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Abstract—In this paper, we assess the random coding error
exponents (EEs) corresponding to decode-and-forward (DF),
compress-and-forward (CF) and quantize-and-forward (QF)re-
laying strategies for a parallel relay network (PRN), consisting
of two sources, two relay stations (RSs) and single destination
where the RSs access to the destination via orthogonal, error-free,
limited-capacity backhaul links. Among these relaying strategies,
the DF and QF studied in this paper differ from their well-
known conventional versions in certain aspects. In the DF
relaying, each RS applies maximum-likelihood (ML) detection
and sends the message corresponding to the detected signal
along with a reliability information to the destination which
finalize the decision on the transmitted message. In QF relaying,
as opposed to the Gaussian codebook and vector quantization
(VQ) theoretical model used for deriving bounds, we consider
a simple and practical relaying strategy consisting of finite-
alphabet constellations (i.e., M-QAM) at the sources and symbol-
by-symbol uniform scalar quantizers (uSQs) at the RSs.

We also show, through numerical analysis, that the proposed
QF relaying can provide better EEs than the others when the
modulation constellation sizes selected by the sources match to
the network conditions, i.e., operating signal-to-noise ratio (SNR),
and the backhaul capacity is sufficient. This behavior is dueto
the structure inherent in the considered modulation alphabets,
which Gaussian signaling lacks.1

I. I NTRODUCTION

In this paper, we focus on a parallel relay network (PRN)
consisting of two sources and two relay stations (RSs) wherein
an error-free finite capacity backhaul connection between each
RS and the destination is assumed (see Fig. 1). This network
model with single source was first studied by Schein [1] where
he derived several outer bounds and achievable rates. The PRN
we consider in this paper can findapplications in cellular net-
works for UL communications, in long-range sensor networks,
and in rapidly deployable infrastructure networks for military
or civil applications.

In wireless networks consisting of RSs the system’s relia-
bility and achievable rate performance is highly dependenton
the processing capabilities of RSs. In the literate, regarding
relay based networks, most of the research has been conducted
on the achievable rate performance (see [2] and references

1This work is funded in part by the ARTIST 4G project, FP7-247223, and
the CONECT project, FP7-257616.
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Fig. 1. A 2 sources, 2 relays PRN setup with orthogonal error-free finite-
capacity backhaul links between the RSs and the destination, where Ck

in [bits/transmission] is the link capacity between thek-th RS and the
destination,k = 1, 2.

therein). However, in order to have thorough characterization
of a system’s performance, knowing the capacity (or achiev-
able rate) of the system is not sufficient alone. Hence, in this
paper we want to shed light on the reliability issues in PRN
setup and consider the random coding error exponent (EE)
[3], which is also defined as channel reliability function and
represents a decaying rate in the decoding error probability
as a function of codeword length, as our system performance
metric. Moreover, we investigate whether it is possible to have
good reliability performance by using simple and cheap RSs
with limited backhaul connections to the destination.

In particular, we assess the random coding EEs correspond-
ing to DF, CF and QF relaying strategies for the PRN setup.
Specifically, for the DF we assume Gaussian codebook at
the source and maximum-likelihood (ML) decoding at the
RSs where each passes its own decision and a corresponding
reliability function to the destination. For the CF, we assume
Gaussian codebook at the source and vector quantization (VQ)
at the RSs and ML decoding at the destination. For the QF,
it is assumed that each source codeword is selected from a
finite alphabet constellation, i.e., M-ary quadratic amplitude
modulation (M-QAM), and that each RS performs asimple



and practical quantization technique, i.e., symbol-by-symbol
uniform scalar quantization (uSQ), as opposed to the CF
relaying wherein the VQ is used. We note that in the high
resolution regime, with respect to the VQ, the performance
loss incurred by symbol-by-symbol uSQ becomes negligible
[4]. Moreover, through numerical analysis we show that the
EEs corresponding to the proposed QF relaying is better
than that of DF and CF relaying strategies when the right
constellation size is selected by each source and the backhaul
capacity is sufficient.

II. CHANNEL MODEL AND PRELIMINARIES

We study the PRN model shown in Fig. 1 where two
sources want to communicate with a destination with the
assistance of two RSs. We assume neither direct link between
the sources and the destination nor among the RSs. All the
channels are modeled as time-invariant, memoryless additive
white Gaussian noise (AWGN) channels with constant gain
(which may correspond to path-loss between each transmitter
and receiver) and ergodic phase fading. The RSs operate
in full-duplex (FD) mode. Each source encodes its message
wt ∈ [1, 2nRt ], whereRt is the transmission rate of thet-th
source, into the codewordxn

t (wt), t = 1, 2. All source channel
inputs are independent of each other.

The received signals at both RSs are given, in vector form,
as follows2 3

yR =

[

yR1

yR2

]

=

[

|h11|ejΦ11 |h12|ejΦ12

|h21|ejΦ21 |h22|ejΦ22

] [

x1

x2

]

+

[

z1

z2

]

= Hx + z

= h1x1 + h2x2 + z =

[

gT
1

gT
2

]

x + z (1)

where H = [h1 h2] = [g1 g2]
T , x = [x1 x2]

T and
z = [z1 z2]

T . Herexk is the transmitted signal from thek-th
source andyRk

is the received signal at thek-th RS, where
|hkt| ∈ R+, ∀k, t ∈ {1, 2}, is the fixed channel gain from
the t-th source to thek-th RS, zk ∼ CN (0, σ2) is circularly
symmetric complex AWGN at thek-th RS. TheΦkt, ∀{k, t}
denote the set of random phases induced by the channels
from the t-th source to thek-th RS. Note that we assume
ergodic phase fading where each ofΦkt andΦDk is a random
variable distributed uniformly over[−π; π]. Random phases
are perfectly known to the relevant receivers and unknown to
the transmitters. Each source has an average power constraint,
i.e.,E[|xt(wt)|2] = Ps, ∀wt ∈ [1, 2nRt ], t = 1, 2. Thek-th RS
transmitsxRk

based on the previously received signals (causal
encoding) [5].

For the access channel from the RSs to the destination,
we consider lossless orthogonal links with finite capacity be-
tween each RS and the destination. LetCk[bits/transmission],
k = 1, 2, be the link capacity between thek-th RS and the
destination. This assumption might correspond to a cellular

2Throughout the paper we drop the time index for convenience.
3In the paper,E[(.)] denotes the expectation operator,Im is the m × m

identity matrix.X ∼ CN (µ, σ2) means RVX follows circularly symmetric
complex Gaussian distribution with meanµ and varianceσ2.

telephony system where some of the base stations (acting as
RS) connect to a central control unit either via fiber-optic links
or via microwave links.

A. Random Coding Error Exponents for Multiple Access
Channels

The random coding error exponent (EE) [3] gives insights
about how to achieve a certain level of reliability in com-
munication at a rate below the channel capacity. The basic
and thorough EE analysis for single antenna point-to-point
communications is done by Gallager in [3]. Later on in [6],
Gallager also analyzed the EEs of multiple access channels
(MACs). The random coding EE for single-user multi-antenna
AWGN channel is derived in [7]. In this paper since we con-
sider multiple source PRN, we will follow the basic definitions
and procedures given in [6].

For a given MAC, letPe,sys(n, R1, R2) denote the smallest
average probability of system error of any length-n block-code
and ratesR1, R2 for source 1 and source 2, respectively. Then,
the random coding EE for a MAC is defined as

Esys(R1, R2)
∆
= lim

n→∞
− log2 Pe,sys(n, R1, R2)

n
. (2)

In [6], Gallager derived an upper bound on the average
probability of system error usingjoint ML decoding rule at
the receiver. Let(w1, w2) be the message pair sent from the
sources and(ŵ1, ŵ2) be the decoded message pair. Consider
an ensemble of(n, 2nR1 , 2nR2) codes where each codeword
is selected independently for a given joint input distribution
f(x1, x2) = f(x1)f(x2). Then, the probability of system error
can be written as

Pe,sys(n, R1, R2) = P1 + P2 + P3 (3)

where

P1
∆
= P (ŵ1 6= w1 ∩ ŵ2 = w2)

P2
∆
= P (ŵ1 = w1 ∩ ŵ2 6= w2)

P3
∆
= P (ŵ1 6= w1 ∩ ŵ2 6= w2). (4)

We have the following bounds onPi, for i = 1, 2, 3 [6]

Pi ≤ 2−n[−ρRi+E0i(ρ,f(x1,x2))] (5)

for all ρ, 0 ≤ ρ ≤ 1 whereE0i(ρ, f(x1, x2)), for i = 1, 2, 3,
are given in (6) and (7), respectively, withf(x1, x2) =
∏n

i=1 f(x1i)f(x2i) being the joint input distribution and
f(y|x1, x2) being the channel output distribution conditioned
on the inputs, andR3 = R1 + R2.

Then for an input distributionf(x1, x2) = f(x1)f(x2) we
can bound the probability of system error as follows

Pe,sys(n, R1, R2) = P1 + P2 + P3

≤ 2
−n

(

Er(R1, R2, f(x1, x2)) −
log2(3)

n

)

(8)

where

Er(R1, R2, f(x1, x2))

= min
1≤i≤3

max
0≤ρ≤1

[E0i(ρ, f(x1, x2)) − ρRi] . (9)



E0i(ρ, f(x1, x2)) = − log2

[

∫ ∞

−∞

∫ ∞

−∞
f(xj)

(
∫ ∞

−∞
f(xi)f(y|x1, x2)

1
1+ρ dxi

)1+ρ

dxjdy

]

, (i, j) = {(i, j) | i 6= j,∀i, j ∈ {1, 2}} (6)

E03(ρ, f(x1, x2)) = − log2

[

∫ ∞

−∞

(
∫ ∞

−∞

∫ ∞

−∞
f(x1)f(x2)f(y|x1, x2)

1
1+ρ dx1dx2

)1+ρ

dy

]

(7)

III. E RROR EXPONENTS FORDF RELAYING

For the DF, we assume a Gaussian codebook at the source
and ML decoding at the RSs where each passes its own deci-
sion and a correspondingreliability function to the destination.
We note that for the DF the destination is not required to have
channel side information (CSI).

In the following, we first briefly introduce the EE calcula-
tion corresponding to the DF relaying for single-source PRN
proposed in [8], and then proceed with the derivation of the
EEs for two-source PRN, where we make use of the results
of the single source case.

A. Single-source Case

In this section, we briefly explain the DF type relaying for
single-source PRN studied in [8] and give the corresponding
EE. Assume each RS applies ML detection and sends the
message corresponding to the detected signal along with a
reliability information (which is a scalar variable equal to
the logarithm of the Euclidean distance between the received
signal and the detected signal) to the destination on orthogonal
error- and cost-free limited capacity backhaul links. Moreover,
we assume that the backhaul link capacities are at least equal
to the source transmission rate,R. Hence, the backhaul links
do not create a bottleneck for system performance.

Upon receiving the detected signals and the reliability
information, the destination makes its decision by comparing
the reliability information: it decides on the codeword which
has the minimum reliability information (Euclidean distance).
Hence, if the codeword detected at one of the RS is wrong and
its corresponding reliability information is smaller, then the
ultimate detection will be wrong even if the other RS has made
a correct detection (but with greater reliability information).

With the above detection rule we showed in [8] that for
single source (transmitting with rateR [bit/transmission]), two
RSs PRN withsymmetric channel gains from the source to
the RSs, the average probability of error is upper-bounded as
follows [8]

Pe ≤ P 2
ML + 2PML 2−nT (Γ)

≤ 2
−n min

{

2Er(R), Er(R) + T (Γ) − 2

n

}

(10)

where

T (Γ) =
log2(e)

2
− log2(e)(1 + 2Γ)2

1 + (1 + 2Γ)4
(11)

with Γ = |h|2Ps

σ2 with |h| ∈ R+ being the channel coefficient
from the source to each RS.PML = exp{−nEr(R)} is the
standard ML error probability [3] at each RS (due to the

channel symmetry this expression is the same at each RS [8]).
From the definition of random coding EE [3], asn → ∞, the
corresponding EE is given by

EDF (R) = min {2Er(R), Er(R) + T (Γ)} (12)

which indicates that by the proposed DF relaying allowing
multiple RSs (here two) to participate in communications be-
tween the source and the destination always providesdiversity
gains (against noise) at all SNR ranges.

B. Multi-source Case

For two-source PRN case, in order to simplify the relay
processing, we assume that wireless medium is shared by
the sources in anorthogonal fashion, i.e., time-division (TD)
MAC, with α1n duration for source 1 andα2n duration for
source 2, whereα1+α2 = 1. During the access of each source,
both RSs perform the same steps as in the single-source PRN
case wherein Gaussian codebooks are used by each source.
For TD-MAC, we have the following probability of system
error

Pe,DF (n, R1, R2, α1, α2) = P (ŵ1 6= w1) + P (ŵ2 6= w2)

= Pe,DF,1(n, R1, α1) + Pe,DF,2(n, R2, α2)

≤ 2−α1nEDF,1(R1, α1) + 2−α2nEDF,2(R2, α2) (13)

and the corresponding EE

EDF (R1, R2)

∆
= lim

n→∞
max

α1+α2=1

− log2 Pe,DF (n, R1, R2, α1, α2)

n

= max
α1+α2=1

min {α1EDF,1(R1, α1), α2EDF,2(R2, α2)} (14)

whereα1 +α2 = 1, EDF,i(Ri, αi), i = 1, 2, will be specified.
We assume that thewi-th message,wi ∈ {1, . . . , 2αinRi}, is
encoded into the codewordxi(wi) of lengthαin, i = 1, 2.

The average power constraint, due to power control at the
transmitting nodes, at thei-th source isPs/αi. With symmetric
channel assumption from each source to the RSs and using
(10), the probability of error for thei-th source can be similarly
expressed as follows

Pe,DF,i(n, Ri, αi) ≤ P 2
ML,i + 2 PML,i 2−αinT (Γi(αi)) (15)

whereT (·) is defined in (11),Γi(αi) = |hi|
2Ps

αiσ2 , andPML,i =

2−αinEr,i(Ri, αi) being the standard ML error probability at
each RS. Hence, the corresponding EE, asn′

i = αin → ∞
for fixed αi > 0, can be easily expressed as

EDF,i(Ri, αi) = min {2 Er,i(Ri, αi), Er,i(Ri, αi) + T (Γi(αi))}
(16)



and the overall EEEDF (R1, R2) given in (14) can be calcu-
lated accordingly.

For symmetric channel gains from each source to the RSs,
i.e., α1 = α2 = 1/2 and Γ1(1/2) = Γ2(1/2) = Γ,
and assuming both users communicate with the same rate
R1 = R2 = R, then the EE becomes

EDF (R, R) = min

{

Er(R, 1/2),
Er(R, 1/2) + T (Γ)

2

}

. (17)

IV. ERROR EXPONENTS FORCF RELAYING

For CF relaying, we assume all the sources access the
wireless mediumsimultaneously, hence the system probability
of error can be upper bounded as in MAC defined in (3) with
modified channel matrices and noise assumptions.

The general input-output relation for the CF is given by
[

v1

v2

]

= yR + zq = h1x1 + h2x2 + z + zq

wherezq,k ∼ CN (0, Dk) for k = 1, 2. DefineW = diag{σ2+
D1, σ

2 + D2}.
Then, for an i.i.d. Gaussian input distribution withxi ∼

CN (0, Pi), we can bound the probability of system error
Pe,sys(n, R1, R2) given in (8) with the corresponding random
coding EEs given by

Er,CF (R1, R2) = min
1≤i≤3

max
0≤ρ≤1

[E0i(ρ) − ρRi] , (18)

with R3 = R1 + R2 and

E0i(ρ) = ρ log2 Ehi

∣

∣

∣

∣

I +
Ps

(1 + ρ)
W−1hih

H
i

∣

∣

∣

∣

, i = 1, 2,

E03(ρ) = ρ log2 EH

∣

∣

∣

∣

I +
Ps

(1 + ρ)
W−1HHH

∣

∣

∣

∣

. (19)

As in the process of achievable rate calculation [2], we have
the compression rate constraints as follows:

log2

(

σ2
vk

Dk

(1 − ζ2)

)

≤ Ck, k = 1, 2,

log2

(

σ2
v1

D1

σ2
v2

D2
(1 − ζ2)

)

≤ C1 + C2 (20)

whereσ2
vk

= (|hk1|2 + |hk2|2) Ps + σ2 + Dk, k = 1, 2, and
ζ ∈ [−1, 1] is the correlation factor betweenv1 andv2.

V. ERROR EXPONENTS FORQF RELAYING

As in CF relaying case assuming all the sources access the
wireless mediumsimultaneously, we will bound the system
probability of error defined in (3). Thei-th source transmits
(n, Ri), i = 1, 2, block code where each letter of each
codeword is independently selected with probability assign-
ment p(xi) and M-QAM constellation is used where2nRi

messages (alphabet size) are encoded over blocks of length
n. The received signals at the RSs are simply quantized by
using uSQ, where correlation information is discarded (no
compression is done). We assume that each symbolxi =
xR

i + jxI
i on the M-QAM constellation has equal probability

p(xi) = 1/M (p(xR
i ) = 1/

√
M, p(xI

i ) = 1/
√

M ) with
E[(xR

i )2] = E[(xI
i )

2] = Ps

2 andE[xR
i xI

k] = 0, ∀i, k ∈ {1, 2}.
The channel output at each RS can be decomposed into real

and imaginary parts as follows
[

yR
Rk

yI
Rk

]

=

[

ℜ{yRk
}

ℑ{yRk
}

]

=

[

ℜ{gT
k } −ℑ{gT

k }
ℑ{gT

k } ℜ{gT
k }

] [

ℜ{x}
ℑ{x}

]

+

[

ℜ{zk}
ℑ{zk}

]

=

[

g̃T
k,1

g̃T
k,2

] [

xR

xI

]

+

[

zR
k

zI
k

]

(21)

whereg̃T
k,i ∈ C1×4 for i = 1, 2, andxR = ℜ{x} = [xR

1 xR
2 ]T

and xI = ℑ{x} = [xI
1 xI

2]
T are the real and imaginary

parts of the source signal vector, respectively. We define
x = [xRT

xIT
]T . The noise components have zero mean and

covariance matrixE[zkzT
k ] = σ2

2 I2 wherezk = [zR
k zI

k]T .
The uSQ process at each RS follows the same steps as in

[4]. In the following, we letSa
k,la = (ua

k,la , ua
k,la+1] with a =

{R, I} whereua
k,la , la = 2, 3, . . . , La

k represents the transition
levels with ua

k,1 andua
k,La

k
+1 being the greatest lower bound

and the least upper bound of the received signalya
Rk

. LR
k

and LI
k denote the number of quantization outputs for real

and imaginary parts of the received signal at thek-th RS,
k = 1, 2. Then, for a given source input signal vectorx =
[x1, x2]

T , the probability that the quantizer output is in the
l = (lR, lI)-th quantizing interval, i.e.,V k = (V R

k , V I
k ) =

vk,l = (vR
k,lR

, vI
k,lI

), k = 1, 2, is given by4

Pr
[

V k = vk,l | x
]

= Pr
[

(V R
k , V I

k ) = (vR
k,lR , vI

k,lI ) | x
]

= Pr
[

yR
Rk

∈ SR
k,lR | x

]

Pr
[

yI
Rk

∈ SI
k,lI | x

]

=

[

Q

(

uR
k,lR

− g̃T
k,1x

σ/
√

2

)

− Q

(

uR
k,lR+1 − g̃T

k,1x

σ/
√

2

)]

×
[

Q

(

uI
k,lI

− g̃T
k,2x

σ/
√

2

)

− Q

(

uI
k,lI+1 − g̃T

k,2x

σ/
√

2

)]

(22)

for l = [1, 2, . . . , LR
k ] × [1, 2, . . . , LI

k].
The destination performs ML decoding on the observations

v1, v2, which are the representation points corresponding to
the received signals at each RS. Then, we have the following
EE for the QF relaying with uniform M-QAM at the sources
and uSQ at the RSs

Er,QF (R1, R2) = min
1≤i≤3

max
0≤ρ≤1

[E0i(ρ) − ρRi] (23)

with R3 = R1+R2 whereE0i(ρ), for all i = 1, 2, 3 is defined
as in the equations given in (24) and (25) wherep(vR

k |x1, x2)
andp(vI

k|x1, x2), for k = 1, 2, are given by (22). With these
settings (23) can be calculated.

VI. N UMERICAL RESULTS

For numerical results we consider two-source, two-relay
phase fading AWGN PRN with limited backhaul capacity. We

4Q(x) =
∫∞

x
1√
2π

e−
t2

2 dt is the standard tail function for Gaussian RVs



E0i(ρ) = − log2
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E03(ρ) = − log2




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1
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1
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[
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


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




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Fig. 2. Random coding EEs for 2-Source, 2-Relay PRN withPs

σ2 = P1

σ2 =
P2

σ2 = 0 [dB] and C = C1 = C2 = 4[bits/transmission].

assume the same capacity for backhaul links, i.e.,C = C1 =
C2. We take a sample channel matrix from sources to RSs as

H =
1√
2

[

1 exp{−jπ/3}
exp{−j2π/3} 1

]

. (26)

In Fig. 2 and Fig. 3, we plot the EEs given by (17), (18)
and (23) corresponding to DF, CF and QF (with 4-QAM
at the sources and uSQ at the RSs) relaying strategies with
respect to sum-rateR3 = R1+R2 [bits/transmission] for fixed
Ps

σ2 = {0, 10} [dB] whereR1 = R2 = R3/2. In Fig. 2, which
corresponds to a low SNR regime, we see that the proposed
simple and practical QF relaying has better EE than both DF
and CF over all operating sum-rates. However, from Fig. 3,
which corresponds to a high SNR regime, we see that at all
rates the proposed QF relaying performs the worse than CF
relaying strategy, which could be explained as follows: since
the backhaul rate is fixed whilst the SNR is increased the
proposed QF strategy cannot fully exploit the structure of the
modulation scheme used at the source. From this plot we can
also see that the achieved EE with the proposed DF relaying
is the worst. In the low-SNR regime, using the proposed QF
relaying, which is practical and less complex then the others,
provides better EEs by selecting a proper modulation size.

VII. C ONCLUSIONS ANDFUTURE DIRECTIONS

In this paper, we evaluated the random coding EEs corre-
sponding to DF, CF and QF relaying strategies for two-source
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and two-relay PRN with limited backhaul capacity. We showed
through simulations that it is possible to achieve better EEs by
using a simple and practical relaying strategy which exploit the
inherent structure in the transmitted codewords of the sources.

An interesting future work might be the case where the RSs
generate log-likelihood ratios for each source symbol, instead
of decoding, and send their quantized versions to the desti-
nation which then combines allsoft information and performs
final decoding. The question would be if using quantization on
received signal (CF relaying) or on soft information (partial
DF relaying) will give the better performance.
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