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Cooperative Markov Decision Processes:
Time Consistency, Greedy Players Satisfaction, and
Cooperation Maintenance

Konstantin Avrachenkov, Laura Cottatellucci, Lorenzo Maggi

Abstract

We deal with multi-agent Markov Decision Processes (MDRsyhich co-
operation among players is allowed. We find a cooperativefpaystribu-
tion procedure (MDP-CPDP) that distributes in the coursthefgame the
payoff that players would get in the long run static game. Wansunder
which conditions such a MDP-CPDP fulfills a time consistepcgperty,
contents greedy players, and strengthen the coalitionsbareess through-
out the game.

Index Terms

Cooperative Markov decision processes, stochastic ggpagsff distribu-
tion procedure, time consistency, greedy players, codiparanaintenance.
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1 Introduction

Repeated cooperative games constitute one of the most recent andimgeres
topics in game theory. They attempt to model real situations in whiclsdhse
game is repeated over time and players can cooperate and form coalitimunghthr
out the duration of the game. The papers by Oviedo (2000) and by KrdPécea,
and Peters (2001) are the two independent pioneering works in this field.

While the theory of competitive Markov decision processes (MDPs), -other
wisely called non-cooperative stochastic games, has been thorougtibdsthilar
and Vrieze 1996 for an extensive survey), to the best of the autkoostledge,
there is very little work in the literature on cooperative MDPs. Unlike classic
repeated games, there are sevdiff¢érentstage games that follow one another ac-
cording to a discrete-time Markov chain, whose transition probabilities deqen
the players’ actions in each stage game. Players can decide whether togjoin th
grand coalition or, throughout the game, forming coalitions. The payaffegia
by a coalition is, under the transferable utility (TU) assumption, shared aitsong
participants. Once a group of players has withdrawn from the graridicpait
cannot rejoin it later on. Petrosjan (2002), in his pioneering work,gseg@ a coo-
perative payoff distribution procedure (CPDP) in cooperative gamdisiite trees.

In this paper we deal with discount cooperative MDPs, in which the papbf
each stage are multiplied by a discount factor and summed up over time. Our game
model is in fact more general than the one by Petrosjan (2002), sinchowefar
cycles on the state space and we do not impose the finiteness of the game.horiz
We also point out that our model is different from the one proposed&gtetchin-
ski (2007), since we assume that the utility of the coalitions is transferatiléhan
probability transitions among the single stage games does depend on tha'player
actions in each stage.

In static cooperative game theory (e.g. Peleg and 8lteth2007), in which
only one stage game is played, the main challenge is to find a payoff shaoing pr
cedure among all players such that it is both optimum for the whole community of
players and it does not prompt any subset of players to withdraw frengridind
coalition. On the contrary, in our framework of cooperative MDPs, stheéhori-
zon of the game is not even finite, then it is legitimate to suppose that all players
demand to be rewarded at each stage, and not at the end of the wholeldeme
fore, the situation is more tricky than in the classic static setting, because @e nee
to find a stage-wise payoff distribution such that all the players are cowttnit
ateachstage of the game.

The paper is organized as follows. Secfibn 2 is a short survey onompecative
and cooperative multi-agent MDPs. Following the lines of Petrosjan’s wark
Section[B we propose a stationary stage-wise CPDP for cooperativaidied
MDPs (MDP-CPDP). In Section 4 we prove that our MDP-CPDP satisftest w



we call the “terminal fairness property”, i.e. the expected discountedayray-

off allocations belongs to a cooperative solution (i.e. Shapley Value,, @tcg

of the whole discounted game. In Sect[dn 5 we show that our MDP-CPDP ful-
fills the time consistency property, which is a crucial one in repeated ganay the
(e.g. Filar and Petrosjan 2000): it suggests that a CPDP should rekpeet-
minal fairness property in a subgame starting from any time step. In Sédtion 6
we show that, under some conditions, for all discount factors small énalgp

the greedy players having a myopic perspective of the game are satigfieoln
MDP-CPDP. In Sectionl 7 we deal perhaps with the most meaningful attribuge f
CPDP, which is thex-tuple step cooperation maintenance property. It claims that,
at each stage of the game, the long run reward that each group ofgéayercts to

get by withdrawing from the grand coalition afterstep should be less than what

it would get by sticking to the grand coalition forever. In some sense, if awon-
dition is fulfilled for all integersz’s, then no players are enticed to withdraw from
the grand coalition. We find that the single step cooperation maintenancetgrope
earliest introduced in a deterministic setting by Mazalov and Rettieva (2010¢, is
strongest one among alls. Furthermore, we give a necessary and sufficient con-
dition, inspired by the celebrated Bondareva-Shapley Theorem (Bevala963;
Shapley 1967), for our MDP-CPDP to satisfy thtuple step cooperation mainte-
nance property, for all integers

Some notation remarks. The ordering relatiens>, if referred to vectors,
are component-wise, as well as tlh@x andmin operators. The entry that lies in
the i-th row and in thej-th column of matrixA is written asA; ;. An equivalent
notation for then-by-m matrix A is [A; ;27 ;_,. Thei-th element of column
vectora is denoted by;. The expressioral(A) stands for the value (e.g. Filar

and Vrieze 1996) of the matriA.

2 Discounted Cooperative Markov Decision Processes

In a multi-agent Markov Decision Process (MDPWwith P > 1 players there
is a finite set of stateS = {s1, s2,..., sy}, and for each statethe set of actions
available to theé-th player is denoted by;(s),7 = 1,..., P,and|A;(s)| = m;(s).

To each(P + 1)-tuple (s,a,...,ap), with a; € A;(s), an immediate reward
ri(s,a1,...,ap) for playeri = 1,..., P and a transition probability distribution
p(.|s,a1,...,ap) on the state space are assigned.

LetC = {1,..., P} be the grand coalition. We assume that any subset of
playersA C C can withdraw from the grand coalition and form a coalition at any
time stage of the game, and all the players are compelled to play throughout the
whole duration of the game. Moreover, once a coalition is formed, it canngelo
rejoin the grand coalition in the future.

Let Ax(s) = xienAi(s) be the set of actions available to coalitiénn states,
forall s € S. A stationary strategfj, for the coalitionA determines the probability



fA (als) that in states the coalitionA chooses the actione A, (s). We define with
F, the set of stationary strategies for coalitianC C. If for every s € S there
existsa(s) such thatfy (a(s)|s) = 1, then the stationary stratedy is called pure
(or deterministic).

Let us define the transition probability distribution on the state spacgven the
strategies) € Fy, fon € Fep, as

p(s|s, fa fon) = > > p(s|s,an, agp) falaals) fom (aguls),
ap€AN(S) acnE€EAcA(S)

for all s,s" € S. Analogously, letr;(s, fa,fc) be the expected instantaneous
reward for playet in states.

Let3 € [0; 1) be the discount factor and et (s, fa, fon ) = D e (s, fa, fon)
be the instantaneous reward gained by the coalitionstates. We define@(f ) (fa, fen)
as theN-by-1 vector whosé-th component equals the expectediscounted long
run reward for coalitiom\ C C, when the initial state of the gamess, i.e.

&) (tr, fe) = > BPH(En, fom) Ta(fa, fom), 1)
=0

whereP (f, /4 ) is theN-by-N transition probability matrix andy (fa, /s ) is @
N-by-1 vector, whosé-th component igx (s, fa, fo/n)-
We denote b)féﬁ)* the global optimum strategy for the grand coalition, i.e.
fc(ﬁ)* = argmax @éﬁ)(fc), V3 e[0;1) 2
fceFe

where the argmax operator is component-wise.

LetI's be the gamé" starting in states € S. For anyg € [0; 1) and for every
states, we assign to each coalitioh a utility v(®(T';, A), computed as thg-
discounted value of the two player zero sum game of coaliti@yainsiC/A (von
Neumann and Morgenstern 1944):

\% S5 max min S, IA,
( ) £AEF 5 fon€F s A ( A C/A)

. (8)
= P fa, £, VACC 3
fc/iréll?c/A ff\né%%\ A (8, b C/A)’ B /{(Z)}, ( )

i.e., the maximum total reward that coalitidncan ensure for itself. It is widely
accepted to assign to the empty coalition the null utility, i.e.

viO(Ty, {0}) = 0.

Throughtout the paper, if not specified, we always consider nonecugatijtions.
In the same way as il(3), we define, for AliC C/{0},

v(® (Z biFSi,A> = max _min Zbiq)g\ﬁ)(si,fA,fC/A), (4)

faA€F A fon€Fcin ;



where, as before, the maxmin expression can be interchanged with minmgax (e
Filar and Vrieze 1996).

Under the transferable utility (TU) condition, the coalition values can beeshiar
any manner among the members of the coalition.

Definition 1 (Terminal cooperative solutionfSet/ € [0;1). The terminal coope-
rative solutionT(?)(I',) is a set-valued function which represents a static coope-
rative solution (e.g. Shapley value, Core, etc.) of the whole game startirigten s
s, i.e.

TO(r,) = T? (T, vy, Ahace) : R RP, vses.

Analogously, we define(® (37, b;T;,) as the terminal cooperative solution of
the cooperative game with coalition valusg®) (3", b;T's,, A) }ace, defined in[(#).

The terminal cooperative solutidR(®) can represent any of the classical coo-
perative solutions. For exampl&, = Co represents the Core of thiediscounted
gamel’;, that is the set, eventually empty, of the ré&atuplesx satisfying

Yicexi = v (T4, C) (5)
D oicaXi > v(ﬁ)(Fs,A), VYA CC.

The strict CoresCo(ﬂ)(FS) is defined in[(5), but with the strict inequality signs.
The terminal cooperative solutiGh = Sh(®) (T's) stands for the Shapley value of
the B-discounted gamg,, i.e. foralli = 1,..., P,

| _ —1)!
Ace/{i} '

Let us give a useful definition.
Definition 2. LetBy, ..., B, ben sets. ThedD, B; = {D>_;, bi : b; € B;}.
We now state the following results, used in the following sections.

Proposition 1. Set3 € [0;1). AssumaCo® (I',) to be nonempty for al € S.
Then@®Y |, b;CoP(I,,) € Co® (N ,T,), whereb; > 0, Vi.



Proof. Let us compute/(®) (S 5,1, A) for all possible coalitiond.. By state-
wise optimality of optimal strategies in competitive MDPs,

N
I6) (Z biFSi,A> = max manb <I>A (56, fa, fm)
i=1

A fon im1
N
= max Y b; min <I>( )(si,fA,fC/A)
A fein
=1
N

- b; max min (I>( )(Si,fA,fC/A)
o fom

= Z biv(ﬁ) (st A) (6)

Letx;(s;),...,xp(s;) be an allocation belonging to the Cat® () (T',,). Since

N

SN bixp(si) va (Ty,,C) = vP (Zbrsq,c>

=1 keC

N

DD bixe(si) = va (Ty,,A) = vP (ZbFSZ,A> VA CC,
i=1 k€A

then any point belonging t6p. , b;Co®(I';,) is also inCo® (SN, biT's,).
Hence, the thesis is proved. O

Proposition 2. For all 8 € [0;1), YN 5;Sh(T,,) = ShW (N bTy,),
whereb; > 0, V1.

Proof. The proof follows straightforward from equatidd (6) and from the liitgar
property of the Shapley value. O

3 Cooperative Payoff Distribution Procedure

In cooperative MDPs, different stage games follow one another in time; the
game may have an infinite length, or the players may not know when the game
reaches the end. This is the casdrahsientgames, for which

Z Zpt(s’|8,fc) < oo, VseS, foeFe. (7)
t=0 s'eS

wherep.(s'|s) = p(S: = §'|Sy = s) is the probability of being in stat€ at the
t-th step, knowing that the starting state wasTherefore, it is reasonable to as-
sume that all the players demand to be rewarded at each stage of the gdmet a



only at its conclusion. With respect to static cooperative game theoryditioaal
complication lies in satisfying all the players at each time stage of the game, since
coalitions are allowed to form throughout the game unfolding.

According to classic cooperative game theory, playgets the terminal coopera-
tive squtionTZ(ﬂ) (T's) at the end of thes-discounted gamé. Thegoal here is

to find a way to stage-wisely share among the participants the value of thet gran
coalition.

Remark All the results presented in the current section, as well as the ones-in Sec
tions[4[B[7, can be easily extended to undiscounted transient MDPsesdor
which equation[{]7) holds an@ = 1. Note in fact that, mathematically, introducing

a discount factop € [0; 1) is equivalent to multiplying each transition probability
by 3, which automatically ensures the transient condition (7).

In his pioneering work, Petrosjan (2002) introduced a cooperatiyefpdis-
tribution procedure (CPDP) for games on finite trees. Following his lines,isn th
section we propose a CPDP for cooperative MDPs witliscounted criterion,
with g € [0; 1) fixed a priori.

Definition 3 (CPDP) The cooperative payoff distribution procedure (CPRP) =

[g@, . ,g§§>] is a recursive function that, for each time step 0, associates a

real P-tupleg(® (h,) to the past historh, = [Sy, g® (hy), S, ..., g@ (h,_1), Si]
of states succession and stage-wise allocations up tottime

The following are two alternative interpretations gﬁ? ):

i) ﬁtggﬂ)(ht) is the payoff that playei € C gets at the stageof the game,
whenhy; is the history of the process;

i) ggﬁ)(ht) is the payoff that playergets at time when the new transition pro-
babilitiesp’ are reduced by a factdt, i.e. p/(s'|s, fc(ﬂ)*) = Bp(s']s, fc(ﬁ)*).
Hence,l — 3 is the stopping probability in each state.

Let us now define stationary CPDPs.

Definition 4 (Stationarity) Set3 € [0;1). ACPDPg(?) is stationary ifig(®) (h;) =
g?) (S, =s) =g (s), forall t > 0 andh.

Hence, a stationary CPDE? : § — R” is a stage-wise payoff distribution
law that does not depend on the whole history of the process up td tioo¢ only
on the state at time

We finally propose a CPDP for cooperative MDPs (MDP-CPDP).



Definition 5 (MDP-CPDP) Set3 € [0;1). Pick the realP-tupIeT(ﬂ)(Fs) €
T®)\(T,), Vs € S. Our MDPs cooperative payoff distribution procedure (MDP-
CPDP) is the functiony(®)(s) between the Euclidean spacBs— RY defined
by

V) = 3 [ = p s 7] T, Wses @

s'es

In the following sections we will illustrate some appealing properties of such a
CPDP.

4 Terminal Fairness

In this section, we let the terminal cooperative soluidbe any of the classic
cooperative solution (Core, Shapley value, Nucleolus, etc.). We nopope two
desirable properties for a CPDP and we prove that the MDP-CPDP defir(8)
fulfills both of them.

The first fundamental feasibility property of a stationary CPDP consistsarirgy
among the players the total payoff attained by the grand coalition at eaah stag
of the game. In order to ensure always such a property, we also egtair the
instantaneous rewards are deterministic.

Property 1 (Stage-wise efficiency)Sets € [0;1). The CPDPg(?) is stage-wise

efficient iffy_, . gV (s) = e n-(s,fc(ﬁ)*) forall s € S, Wherefc(ﬁ)* is a pure

stationary strategy.

Theorem 1. The MDP-CPDP~(%) (), defined in[(B), fulfills the stage-wise effi-
ciency property1L, for als € [0;1).

Proof. The global optimum strategséﬂ)* is pure, since the optimization problem
(@) that it solves can be formulated as a Markov Decision Process (Rare994).
Hence,r;(s, féﬂ)*) is deterministic as a function &f for all: € C.

Let us sum[(B) over all possibies C, for all s € S:

Mr) =34 s) +8 3 plsls £ WO (L)

ieC s'es

Since the following is also valid for all € S from the definition ofv(®):

V(ﬂ)(FS) Zrz (s fC N+ 3 Z (8|s, fc (FS/),

1eC s'eS

then,> ;e 717 (s) = ee mi(s, £577), surely. O

In order to guarantee a continuity between static cooperative game thebry a
dynamic payoff allocation, we require the expected discounted sum ofape-s
wise allocations to be equal to the terminal cooperative solution of the game.

7



Property 2 (Terminal fairness) Set3 < [0;1). The CPDPg(® is said to be
terminal fair iff the terminal cooperative solution is stage-wisely distributed én th

course of the game, i.€7| 3~ '8P (hy)|Sp = s| € TO)(L), forall s € S.

Theorem 2. The MDP-CPDPy (%) (s) e R”, defined in[(B) is the unique stationary
CPDP that satisfies the terminal fairness propéity 2, fora [0;1).

Proof. We know from Filar and Vrieze (1996) that, for alE C,

E[Y 20 897 (S|S0 = s1] P (s1)

E[Y 50897 (S)1S0 = sn]| 20 P (sn)

If we substitute[(B) in the equation above, we find ﬂy,%ﬁ) defined in[(8) satisfies
the relation:

B[ 8y D(8)18 = 5| =T7(r,), vse s, iec.
t>0

Since the matri%y_, ., 6'P(f £17%) = (1 - gP(£}"")) 1 is invertible, then such
~(?) is also unique. O

It is straightforward to verify that the MDP-CPD#®) defined in [8) also
fulfills a terminal efficiencyroperty, i.e.

ZE[Z B0 (8180 = s)| = v (T,,0),  VseS.

ieC t>0

5 Time Consistency

Time consistency is a well known concept in dynamic cooperative theday (F
and Petrosjan 2000 and references therein). It captures the ideaeilstge-wise
allocation must respect the terminal fairness prodédrty 2 even from a taténg
time of the game, for any possible trajectory of the game up to that time. In other
words, if players renegotiate the agreement on CPDP at any intermediatédpne s
assuming that cooperation has prevailed from initial date until that instamt, the
the payoff distribution procedure would remain the same. This propertyean
formalized as follows.

Property 3 (Time consistency)Sets € [0;1). The CPDPg(® in (@) is said to
be time consistent iff, for att > 1 and for all possible allocation/state histories
h,,_; up totimen—1,

Zﬂf )(Si,hy1)

hn_ll e g1 (st’wﬂ_l:a fém*m) . (9)

s'eS

wheres is the latest state of histody,, ;.

8



Now we are ready to state the main result of this section.

Theorem 3. The stationary MDP-CPDR/(%) satisfies the time consistency prop-
erty[3 for all 5 € [0;1), whereT represents the Shapley Value, or the Core if we
suppose tha€o?)(I,) is nonempty for any € S.

Proof. Sincey(® is stationary, we can rewrite](9) as

Z By (S, )| S eT® <Z p(s'J3, féﬁ)*)l“sl> . (10)
s'eS
Let us rewrite now equatloE](B), foralle S, as

T = 4y P(s) + 8 3 p(s')s, 85TV (1), (11)

s'esS

n—-1=S5

wherey(s) = [11(s),- ...vp(s)]T andT?(I,) € TO)(T,). Thanks tol[IL), we
can write

E Y849 (Siyn)

t=0

= > p(e AT ),

s'eS

1=S

It is implicit that any player, after being rewarded wiy?) (3) in states at step
n — 1, can withdraw from the grand coalition only in the following time step
Then, also the transition probabilities from st&tare invariant with respect to
a change of strategy. Therefore, we can exploit Propodifion 1 to claitnitha
T = Co, then

E Z ﬁt’Y(ﬁ) (St+n>

t=0
Thanks to Propositidn 2 we can state thafl'is Sh, then

Zﬁt St+n n—1 :5] = Sh(ﬁ) (Z p(8/|§7 féﬁ)*)rs’>

s'eS
So, [10) is verified, and the thesis is proved. O

Spn_1=73

e Col” <Z p(s'[3, féﬁ)*)f‘s) :

s'eS

6 Greedy Players Satisfaction

We now consider the presence of greedy players, i.e. players hawiyg@ic
perspective of the game and who only look to get the highest reward irinjie s
stage game. We try to find conditions under which greedy players areexh@sfi
well.

Let 25 be the single stage game in statdor anys € S. The intuition here is to
let the discount factos tend to zero and desigyf® (s) such that it lies itCo[Q].
For this purpose, in the current section we consiﬂ& Sh.

The new property that we are seeking in this section can be summarizdtbas fo

9



Property 4 (Greedy players satisfactianThere exist$ € (0; 1) such that, for all

B €0,0), 7% (s) € Col[Q], forall s € S.

Lemma 1. There exists a pure stratefiy € Fc and3* > 0 such thaf is optimal

for all 5 € [0; 5%).

Proof. The global optimization problem is a Markov Decision Process (MDP) hav-

ing @éﬂ ) as discounted reward. Take a strictly decreasing sequghgesuch that

limg_.o B = 0. Since both the actions and the states have a finite cardinality, then
there exists a pure strateffy and an infinite subsequence{gf; }, namely{s,, },

with ng, < ng41 Vk, such that}; is optimal for all the discount factofss,,, }. Fix

a pure strategy: € F¢. Then

yBu) (s, £0) = B (s, £2) — BV (s.8) > 0, VkeN. (12)

It is easy to see th@t(ﬂ), with 3 € (0;1), is a continuous rational function. Then,
either it is identically zero for alp € (0;1) or y® = 0 in a finite number of
points in the interval0; 1). Hence, for[(1R), there exist$'(s, fz) > 0 such that
y B (s,fe) > 0, forall 8 € (0; B*(s, fc)). TakeB* = ming g, B*(s, fe) > 0.
Since'i(cﬁ) (s,£5) is also continuous i¥ = 0 from the right, therf}; is also optimal
for 5 = 0. The thesis is proved. O

Define now©, as the affine space:

O : {XERP: in:Zri(s,fé)}, (13)

ieC ieC
wheref; is the global optimal strategy for all discount factors sufficiently close to
0.

Corollary 1. For anys € S, 4% (s) belongs to the affine spad®,, for all 3
sufficiently close to 0.

Proof. The proof follows straightforward from Corollafy 1 and from Lemma 1.
O

Here we present a useful result.
Lemma 2. LetT = Sh. Then limg o v\? (s) = Sh®(s) = Sh(Q,).
Proof. Recall the expressiofl(8) ef?), that we rewrite as
YO () = 3 [0 = B(s')s, 8] SHO(Ty), vs € 8.
s'eS

It is sufficient to prove thatimg o Sh(®)(T',) = Sh(®(Ty), Vs € S. Since each
component of the vect@h () (T, ) is a linear combination of the discounted values
{vg(s, A)}ace, then we only need to show that

%%V(B)(FS,A) =vO(,,A), Vse S, VA CC.

10



First of all we recall the relation (Filar and Vrieze 1996)

[ val(B) — val(C)| < max|B; ; — C| (14)
%)

whereB, C are matrices with the same size. We know from (Filar and Vrieze
1996) that

V(ﬁ)(FS)A) = val <[Zri(87aAvaC/A) +...

IS

ma(s);me/n(s)
+5 Zp(sl|57 anp, aC/A) V(IB) (FS” A)i| i - ) ) (15)

s'eS aA:LaC/A:l

whereay € Ax(s) andagy € Ag(s). Thus, from [(IH.I5) we can say that, for
allA CC,

v (T, A) — vO(T, A)] < max

ap,ac/a

B3 plsls, an, agn) v (g, )|
s'eS

p
< _=
<13 M
whereM = max; ay a0 |74 (S, an, acn)|- Fixe > 0. Setd = ¢/(M +¢). Then
for all 8 € [0;6), we havev®(T'y, A) — vIO(T,, A)| < e. Hencey @ (T, A) is
right continuous i at@ =0foralls € S, A CC. O

Let us formulate an additional condition, which holds only in the currertiaec

Condition 1 (Stage-wise strict convexity)The single stage game€$),}.cs are
strictly convex, i.ev(Qs, A1 U Ag) + v(Qs, A1 N A2) > v(Qs, A1) + v(Qs, A2),
Vse S, VA, Ay CC.

We know from Shapley (1971) that, if conditibh 1 holds, then the Cofe,aé
(P — 1)-dimensional for any € S, i.e. the affine hull ofCo(£2;) coincides with
O in (13), for anys € S. Note that, in general, the affine hull Gfo(2,) could
be a strict subset @,.

Corollary 2. Suppose that the stage-wise strict convexity condifion 1 holds. Then

(i) the Shapley values @i, lie in the relative interiors ofCo((2,), for any
s€ S,

(17) theinterior ofCo((2;) relative to®, coincides with the strict CoreCo(€2s),
foranys € S.

Proof. For the proof of(i), see Shapley (1971). Now we profig. Fix a generic
s € S. Iffora coalitionA C C, >,y x; = v(Qs, A), then take(k, j) such that

j €A k¢A. Foralla € R, the vectorx*)) = x + a[e(¥) — e()] does not lie

11



in Co(,), wheree®) € R” is 1 in itsi-th component and 0 elsewhere. Hence,
does not belong to the relative interior@b(€2;).

Conversely, if a vectok € sCo({s), then it is straightforward to see that it also
belongs to the relative interior @o(£;). O

Theorem 4. Suppose that the stage-wise strict convexity condifion 1 holds. Con-
siderT = Sh. Then, the greedy players satisfaction prop€ity 4 is verified.

Proof. Take3* > 0, such that; is global optimum for alj3 € [0, 3*). Fixs € S.
We know from Corollary R tha®h(€,) lies in the relative interior o€o(£2,). The
affine hull of Co(2) coincides with the hyperplart, for condition 1. Moreover,
from Corollary[l we know that, for al € .S, fy(ﬁ)(s) belongs to the affine space
O for all g € [0,5*). Hence, for Lemmal2 we can say that for alt> 0 there
existsés € (0, 5*) such that

V3 € [0;9s), 7’6(5) € [B(Ss N O] € Co( ),

where Bs, is the ball belonging t&R” having radius ob,. Taked = mingcg .
The thesis is proved. O

Hence, under conditidd 1, for all € [0; ), all the greedy players are content
with the stage-wise allocation as well.

It is now interesting to investigate about the loss incurred in the long run ggme b
a greedy coalition of players which withdraws from the grand coalition in gesta
of the game.

7 Cooperation Maintenance

The (single step) cooperation maintenance property was first introduced
Mazalov and Rettieva (2010), who employed it in a deterministic fish war setting.
Such a property helps to preserve the cooperation agreement thubtighgame,
since the long run payoff that each coalition expects to get by deviating in the
next stage of the game is not smaller than the payoff that the coalition redsjive
deviating in the current stage. We now adapt it to our cooperative MDRImBdr
simplicity, we restrict the following definitions to stationary CPDPs.

Property 5 (First step cooperation maintenanc&ets € [0;1). The stationary
CPDPg® satisfies, for any initial state € S and for each coalitiom\ c C,

> gl (s) + pv? (Z p(s']s. fc(ﬁ)*)rsu/\> > v (T, A).
i€A s'es

In other words, property]5 claims that each coalition is always incentitated
postpone the moment in which it will withdraw from the grand coalition, under the
condition that, once a coalitioh C C is formed, it can no longer rejoin the grand
coalition in the future. By induction, we can say that the cooperation maintenan
property enforces the grand coalition agreement throughout the waole.g
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7.1 n-tuple step cooperation maintenance

We now generalize propeffty 5, by considering the dilemma faced by a coalition
which decides whether deviating in the current stage or aftéeps. Hence, let us
then define thex-tuple step cooperation maintenance property, with 1.

Property 6 (n-tuple step cooperation maintenanc8gts € [0; 1). Let the integer
n > 1. The stationary CPDRg(?) satisfies the:-tuple step cooperation mainte-
nance property iff, for any initial state € .S and for each coalition\ C C,

n—1
S 85, £ S gl (s) 45O <Z ONCALR s A) > vO(Ty, A).
t=0

€A s'eS

LetP(®) = p®) (fc(ﬂ)*) be the transition probability matrix associated to the global
optimal stationary strategséﬁ)*, whose(i, j) element is(s;|s;, féﬁ)*).

We now find a necessary and sufficient condition on the coalition valtféso
ensure the existence of our MDP-CPB), defined in[(8), satisfying the-tuple
step cooperation maintenance property, forany 1.

Theorem 5. Fix an integern > 1, 8 € [0;1). The set of stationary CPDPg?)
satisfying then-tuple step cooperation maintenance propéity 6 is nonempty if and
only if the vectors

VB (A) = [I _ [5P(ﬁ)}”} v (), ACC

are component-wisely balanced, i.e. for every functign 2 /{0} — [0; 1] such
that:

VieC: Zas(A):l,
ACC:
A>i

the following condition holds:

S <¥P(©e),  VEe LN,
ACC

wherev\”™ (A) is thek-th component of (%) (A).

Proof. Recall the expression efl®) in equation[(B), that can be rewritten as:

+8) _ [I _ 5P(6)} T, viec (16)

wherey!” = [y (s1).. 4P (5T, T = Ty, T (0] €
T®)(T,) for each states € S. By exploiting twice the well known formula for
matrix geometric series:

i
L

BP0 = [1- P [1- [8P@]"]

il

13



we can reformulate properity 6 as

{[I_[ﬁpm Sia T 2 [1-[fPOT" VO, vace

Yiee T = v(0)
wherev(® (A) = [vO(I,,, A)...v®)(T,,, A)]T and the second relation in{17)

comes from the classic efficiency property of a cooperative solutionceSime
matrix (I — [3P(?)]") is invertible, then we can equivalently rewrite(17) as

~(Bn)
Siea i = vOMI(A), VACC
~(5.m) (18)
Yiee T =vPm(C)
where (Bin)
T, = [1_ [gp(ﬁ)}"} T

Since the relations in the systems of inequalities i (18) are component-wise, fo
the Bondareva-Shapley Theorem (Bondareva 1963; Shapley 19&hesis is
proved. O]

The reader should note that, in the limit for— oo, the result of Theoreml 5
coincides with the Bondareva-Shapley Theorem for static cooperaines

We now state an important and intuitive result which further reinforces the
importance of the single step cooperation maintenance property.

Theorem 6. Sets € [0;1). If the MDP-CPDP~(?) satisfies the single step co-
operation maintenance property 5, then it satisfies theiple step cooperation
maintenance properfy 6, for all > 1.

Proof. Let~(?) be defined in[{T6), wher®"” satisfies the single step cooperation
maintenance property 5, i.e., from {17),

{ﬂP@ ST VO] 2 S T —vOw), vace o

T T = v ()

By iteratively left multiplying by the nonnegative matris®(®) both sides of the
first relation in [19), for each coalitioh C C, we obtain

ZT

1EA

STV (A) < pP?

LIS

2 ZT@)_

€A

Hence, the thesis is proved. O
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7.2 Core selection criterion

In the following we prove that the single step cooperation maintenancerpyope
also implies that the discounted sum of allocations for each player, wisghe
initial state, belongs to the Core of the gaihg

Corollary 3. Setg € [0;1). If a MDP-CPDP~(?) satisfies the single step coop-
eration maintenance property 5, then

E | 84 (8)IS = 5| € Co(I,), Vses. (20)

>0

Proof. Let us definey(®) as in [I6). We reformulaté(20) as

T < )
{ZzeATz <v (A)v VA C C> (21)

Sincey(?) satisfies properiyl5, the {17) is verified, with= 1. By left multiplying
each set of inequalties in{117) by the nonnegative méirix 3P(%))~1, we obtain
the system of inequalities i (R1). O

In this section we showed how appealing the single step cooperation mainte-
nance property is. For Theordm 6, if our MDP-CPB) fulfills it, then each
coalition always prefers to withdraw from the grand coalition in the fututieeo
than at the current stage.

In the case we consider the Core as the terminal cooperative solltica (

Co), Corollary[3 suggests that the point of the C@(@ used to compute the
MDP-CPDP~(#) in equation((B) should be picked such tAEf’ also satisfies the

single step cooperation maintenance property. In this sense, préperpisoia
Core selectioreriterion.

7.2.1 Counterexample for the converse of Corollarj/|3

It is natural to ask whether the converse of Corolldry 3 is true. We wilvsho
in the following example that it does not hold in general, i.e. if a MDP-CRIOP
satisfies[(2I1), then not necessarily the single step cooperation mairggorape
erty[3 holds.

Let us consider a cooperative MDP with only two playeps=€ 2), four states
(N = 4) and with perfect information, i.e. in each state at most one player has more
than one action available. Player 1 controls stétess,), and the remaining states
(ss3, s4) are controlled by player 2. Let the discount fagtor 0.8. The immediate
rewards for each player and the transition probabilities for each state/aaio
are shown in Tablel 1.
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(s,a) |1 | ro | p(sils,a) | p(sals,a) | p(ss|s,a) | p(sals,a)
(sl,al) 1 3 0.1 0.4 0.1 0.4
Guas) | 2 1| 04 01 01 03
o1 | Gras) [ 10 04 0.2 0.4 01
[ (mas) | 2] 1] 01 0 0.4 0.4
(soa3) | 3| 1| 02 0.2 0.2 05
(sa06) | 4 | 3| 02 0 0.2 03
Gaan) | 51 1| 03 06 0.4 01
(Sg,ag) 1 3 0.3 04 0.2 0
o2 | (aa0) (26 03 03 0.1 0
. (S4,CL10) 0 1 0.5 0 0.1 0.1
Goa) | 21 2] o1 03 05 0.2
Gia) | 310 01 05 03 06

Table 1: Immediate rewards and transition probabilities for eaaly@l, state, and strategy.

In this case, the state-wise value vectors for all the possible coalitigng2}
andC = {1, 2}, rounded off to the second decimal, are

8.73 9.57 33.08
(0.8) ~ 10.03 (0.8) ~ 8.65 (0.8) ~ 30.78
VOO ~ [ YO ~ | rael s YO L2 R [y
7.16 11.23 30.83
In order to contradict the converse of Corollaty 3, it is sufficient to fingpecific
long run allocatior™® such that
[TSOIS) (Sk) Tgo.g) (Sk)] € CO(FSk)v k= 1,2,3,4, (22)

but for which the4-by-1 MDP-CPDP:

B _ G

does not respect the single step cooperation maintenance properyrierirstial

states. In other words, we look fo(T§0'8),T(20'8)) such that

T > vO8)({1})

Ty > v08)({2}) (23)

T L T — 08)(11,2))

and such that there exists at least one playerd an integek € [1;4] such that

T (k) < 509 (i)
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where

%go.s) _ [I—BP(B)} (0 8)

VOI({i}) = [1- sPO| VOO (i} =12 (24)

Since the values are component-wisely superadditive by constructiam,thbe
CoreCo(T') for the two-player case always exists, for ale S. Hence, there

always exist(Tgo'B),Téo'S)) € R? satisfying [28). Let us pick:

07 0 0 0]

T =vO09y + |0 %0 O ol YOV 2) - vOI (1)) + v ((2))]
L0 0 1
03 0 0]

TV =veIan + | 0 00 O o] [P0 - 0013 + VOO ({2))]
0 0 0 0

Substituting the values of(-8), we obtain

T ~ [19.07 14.87 10.44 19.60]"
T ~ [14.01 15.91 23.32 11.23]"

. =~(08) " )
By computingT  andv(©®) we find that:

T (2) ~ 202 < 7 09 ([1}) ~ 3.65
~(0.8) —(0.8)
T, (3)~-075<vY({1})~
T; 8)(1) 0.48 < v\"¥({2}) ~
; )(4) ~0.90 < V¥ ({2}) ~ 3.00

Therefore, the converse of Corollardy 3 is not true. On the other hieisdnterest-
ing to observe that in this example, by randomly generating ve(f]b(fsg) T(0 8))
and fulfilling the relation[(2R), in about th€9.45% of the trials the converse of

Corollary(3 was verified.

7.3 Strictly convex single stage games

In the spirit of Sectionl6, we show that conditidn 1 on the single stage games
ensures the MDP-CPDR(?) to satisfy property]5 for all discount factors small
enough.
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Theorem 7. Suppose that the strict convexity condifidon 1 on the single stage games
{Qs}ses is valid. ConsiderT' = Sh. Then the single step cooperation mainte-
nance propert{/]5 is valid for alf close enough to 0.

Proof. Thanks to the linearity property of coalition values (dée (6)) we can-refor
mulate propertj/l5 as

IRKOEDY [5 — Bp(s']s, féﬁ)*)} v, A),  VACC, s€S.
1€EA s'eS
From (8), considerin@ = Sh,

55006 = 5 [~ el 8] S

€A s'es €A

By hypothesis, for alk € S the Shapley valuh(9,) = Sh(®)(T',) belongs to the
strict CoresCo(ﬁ)(Qs) for all g sufficiently close td). Hence, by right continuity
of the Shapley value and of coalition valuesinr= 0 (see proof of Lemm@al2), we
conclude that, for alB sufficiently close t®,

Z [ s,8" T ﬁp |‘9 f* } [Z Sh(ﬁ) V(ﬁ)(rs’aA)

s'eS €A

>0,

wheref; is the optimal strategy for grand coalition for @l sufficiently small.
Hence, the thesis is proved. O
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