|hpu,pu|2

M∑
m=1

pm|hm,pu|2 + σ2




(1)

where σ2 is the ambient noise variance. On the other hand, by
making SUs access the primary system spectrum, the mth SU
experiences interference from the PU and all neighboring co-
channel SU links that transmit on the same band. Accordingly,
the mth SU instantaneous capacity is given by:

Cm = log2 (1 + SINRm) (2)

where

SINRm =
pm|hm,m|2

M∑

l=1
l 6=m

pl|hl,m|2 + ppu|hpu,m|2 + σ2

(3)

SUs need to recognize their communication environment and
adapt the parameters of their communication scheme in order
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to maximize the per-user cognitive capacity, expressed as

Csum =
M∑

m=1

Cm (4)

while minimizing the interference to the PUs, in a distributed
fashion. The sum here is made over the M SUs allowed to
transmit [7] [8]. Moreover, we assume that the coherence time
is sufficiently large so that the channel stays constant over
each scheduling period length. We also assume that SUs know
the channel state information (CSI) of their own links, but
have no information on the channel conditions of other SUs.
No interference cancelation capability is considered. Power
control is used for SUs both in an effort to preserve power
and to limit interference and fading effects. The interference
power (Intf) is given by:

Intfm =
M∑

l=1
l 6=m

pl|hl,m|2 + ppu|hpu,m|2 + σ2 (5)

Combining (3) and (5), we define the SINR as a function of
Intf:

SINRm =
pm|hm,m|2

Intfm
(6)

and

pm =
SINRmIntfm
|hm,m|2 (7)

The protection for PU must be guaranteed in a CRN. This
protection is guaranteed if the sum of all SUs transmitters’
powers is not larger than the interference constraint PT . Then,
PU verifies his outage probability constraint. The interference
constraint is given by:

M∑
m=1

pm|hpu,m|2 ≤ PT (8)

and the notion of outage probability defined as the probability
that the capacity of the user is below the transmitted code
rate [6]. In the proposed framework, the outage probability
can be expressed as [9]:

Pout ≡ Prob {Cpu ≤ Rpu} ≤ q, (9)

where Rpu is the PU transmitted data rate and q is the max-
imum outage probability. The information about the outage
failure can be carried out by a band manager that mediates
between the primary and secondary users [10], or can be
directly fed back from the PU to the secondary transmitters
through collaboration and exchange of the CSI between the
primary and secondary users as proposed in [11].

III. POWER ALLOCATION ALGORITHM

We derive in this section the utility function: we define
a payoff function specifies the SU capacity constraint and a
price function that represents the interference constraint as a
function of the outage probability constraint. Therefore, the
price function is given by (2), and we will derive here the
equation of the interference constraint PT .

The margin of PT − ∑M
l=1
l 6=m

pl|hpu,l|2 is the maximum

interference that SU m could generate under the description
of (8). Divide pm|hpu,m|2 by PT −

∑M
l=1
l 6=m

pl|hpu,l|2, we found

the interference level expression:

LIntfm =
pm|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hpu,l|2
(10)

which is a normalized value. As long as this ratio ∈ [0, 1], the
protection for PU is met. We compute now PT as a function
of the outage probability.

To proceed further with the analysis and for the sake of
emphasis, we introduce the PU average channel gain estimate
Gpu based on the following decomposition:

hpu,pu ≡ Gpu ∗ h′pu,pu (11)

where h′pupu is the random component of channel gain and
represents the normalized channel impulse response tap. This
gives us the following PU outage probability expression in an
interference-limited context:

Pout = Prob





log2




1 +
ppuG2

pu|h′pupu|2
M∑

m=1

pm|hm,pu|2



≤ Rpu





' Prob





ppuG2
pu|h′pu,pu|2

M∑
m=1

pm|hm,pu|2
≤ 2Rpu − 1





' Prob




|h′pu,pu|2 ≤

(
2Rpu − 1

)




M∑
m=1

pm|hm,pu|2

G2
puppu








(12)
From now on we assume for simplicity of analysis that
the channel gains are i.i.d rayleigh distributed. However, the
results can be immediately translated into results for any other
channel model by replacing by the appropriate probability
distribution function. Continuing from (12), we have:

Pout '
∫

(
2Rpu − 1

)




M∑
m=1

pm|hm,pu|2

G2
puppu




0

exp(−t)dt (13)
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Finally, we get the following outage constraint:

Pout ' 1− exp



− (

2Rpu − 1
)




M∑
m=1

pm|hm,pu|2

G2
puppu







(14)

Replacing the interference constraint equation in (14), we can
express the probability outage as:

Pout = 1− exp
[
− (

2Rpu − 1
) PT

G2
puppu

]
(15)

Then, the corresponding interference constraint is:

PT =
ppuG2

pu

1− 2Rpu
ln (1− Pout) (16)

We introduce now a utility function for which each SU adjusts
its transmitted power in order to maximize it. It is composed
of a payoff function expressed as the capacity Cm of the SU,
and of a price function composed of the interference level to
the PU and the power consumption.

Then, the utility function is expressed as follow:

Um = Cm −




pm|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

(17)

The parameter am is adjustable to have a comparable values,
i.e. the payoff function value and the price function value. This
parameter gives the flexibility needed to adjust the SU capacity
over the interference to the PU. We choose am < 0. It could
be easily obtained that the price function decreases as the ratio
LIntfm increases. This fact is caused by the negative property
of am.

Mathematically, the game G can be expressed as:

Find pm|m=1,...,M = arg max
pm

Um(pm, P−m) (18)

subject to: 



∑M
m=1 pm|hpu,m|2 ≤ PT

Pout ≤ q

0 ≤ pm ≤ Pmax

(19)

Recall that pm denotes the strategy adopted by SU m and
P−m = (pl)l 6=m,l∈{1,...,M} denotes the strategy adopted by
the other SUs. We replace the capacity by expression given
by (2) and use (7) to obtain the following equation:

Um = log2 (1 + SINRm)−




|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

×
(

SINRmIntfm
|hm,m|2

)am

(20)

We are going to maximize the utility function in terms of
the SINR, which is equivalent to the transmitted power. The
solution of the system is found by calculating the derivatives
of Um with respect to the signal-to-noise and interference ratio
parameters SINRm:

∂ Um

∂ SINRm
=

1
(1 + SINRm) ln 2

−




|hpu,m|2

PT −
M∑

l=1
l 6=m

plhl,m




am

× am

(
SINRmIntfm
|hm,m|2

)am−1 Intfm
|hm,m|2 (21)

We can express the solution of (21) as:

(1 + SINRm) SINRam−1
m =

1
amβm ln 2

(22)

where:

βm =




|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

(
Intfm
|hm,m|2

)am

(23)

denoting the slope of the price function. Let f(SINRm) =
(1 + SINRm) SINRam−1

m . Finally, we obtain the following set
of equalities:

SINRm = f−1

(
1

amβm ln 2

)
(24)

The maximization problem is dependent on am which is
defined in the utility function as an adjustment parameter to
the price function. For simulation results am = −0.2. It was
chosen to stay with this value after different simulations to
show its influence on the obtained results.

Our main contribution within this work is the QoS man-
agement of the CR system. The originality in the proposed
method is that we guarantee a QoS to PU by maintaining the
PU’s outage probability unaffected in addition to a certain QoS
to SUs and ensuring the continuity of service even when the
spectrum sub-bands change from vacant to occupied. Thus by
the outage probability control, if we have a vacant spectrum
holes in the PU band, we set the outage probability Pout = 1
to exploit the available spectrum band by SUs, and if we have
occupied sub-bands, the outage probability is set to Pout = q
depending on the PU’s QoS.

IV. EXISTENCE AND UNIQUENESS OF
THE NASH EQUILIBRIUM

In the proposed game, each SU chooses an appropriate
power to maximize its utility function. In this context, it is
important to ensure the stability of the system. A concept
which relates to this issue is the Nash equilibrium. As def-
inition in [4], a pure strategy profile {p∗l }l 6=m,l∈{1,...,M} is a



5

Nash equilibrium of the proposed game if, for every player m
(i.e. SU m):

Um(p∗m, P∗−m) ≥ Um(pm, P∗−m), ∀m ∈ {1, ..., M} (25)

A Nash equilibrium can be regraded as a stable solution,
at which none of the users has the incentive to change its
power pm.

A. Existence of the Nash Equilibrium

Theorem 1: Game G admits at least one Nash equilibrium.

proof : The conditions for the existence of Nash equilibrium
in a strategic game are given in [12]:

1) The set Pm is a nonempty, convex, and compact subset
of some Euclidean space for all m.

2) The utility function Um(pm, P−m) is continuous on P
and quasi-concave on Pm.

According to the above description of the strategy space, it
is straightforward to see that Pm is nonempty, convex and
compact. Notice that Um(pm, P−m) is a linear function of
either pm, which means the second condition is satisfied.
Hence, game G admits at least one Nash equilibrium.

B. Uniqueness of the Nash Equilibrium

Theorem 2: Game G always possesses a unique Nash
equilibrium under the sufficient conditions.

proof : It’s established in [13] that if the utility function
Um(pm) : (pm)m∈{1,...,M} is a standard function, then the
Nash equilibrium in this game will be unique. A function f(x)
is said to be a standard function if it satisfies the following
three properties [13]:

1) Positivity: f(x) > 0.
2) Monotonicity: If x ≥ x′, then f(x) ≥ f(x′).
3) Scalability: For all µ > 1, µf(x) ≥ f(µx).

The positivity is obviously satisfied by adjusting parameter
am.

Considering pm ≥ p′m, we have

Cm(pm) ≥ Cm(p′m) (26)

Using the propriety that am < 0, we can obtain that



pm|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

≤




p′m|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

(27)

According to (26) and (27), the monotonicity property is
proved ∀m ∈ {1, ..., M}.

For all µ > 1, it’s got that:

µCm(pm) = µ log2 (1 + SINRm)
= log2 (1 + SINRm)µ

≥ log2 (1 + µSINRm) = Cm(µpm) (28)

Since am < 0, we have also:



µpm|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

= µam




pm|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

≤ µ




pm|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

(29)

Finally, according to (28) and (29) the scalability property is
proved. Therefore, the proposed game G always possesses a
unique Nash equilibrium.

V. NUMERICAL RESULTS
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Fig. 2. Number of active SUs vs. number of SUs at rate = 0.3 bits/s/Hz, a
tradeoff variable am = −0.3 and an outage probability = 1% in the uplink
(the uplink distributed binary power allocation method and the proposed
method).

To go further with the analysis, we resort to realistic network
simulations. Specifically, we consider a CRN with one PU and
M SUs attempting to communicate during a transmission,
subject to mutual interference. A hexagonal cellular system
functioning at 1.8 GHz with a primary cell of radius R = 1000
meters and a primary protection area of radius Rp = 600 me-
ters is considered. Secondary transmitters may communicate
with their respective receivers of distances d < Rp from the
BS. Channel gains are based on the COST-231 path loss model
including log-normal shadowing with standard deviation of 10
dB, plus fast-fading assumed to be i.i.d. circularly symmetric
with distribution CN (0, 1) [14].
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Fig. 3. The uplink outage probability as function of the number of SUs for
a target outage probability = 1%, a tradeoff variable am = −0.3 and a rate =
0.3 bits/s/Hz (the uplink distributed binary power allocation method and the
proposed method).

In Fig. 2, the number of active SU links under the proposed
algorithm as a function of the total number of users, for a
target outage probability = 1%, tradeoff variable am = −0.3
and a rate = 0.3, is depicted. It can be seen from the figure
that increasing the number of SUs yields improvements in the
number of active users. Asymptotically, i.e., as the number
of SUs goes large, the number of active SUs keeps constant
due to the influence of interference impairments on the PU’s
QoS. We also compare the results obtained by the proposed
method to those obtained using the distributed binary power
allocation [7]. It can be observed that the proposed scheme
allows almost 5 additional active SUs more than the binary
power allocation scheme. As an example, we get 12 and 7
active SUs for 25 potential SUs for the proposed method and
the one presented in [7], respectively.

In order to validate our theoretical derivation, we also
compare the outage probability defined in (15) for both the
proposed method and the distributed binary power allocation
method. As an example we carry out simulations at PU rate
= 0.3 bits/s/Hz. First, it is clear from Fig. 3 that the outage
probability using both schemes are similar. We also remark
that, for the outage probability of interest, the number of
allowed SUs to transmit is equal to 18 SUs. Now, how about
the Nash equilibrium?

In general, a Nash equilibrium is a profile of strategies
such that each player’s strategy is a best response to the other
players’ strategy. Thus, no player (i.e. SU) has the incentive to
leave the Nash equilibrium, as a deviating action would imply
a reduction of its own utility function. Therefore, the Nash
equilibrium is a value for the game’s stability. Hence, it can
be seen as a lower limit for the QoS that can be guaranteed. As
depicted in Fig. 3, depending on QoS to the PU, a unique Nash
equilibrium is found. This is shown in the saturation state.

VI. CONCLUSION

In this paper, we explored the idea of combining game
theory with resource allocation in CRN to maximize the SU
capacity while maintaining a QoS to the PU. Our contribution
within this paper is to define a utility/pricing strategy that
meets the objective to maximize the SUs capacity, and the
protection for PUs by means of outage probability. Indeed,
we discussed the existence of the Nash equilibrium of the pro-
posed game, as well as its uniqueness. We demonstrated that
the proposed game admits one and only one Nash equilibrium.
Simulation results show that the proposed method exhibits a
significant number of cognitive users able to transmit while
minimizing interference to guarantee a QoS for the PU. We
also compare the results obtained by the proposed method to
those obtained using a binary power allocation method. The
reported results demonstrate the efficiency of the proposed
technique to maximize the SU rate while maintaining a QoS
to PUs.
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