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Cooperative Markov Decision Processes:
Time Consistency, Greedy Players Satisfaction, and

Cooperation Maintenance

Konstantin Avrachenkov, Laura Cottatellucci, Lorenzo Maggi

Abstract

We deal with multi-agent Markov Decision Processes (MDPs) in which co-
operation among players is allowed. We find a cooperative payoff distribu-
tion procedure (MDP-CPDP) that distributes in the course ofthe game the
payoff that players would get in the long run static game. We show under
which conditions such a MDP-CPDP fulfills a time consistencyproperty,
contents greedy players, and strengthen the coalition cohesiveness through-
out the game.

Index Terms

Cooperative Markov decision processes, stochastic games,payoff distribu-
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1 Introduction

Repeated cooperative games constitute one of the most recent and interesting
topics in game theory. They attempt to model real situations in which thesame
game is repeated over time and players can cooperate and form coalitions through-
out the duration of the game. The papers by Oviedo (2000) and by Kranich, Perea,
and Peters (2001) are the two independent pioneering works in this field.

While the theory of competitive Markov decision processes (MDPs), other-
wisely called non-cooperative stochastic games, has been thoroughly studied (Filar
and Vrieze 1996 for an extensive survey), to the best of the authors’knowledge,
there is very little work in the literature on cooperative MDPs. Unlike classic
repeated games, there are severaldifferentstage games that follow one another ac-
cording to a discrete-time Markov chain, whose transition probabilities depend on
the players’ actions in each stage game. Players can decide whether to join the
grand coalition or, throughout the game, forming coalitions. The payoff gained
by a coalition is, under the transferable utility (TU) assumption, shared amongits
participants. Once a group of players has withdrawn from the grand coalition, it
cannot rejoin it later on. Petrosjan (2002), in his pioneering work, proposed a coo-
perative payoff distribution procedure (CPDP) in cooperative games on finite trees.

In this paper we deal with discount cooperative MDPs, in which the payoffs at
each stage are multiplied by a discount factor and summed up over time. Our game
model is in fact more general than the one by Petrosjan (2002), since we allow for
cycles on the state space and we do not impose the finiteness of the game horizon.
We also point out that our model is different from the one proposed by Predtetchin-
ski (2007), since we assume that the utility of the coalitions is transferable and the
probability transitions among the single stage games does depend on the players’
actions in each stage.

In static cooperative game theory (e.g. Peleg and Sudhölter 2007), in which
only one stage game is played, the main challenge is to find a payoff sharing pro-
cedure among all players such that it is both optimum for the whole community of
players and it does not prompt any subset of players to withdraw from the grand
coalition. On the contrary, in our framework of cooperative MDPs, sincethe hori-
zon of the game is not even finite, then it is legitimate to suppose that all players
demand to be rewarded at each stage, and not at the end of the whole game. There-
fore, the situation is more tricky than in the classic static setting, because we need
to find a stage-wise payoff distribution such that all the players are content with it
ateachstage of the game.

The paper is organized as follows. Section 2 is a short survey on non-cooperative
and cooperative multi-agent MDPs. Following the lines of Petrosjan’s work, in
Section 3 we propose a stationary stage-wise CPDP for cooperative discounted
MDPs (MDP-CPDP). In Section 4 we prove that our MDP-CPDP satisfies what
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we call the “terminal fairness property”, i.e. the expected discounted sumof pay-
off allocations belongs to a cooperative solution (i.e. Shapley Value, Core, etc.)
of the whole discounted game. In Section 5 we show that our MDP-CPDP ful-
fills the time consistency property, which is a crucial one in repeated games theory
(e.g. Filar and Petrosjan 2000): it suggests that a CPDP should respectthe ter-
minal fairness property in a subgame starting from any time step. In Section 6
we show that, under some conditions, for all discount factors small enough, also
the greedy players having a myopic perspective of the game are satisfied with our
MDP-CPDP. In Section 7 we deal perhaps with the most meaningful attribute for a
CPDP, which is then-tuple step cooperation maintenance property. It claims that,
at each stage of the game, the long run reward that each group of players expects to
get by withdrawing from the grand coalition aftern step should be less than what
it would get by sticking to the grand coalition forever. In some sense, if such a con-
dition is fulfilled for all integersn’s, then no players are enticed to withdraw from
the grand coalition. We find that the single step cooperation maintenance property,
earliest introduced in a deterministic setting by Mazalov and Rettieva (2010), isthe
strongest one among alln’s. Furthermore, we give a necessary and sufficient con-
dition, inspired by the celebrated Bondareva-Shapley Theorem (Bondareva 1963;
Shapley 1967), for our MDP-CPDP to satisfy then-tuple step cooperation mainte-
nance property, for all integersn.

Some notation remarks. The ordering relations<, >, if referred to vectors,
are component-wise, as well as themax andmin operators. The entry that lies in
the i-th row and in thej-th column of matrixA is written asAi,j . An equivalent
notation for then-by-m matrix A is [Ai,j ]

n,m
i=1,j=1. The i-th element of column

vectora is denoted byai. The expressionval(A) stands for the value (e.g. Filar
and Vrieze 1996) of the matrixA.

2 Discounted Cooperative Markov Decision Processes

In a multi-agent Markov Decision Process (MDP)Γ with P > 1 players there
is a finite set of statesS = {s1, s2, . . . , sN}, and for each states the set of actions
available to thei-th player is denoted byAi(s), i = 1, . . . , P , and|Ai(s)| = mi(s).
To each(P + 1)-tuple (s, a1, . . . , aP ), with ai ∈ Ai(s), an immediate reward
ri(s, a1, . . . , aP ) for playeri = 1, . . . , P and a transition probability distribution
p(.|s, a1, . . . , aP ) on the state spaceS are assigned.

Let C = {1, . . . , P} be the grand coalition. We assume that any subset of
playersΛ ⊆ C can withdraw from the grand coalition and form a coalition at any
time stage of the game, and all the players are compelled to play throughout the
whole duration of the game. Moreover, once a coalition is formed, it can no longer
rejoin the grand coalition in the future.

Let AΛ(s) = ×i∈ΛAi(s) be the set of actions available to coalitionΛ in states,
for all s ∈ S. A stationary strategyfΛ for the coalitionΛ determines the probability
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fΛ(a|s) that in states the coalitionΛ chooses the actiona ∈ AΛ(s). We define with
FΛ the set of stationary strategies for coalitionΛ ⊆ C. If for every s ∈ S there
existsa(s) such thatfΛ(a(s)|s) = 1, then the stationary strategyfΛ is called pure
(or deterministic).
Let us define the transition probability distribution on the state spaceS, given the
strategiesfΛ ∈ FΛ, fC/Λ ∈ FC/Λ, as

p(s′|s, fΛ, fC/Λ) =
∑

aΛ∈AΛ(s)

∑

aC/Λ∈AC/Λ(s)

p(s′|s, aΛ, aC/Λ) fΛ(aΛ|s) fC/Λ(aC/Λ|s),

for all s, s′ ∈ S. Analogously, letri(s, fΛ, fC/Λ) be the expected instantaneous
reward for playeri in states.

Letβ ∈ [0; 1) be the discount factor and letrΛ(s, fΛ, fC/Λ) =
∑

i∈Λ ri(s, fΛ, fC/Λ)

be the instantaneous reward gained by the coalitionΛ in states. We defineΦ(β)
Λ (fΛ, fC/Λ)

as theN -by-1 vector whosek-th component equals the expectedβ-discounted long
run reward for coalitionΛ ⊆ C, when the initial state of the game issk, i.e.

Φ
(β)
Λ (fΛ, fC/Λ) =

∞∑

t=0

βtPt(fΛ, fC/Λ) rΛ(fΛ, fC/Λ), (1)

whereP(fΛ, fC/Λ) is theN-by-N transition probability matrix andrΛ(fΛ, fC/Λ) is a
N-by-1 vector, whosek-th component isrΛ(sk, fΛ, fC/Λ).

We denote byf (β)∗
C the global optimum strategy for the grand coalition, i.e.

f
(β)∗
C = argmax

fC∈FC

Φ
(β)
C (fC), ∀β ∈ [0; 1) (2)

where the argmax operator is component-wise.

Let Γs be the gameΓ starting in states ∈ S. For anyβ ∈ [0; 1) and for every
states, we assign to each coalitionΛ a utility v(β)(Γs, Λ), computed as theβ-
discounted value of the two player zero sum game of coalitionΛ againstC/Λ (von
Neumann and Morgenstern 1944):

v(β)(Γs, Λ) = max
fΛ∈FΛ

min
fC/Λ∈FC/Λ

Φ
(β)
Λ (s, fΛ, fC/Λ)

= min
fC/Λ∈FC/Λ

max
fΛ∈FΛ

Φ
(β)
Λ (s, fΛ, fC/Λ), ∀Λ ⊆ C/{∅}, (3)

i.e., the maximum total reward that coalitionΛ can ensure for itself. It is widely
accepted to assign to the empty coalition the null utility, i.e.

v(β)(Γs, {∅}) = 0.

Throughtout the paper, if not specified, we always consider nonemptycoalitions.
In the same way as in (3), we define, for allΛ ⊆ C/{∅},

v(β)

(
∑

i

biΓsi , Λ

)
= max

fΛ∈FΛ

min
fC/Λ∈FC/Λ

∑

i

biΦ
(β)
Λ (si, fΛ, fC/Λ), (4)
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where, as before, the maxmin expression can be interchanged with minmax (e.g.
Filar and Vrieze 1996).
Under the transferable utility (TU) condition, the coalition values can be shared in
any manner among the members of the coalition.

Definition 1 (Terminal cooperative solution). Setβ ∈ [0; 1). The terminal coope-
rative solutionT(β)(Γs) is a set-valued function which represents a static coope-
rative solution (e.g. Shapley value, Core, etc.) of the whole game starting in state
s, i.e.

T(β)(Γs) ≡ T(β)
(
Γs, {v

(β)(Γs, Λ)}Λ⊆C

)
: R

2P−1 → R
P , ∀ s ∈ S.

Analogously, we defineT(β)(
∑

i biΓsi) as the terminal cooperative solution of
the cooperative game with coalition values{v(β)(

∑
i biΓsi , Λ)}Λ⊆C , defined in (4).

The terminal cooperative solutionT(β) can represent any of the classical coo-
perative solutions. For example,T ≡ Co represents the Core of theβ-discounted
gameΓs, that is the set, eventually empty, of the realP -tuplesx satisfying

{∑
i∈C xi = v(β)(Γs, C)∑
i∈Λ xi ≥ v(β)(Γs, Λ), ∀Λ ⊂ C.

(5)

The strict CoresCo(β)(Γs) is defined in (5), but with the strict inequality signs.
The terminal cooperative solutionT ≡ Sh(β)(Γs) stands for the Shapley value of
theβ-discounted gameΓs, i.e. for all i = 1, . . . , P ,

Sh
(β)
i (Γs) =

∑

Λ⊆C/{i}

|Λ|! (P−|Λ|−1)!

P !

[
v(β)(Γs, Λ ∪ {i}) − v(β)(Γs, Λ)

]
.

Let us give a useful definition.

Definition 2. LetB1, . . . , Bn ben sets. Then
⊕

i Bi = {
∑n

i=1 bi : bi ∈ Bi}.

We now state the following results, used in the following sections.

Proposition 1. Setβ ∈ [0; 1). AssumeCo(β)(Γs) to be nonempty for alls ∈ S.
Then

⊕N
i=1 biCo(β)(Γsi) ⊆ Co(β)(

∑N
i=1 biΓsi), wherebi ≥ 0, ∀ i.
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Proof. Let us computev(β)(
∑N

i=1 biΓsi , Λ) for all possible coalitionsΛ. By state-
wise optimality of optimal strategies in competitive MDPs,

v(β)

(
N∑

i=1

biΓsi , Λ

)
= max

fΛ

min
fC/Λ

N∑

i=1

biΦ
(β)
Λ (si, fΛ, fC/Λ)

= max
fΛ

N∑

i=1

bi min
fC/Λ

Φ
(β)
Λ (si, fΛ, fC/Λ)

=
N∑

i=1

bi max
fΛ

min
fC/Λ

Φ
(β)
Λ (si, fΛ, fC/Λ)

=

N∑

i=1

biv
(β)(Γsi , Λ) (6)

Let x1(si), . . . ,xP (si) be an allocation belonging to the CoreCo(β)(Γsi). Since

N∑

i=1

∑

k∈C

bixk(si) =
N∑

i=1

biv
(β)(Γsi , C) = v(β)

(
N∑

i=1

biΓsi , C

)

N∑

i=1

∑

k∈Λ

bixk(si) ≥
N∑

i=1

biv
(β)(Γsi , Λ) = v(β)

(
N∑

i=1

biΓsi , Λ

)
, ∀Λ ⊂ C,

then any point belonging to
⊕N

i=1 biCo(β)(Γsi) is also inCo(β)(
∑N

i=1 biΓsi).
Hence, the thesis is proved.

Proposition 2. For all β ∈ [0; 1),
∑N

i=1 biSh(β)(Γsi) = Sh(β)(
∑N

i=1 biΓsi),
wherebi ≥ 0, ∀ i.

Proof. The proof follows straightforward from equation (6) and from the linearity
property of the Shapley value.

3 Cooperative Payoff Distribution Procedure

In cooperative MDPs, different stage games follow one another in time; the
game may have an infinite length, or the players may not know when the game
reaches the end. This is the case oftransientgames, for which

∞∑

t=0

∑

s′∈S

pt(s
′|s, fC) < ∞, ∀ s ∈ S, fC ∈ FC . (7)

wherept(s
′|s) = p(St = s′|S0 = s) is the probability of being in states′ at the

t-th step, knowing that the starting state wass. Therefore, it is reasonable to as-
sume that all the players demand to be rewarded at each stage of the game, and not
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only at its conclusion. With respect to static cooperative game theory, an additional
complication lies in satisfying all the players at each time stage of the game, since
coalitions are allowed to form throughout the game unfolding.
According to classic cooperative game theory, playeri gets the terminal coopera-
tive solutionT

(β)
i (Γs) at the end of theβ-discounted gameΓs. Thegoal here is

to find a way to stage-wisely share among the participants the value of the grand
coalition.

Remark: All the results presented in the current section, as well as the ones in Sec-
tions 4, 5, 7, can be easily extended to undiscounted transient MDPs, i.e. games for
which equation (7) holds andβ = 1. Note in fact that, mathematically, introducing
a discount factorβ ∈ [0; 1) is equivalent to multiplying each transition probability
by β, which automatically ensures the transient condition (7).

In his pioneering work, Petrosjan (2002) introduced a cooperative payoff dis-
tribution procedure (CPDP) for games on finite trees. Following his lines, in this
section we propose a CPDP for cooperative MDPs withβ-discounted criterion,
with β ∈ [0; 1) fixeda priori.

Definition 3 (CPDP). The cooperative payoff distribution procedure (CPDP)g(β) =

[g
(β)
1 , . . . ,g

(β)
P ] is a recursive function that, for each time stept≥ 0, associates a

realP -tupleg(β)(ht) to the past historyht = [S0,g
(β)(h0), S1, . . . , g(β)(ht−1), St]

of states succession and stage-wise allocations up to timet.

The following are two alternative interpretations forg
(β)
i :

i) βtg
(β)
i (ht) is the payoff that playeri ∈ C gets at the staget of the game,

whenht is the history of the process;

ii ) g
(β)
i (ht) is the payoff that playeri gets at timet when the new transition pro-

babilitiesp′ are reduced by a factorβ, i.e. p′(s′|s, f
(β)∗
C ) = βp(s′|s, f

(β)∗
C ).

Hence,1 − β is the stopping probability in each state.

Let us now define stationary CPDPs.

Definition 4 (Stationarity). Setβ ∈ [0; 1). A CPDPg(β) is stationary iffg(β)(ht) =
g(β)(St =s) = g(β)(s), for all t ≥ 0 andht.

Hence, a stationary CPDPg(β) : S → R
P is a stage-wise payoff distribution

law that does not depend on the whole history of the process up to timet, but only
on the state at timet.

We finally propose a CPDP for cooperative MDPs (MDP-CPDP).
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Definition 5 (MDP-CPDP). Setβ ∈ [0; 1). Pick the realP -tuple T
(β)

(Γs) ∈
T(β)(Γs), ∀ s ∈ S. Our MDPs cooperative payoff distribution procedure (MDP-
CPDP) is the functionγ(β)(s) between the Euclidean spacesR → R

N defined
by

γ
(β)(s) =

∑

s′∈S

[
δs,s′ − β p(s′|s, f

(β)∗
C )

]
T

(β)
(Γs′), ∀ s ∈ S. (8)

In the following sections we will illustrate some appealing properties of such a
CPDP.

4 Terminal Fairness

In this section, we let the terminal cooperative solutionT be any of the classic
cooperative solution (Core, Shapley value, Nucleolus, etc.). We now propose two
desirable properties for a CPDP and we prove that the MDP-CPDP defined in (8)
fulfills both of them.
The first fundamental feasibility property of a stationary CPDP consists in sharing
among the players the total payoff attained by the grand coalition at each stage
of the game. In order to ensure always such a property, we also require that the
instantaneous rewards are deterministic.

Property 1 (Stage-wise efficiency). Setβ ∈ [0; 1). The CPDPg(β) is stage-wise

efficient iff
∑

i∈C g
(β)
i (s) =

∑
i∈C ri(s, f

(β)∗
C ) for all s ∈ S, wheref (β)∗

C is a pure
stationary strategy.

Theorem 1. The MDP-CPDPγ
(β)(s), defined in (8), fulfills the stage-wise effi-

ciency property 1, for allβ ∈ [0; 1).

Proof. The global optimum strategyf (β)∗
C is pure, since the optimization problem

(2) that it solves can be formulated as a Markov Decision Process (Puterman 1994).
Hence,ri(s, f

(β)∗
C ) is deterministic as a function ofs, for all i ∈ C.

Let us sum (8) over all possiblei ∈ C, for all s ∈ S:

v(β)(Γs) =
∑

i∈C

γ
(β)
i (s) + β

∑

s′∈S

p(s′|s, f
(β)∗
C )v(β)(Γs′).

Since the following is also valid for alls ∈ S from the definition ofv(β):

v(β)(Γs) =
∑

i∈C

ri(s, f
(β)∗
C ) + β

∑

s′∈S

p(s′|s, f
(β)∗
C )vβ(Γs′),

then,
∑

i∈C γ
(β)
i (s) =

∑
i∈C ri(s, f

(β)∗
C ), surely.

In order to guarantee a continuity between static cooperative game theory and
dynamic payoff allocation, we require the expected discounted sum of the stage-
wise allocations to be equal to the terminal cooperative solution of the game.
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Property 2 (Terminal fairness). Setβ ∈ [0; 1). The CPDPg(β) is said to be
terminal fair iff the terminal cooperative solution is stage-wisely distributed in the

course of the game, i.e.E
[∑

t≥0 βtg(β)(ht)|S0 = s
]
∈ T(β)(Γs), for all s ∈ S.

Theorem 2. The MDP-CPDPγ(β)(s) ∈ R
P , defined in (8) is the unique stationary

CPDP that satisfies the terminal fairness property 2, for allβ ∈ [0; 1).

Proof. We know from Filar and Vrieze (1996) that, for alli ∈ C,



E[
∑

t≥0 βt
γ

(β)
i (St)|S0 = s1]

...

E[
∑

t≥0 βt
γ

(β)
i (St)|S0 = sN ]


 =

∑

t≥0

βtPt(f
(β)∗
C )




γ
(β)
i (s1)

...

γ
(β)
i (sN )


 .

If we substitute (8) in the equation above, we find thatγ
(β)
i defined in (8) satisfies

the relation:

E
[∑

t≥0

βt
γ

(β)(St)|S0 = s
]

= T
(β)

(Γs), ∀ s ∈ S, i ∈ C.

Since the matrix
∑

t≥0 βtPt(f
(β)∗
C ) = (I − βP(f

(β)∗
C ))−1 is invertible, then such

γ
(β) is also unique.

It is straightforward to verify that the MDP-CPDPγ(β) defined in (8) also
fulfills a terminal efficiencyproperty, i.e.

∑

i∈C

E
[∑

t≥0

βtγ
(β)
i (St|S0 = s)

]
= v(β)(Γs, C), ∀ s ∈ S.

5 Time Consistency

Time consistency is a well known concept in dynamic cooperative theory (Filar
and Petrosjan 2000 and references therein). It captures the idea thatthe stage-wise
allocation must respect the terminal fairness property 2 even from a later starting
time of the game, for any possible trajectory of the game up to that time. In other
words, if players renegotiate the agreement on CPDP at any intermediate time step,
assuming that cooperation has prevailed from initial date until that instant, then
the payoff distribution procedure would remain the same. This property canbe
formalized as follows.

Property 3 (Time consistency). Setβ ∈ [0; 1). The CPDPg(β) in (8) is said to
be time consistent iff, for alln ≥ 1 and for all possible allocation/state histories
hn−1 up to timen−1,

E

[
∞∑

t=n

βtg(β)(St,ht−1)
∣∣∣hn−1

]
∈ βnT(β)

(
∑

s′∈S

p(s′|Sn−1 =s, f
(β)∗
C )Γs′

)
, (9)

wheres is the latest state of historyhn−1.
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Now we are ready to state the main result of this section.

Theorem 3. The stationary MDP-CPDPγ(β) satisfies the time consistency prop-
erty 3 for all β ∈ [0; 1), whereT represents the Shapley Value, or the Core if we
suppose thatCo(β)(Γs) is nonempty for anys ∈ S.

Proof. Sinceγ
(β) is stationary, we can rewrite (9) as

E

[
∞∑

t=0

βt
γ

(β)(St+n)
∣∣∣Sn−1 = s

]
∈ T(β)

(
∑

s′∈S

p(s′|s, f
(β)∗
C )Γs′

)
. (10)

Let us rewrite now equation (8), for alls ∈ S, as

T
(β)

(Γs) = γ
(β)(s) + β

∑

s′∈S

p(s′|s, f
(β)∗
C )T

(β)
(Γs′), (11)

whereγ(s) = [γ1(s), . . . , γP (s)]T andT
(β)

(Γs) ∈ T(β)(Γs). Thanks to (11), we
can write

E

[
∞∑

t=0

βt
γ

(β)(St+n)
∣∣∣Sn−1 = s

]
=
∑

s′∈S

p(s′|s, f
(β)∗
C )T

(β)
(Γs′).

It is implicit that any player, after being rewarded withγ
(β)(s) in states at step

n − 1, can withdraw from the grand coalition only in the following time stepn.
Then, also the transition probabilities from states are invariant with respect to
a change of strategy. Therefore, we can exploit Proposition 1 to claim that, if
T ≡ Co, then

E

[
∞∑

t=0

βt
γ

(β)(St+n)
∣∣∣Sn−1 = s

]
∈ Co(β)

(
∑

s′∈S

p(s′|s, f
(β)∗
C )Γs′

)
.

Thanks to Proposition 2 we can state that, ifT ≡ Sh, then

E

[
∞∑

t=0

βt
γ

(β)(St+n)
∣∣∣Sn−1 = s

]
= Sh(β)

(
∑

s′∈S

p(s′|s, f
(β)∗
C )Γs′

)

So, (10) is verified, and the thesis is proved.

6 Greedy Players Satisfaction

We now consider the presence of greedy players, i.e. players having amyopic
perspective of the game and who only look to get the highest reward in the single
stage game. We try to find conditions under which greedy players are satisfied as
well.
Let Ωs be the single stage game in states, for anys ∈ S. The intuition here is to
let the discount factorβ tend to zero and designγ(β)(s) such that it lies inCo[Ωs].
For this purpose, in the current section we considerT ≡ Sh.
The new property that we are seeking in this section can be summarized as follows.
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Property 4 (Greedy players satisfaction). There existsδ ∈ (0; 1) such that, for all
β ∈ [0, δ), γ

(β)(s) ∈ Co[Ωs], for all s ∈ S.

Lemma 1. There exists a pure strategyf∗C ∈ FC andβ∗ > 0 such thatf∗C is optimal
for all β ∈ [0;β∗).

Proof. The global optimization problem is a Markov Decision Process (MDP) hav-
ing Φ

(β)
C as discounted reward. Take a strictly decreasing sequence{βk} such that

limk→∞ βk = 0. Since both the actions and the states have a finite cardinality, then
there exists a pure strategyf∗C and an infinite subsequence of{βk}, namely{βnk

},
with nk < nk+1 ∀ k, such thatf∗C is optimal for all the discount factors{βnk

}. Fix
a pure strategyfC ∈ FC . Then

y(βnk
)(s, fC) = Φ

(βnk
)

C (s, f∗C) − Φ
(βnk

)

C (s, fC) ≥ 0, ∀ k ∈ N. (12)

It is easy to see thaty(β), with β ∈ (0; 1), is a continuous rational function. Then,
either it is identically zero for allβ ∈ (0; 1) or y(β) = 0 in a finite number of
points in the interval(0; 1). Hence, for (12), there existsβ∗(s, fC) > 0 such that
y(β)(s, fC) ≥ 0, for all β ∈ (0; β∗(s, fC)). Takeβ∗ = mins,fC β∗(s, fC) > 0.

SinceΦ(β)
C (s, f∗C) is also continuous inβ = 0 from the right, thenf∗C is also optimal

for β = 0. The thesis is proved.

Define nowΘs as the affine space:

Θs :

{
x ∈ R

P :
∑

i∈C

xi =
∑

i∈C

ri(s, f
∗
C)

}
, (13)

wheref∗C is the global optimal strategy for all discount factors sufficiently close to
0.

Corollary 1. For any s ∈ S, γ
(β)(s) belongs to the affine spaceΘs, for all β

sufficiently close to 0.

Proof. The proof follows straightforward from Corollary 1 and from Lemma 1.

Here we present a useful result.

Lemma 2. LetT ≡ Sh. Then,limβ↓0 γ
(β)(s) = Sh(0)(s) = Sh(Ωs).

Proof. Recall the expression (8) ofγ(β), that we rewrite as

γ
(β)(s) =

∑

s′∈S

[
δs,s′ − β p(s′|s, f

(β)∗
C )

]
Sh(β)(Γs′), ∀ s ∈ S.

It is sufficient to prove thatlimβ↓0 Sh(β)(Γs) = Sh(0)(Γs), ∀ s ∈ S. Since each
component of the vectorSh(β)(Γs) is a linear combination of the discounted values
{vβ(s,Λ)}Λ⊆C , then we only need to show that

lim
β↓0

v(β)(Γs, Λ) = v(0)(Γs, Λ), ∀ s ∈ S, ∀Λ ⊆ C.

10



First of all we recall the relation (Filar and Vrieze 1996)

| val(B) − val(C)| ≤ max
i,j

|Bi,j − Ci,j | (14)

whereB,C are matrices with the same size. We know from (Filar and Vrieze
1996) that

v(β)(Γs, Λ) = val

([∑

i∈Λ

ri(s, aΛ, aC/Λ) + . . .

+ β
∑

s′∈S

p(s′|s, aΛ, aC/Λ)v(β)(Γs′ , Λ)
]mΛ(s),mC/Λ(s)

aΛ=1,aC/Λ=1

)
, (15)

whereaΛ ∈ AΛ(s) andaC/Λ ∈ AC/Λ(s). Thus, from (14,15) we can say that, for
all Λ ⊆ C,

|v(β)(Γs, Λ) − v(0)(Γs, Λ)| ≤ max
aΛ,aC/Λ

∣∣∣β
∑

s′∈S

p(s′|s, aΛ, aC/Λ)v(β)(Γs′ , Λ)
∣∣∣

≤
β

1 − β
M

whereM = maxs,aΛ,aC/Λ
|rΛ(s, aΛ, aC/Λ)|. Fix ǫ > 0. Setδ = ǫ/(M + ǫ). Then

for all β ∈ [0; δ), we have|v(β)(Γs, Λ) − v(0)(Γs, Λ)| < ǫ. Hence,v(β)(Γs, Λ) is
right continuous inβ atβ = 0 for all s ∈ S, Λ ⊆ C.

Let us formulate an additional condition, which holds only in the current section.

Condition 1 (Stage-wise strict convexity). The single stage games{Ωs}s∈S are
strictly convex, i.e.v(Ωs, Λ1 ∪ Λ2) + v(Ωs, Λ1 ∩ Λ2) > v(Ωs, Λ1) + v(Ωs, Λ2),
∀ s ∈ S, ∀Λ1, Λ2 ⊆ C.

We know from Shapley (1971) that, if condition 1 holds, then the Core ofΩs is
(P − 1)-dimensional for anys ∈ S, i.e. the affine hull ofCo(Ωs) coincides with
Θs in (13), for anys ∈ S. Note that, in general, the affine hull ofCo(Ωs) could
be a strict subset ofΘs.

Corollary 2. Suppose that the stage-wise strict convexity condition 1 holds. Then

(i) the Shapley values ofΩs lie in the relative interiors ofCo(Ωs), for any
s ∈ S;

(ii) the interior ofCo(Ωs) relative toΘs coincides with the strict CoresCo(Ωs),
for anys ∈ S.

Proof. For the proof of(i), see Shapley (1971). Now we prove(ii) . Fix a generic
s ∈ S. If for a coalitionΛ ⊂ C,

∑
i∈Λ xi = v(Ωs, Λ), then take(k, j) such that

j ∈ Λ, k /∈ Λ. For allα ∈ R, the vectorx(kj) = x + α[e(k) − e(j)] does not lie
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in Co(Ωs), wheree(i) ∈ R
P is 1 in itsi-th component and 0 elsewhere. Hence,x

does not belong to the relative interior ofCo(Ωs).
Conversely, if a vectorx ∈ sCo(Ωs), then it is straightforward to see that it also
belongs to the relative interior ofCo(Ωs).

Theorem 4. Suppose that the stage-wise strict convexity condition 1 holds. Con-
siderT ≡ Sh. Then, the greedy players satisfaction property 4 is verified.

Proof. Takeβ∗ > 0, such thatf∗C is global optimum for allβ ∈ [0, β∗). Fix s ∈ S.
We know from Corollary 2 thatSh(Ωs) lies in the relative interior ofCo(Ωs). The
affine hull ofCo(Ωs) coincides with the hyperplaneΘs for condition 1. Moreover,
from Corollary 1 we know that, for alls ∈ S, γ

(β)(s) belongs to the affine space
Θs for all β ∈ [0, β∗). Hence, for Lemma 2 we can say that for allǫ > 0 there
existsδs ∈ (0, β∗) such that

∀β ∈ [0; δs), γ
β(s) ∈ [Bδs ∩ Θs] ⊆ Co(Ωs),

whereBδs is the ball belonging toRP having radius ofδs. Takeδ = mins∈S δs.
The thesis is proved.

Hence, under condition 1, for allβ ∈ [0; δ), all the greedy players are content
with the stage-wise allocation as well.

It is now interesting to investigate about the loss incurred in the long run game by
a greedy coalition of players which withdraws from the grand coalition in a stage
of the game.

7 Cooperation Maintenance

The (single step) cooperation maintenance property was first introducedby
Mazalov and Rettieva (2010), who employed it in a deterministic fish war setting.
Such a property helps to preserve the cooperation agreement throughout the game,
since the long run payoff that each coalition expects to get by deviating in the
next stage of the game is not smaller than the payoff that the coalition receives by
deviating in the current stage. We now adapt it to our cooperative MDP model. For
simplicity, we restrict the following definitions to stationary CPDPs.

Property 5 (First step cooperation maintenance). Setβ ∈ [0; 1). The stationary
CPDPg(β) satisfies, for any initial states ∈ S and for each coalitionΛ ⊂ C,

∑

i∈Λ

g
(β)
i (s) + βv(β)

(
∑

s′∈S

p(s′|s, f
(β)∗
C )Γs′ , Λ

)
≥ v(β)(Γs, Λ).

In other words, property 5 claims that each coalition is always incentivatedto
postpone the moment in which it will withdraw from the grand coalition, under the
condition that, once a coalitionΛ ⊂ C is formed, it can no longer rejoin the grand
coalition in the future. By induction, we can say that the cooperation maintenance
property enforces the grand coalition agreement throughout the whole game.

12



7.1 n-tuple step cooperation maintenance

We now generalize property 5, by considering the dilemma faced by a coalition
which decides whether deviating in the current stage or aftern steps. Hence, let us
then define then-tuple step cooperation maintenance property, withn ≥ 1.

Property 6 (n-tuple step cooperation maintenance). Setβ ∈ [0; 1). Let the integer
n ≥ 1. The stationary CPDPg(β) satisfies then-tuple step cooperation mainte-
nance property iff, for any initial states ∈ S and for each coalitionΛ ⊂ C,

n−1∑

t=0

βtpt(s
′|s, f

(β)∗
C )

∑

i∈Λ

g
(β)
i (s′)+βnv(β)

(
∑

s′∈S

pn(s′|s, f
(β)∗
C )Γs′ , Λ

)
≥ v(β)(Γs, Λ).

LetP(β) ≡ P(β)(f
(β)∗
C ) be the transition probability matrix associated to the global

optimal stationary strategyf (β)∗
C , whose(i, j) element isp(sj |si, f

(β)∗
C ).

We now find a necessary and sufficient condition on the coalition valuesv(β) to
ensure the existence of our MDP-CPDPγ

(β), defined in (8), satisfying then-tuple
step cooperation maintenance property, for anyn ≥ 1.

Theorem 5. Fix an integern ≥ 1, β ∈ [0; 1). The set of stationary CPDPsγ(β)

satisfying then-tuple step cooperation maintenance property 6 is nonempty if and
only if the vectors

ṽ(β,n)(Λ) =
[
I −

[
βP(β)

]n]
v(β)(Λ), Λ ⊆ C

are component-wisely balanced, i.e. for every functionαs : 2P /{∅} → [0; 1] such
that:

∀ i ∈ C :
∑

Λ⊆C:
Λ∋i

αs(Λ) = 1,

the following condition holds:
∑

Λ⊆C

αs(Λ)ṽ
(β,n)
k (Λ) ≤ ṽ

(β,n)
k (C), ∀ k ∈ [1;N ],

whereṽ(β,n)
k (Λ) is thek-th component of̃v(β,n)(Λ).

Proof. Recall the expression ofγ(β) in equation (8), that can be rewritten as:

γ
(β)
i =

[
I − βP(β)

]
T

(β)
i , ∀ i ∈ C (16)

whereγ
(β)
i = [γ

(β)
i (s1) . . .γ

(β)
i (sN )]T , T

(β)
i = [T

(β)
i (Γs1

) . . .T
(β)
i (ΓsN )]T ∈

T(β)(Γs) for each states ∈ S. By exploiting twice the well known formula for
matrix geometric series:

n−1∑

k=0

[
βP(β)

]k
=
[
I − βP(β)

]−1 [
I −

[
βP(β)

]n]

13



we can reformulate property 6 as

{[
I −

[
βP(β)

]n]∑
i∈Λ T

(β)
i ≥

[
I −

[
βP(β)

]n]
v(β)(Λ), ∀Λ ⊂ C

∑
i∈C T

(β)
i = v(β)(C)

(17)

wherev(β)(Λ) = [v(β)(Γs1
, Λ) . . .v(β)(ΓsN , Λ)]T and the second relation in (17)

comes from the classic efficiency property of a cooperative solution. Since the
matrix (I − [βP(β)]n) is invertible, then we can equivalently rewrite (17) as





∑
i∈Λ T̃

(β,n)

i ≥ ṽ(β,n)(Λ), ∀Λ ⊂ C
∑

i∈C T̃
(β,n)

i = ṽ(β,n)(C)
(18)

where

T̃
(β,n)

i =
[
I −

[
βP(β)

]n]
T

(β)
i

Since the relations in the systems of inequalities in (18) are component-wise, for
the Bondareva-Shapley Theorem (Bondareva 1963; Shapley 1967)the thesis is
proved.

The reader should note that, in the limit forn → ∞, the result of Theorem 5
coincides with the Bondareva-Shapley Theorem for static cooperative games.

We now state an important and intuitive result which further reinforces the
importance of the single step cooperation maintenance property.

Theorem 6. Setβ ∈ [0; 1). If the MDP-CPDPγ
(β) satisfies the single step co-

operation maintenance property 5, then it satisfies then-tuple step cooperation
maintenance property 6, for alln > 1.

Proof. Let γ(β) be defined in (16), whereT
(β)

satisfies the single step cooperation
maintenance property 5, i.e., from (17),

{
βP(β)

[∑
i∈Λ T

(β)
i − v(β)(Λ)

]
≥
∑

i∈Λ T
(β)
i − v(β)(Λ), ∀Λ ⊂ C

∑
i∈C T

(β)
i = v(β)(C)

(19)

By iteratively left multiplying by the nonnegative matrixβP(β) both sides of the
first relation in (19), for each coalitionΛ ⊂ C, we obtain

∑

i∈Λ

T
(β)
i −v(β)(Λ) ≤ βP(β)

[
∑

i∈Λ

T
(β)
i −v(β)(Λ)

]
≤
[
βP(β)

]2
[
∑

i∈Λ

T
(β)
i −v(β)(Λ)

]
≤ . . .

Hence, the thesis is proved.
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7.2 Core selection criterion

In the following we prove that the single step cooperation maintenance property
5 also implies that the discounted sum of allocations for each player, whens is the
initial state, belongs to the Core of the gameΓs,

Corollary 3. Setβ ∈ [0; 1). If a MDP-CPDPγ
(β) satisfies the single step coop-

eration maintenance property 5, then

E



∑

t≥0

βt
γ

(β)
i (St)|S0 = s


 ∈ Co(Γs), ∀ s ∈ S. (20)

Proof. Let us defineγ(β) as in (16). We reformulate (20) as
{∑

i∈Λ T
(β)
i ≤ v(β)(Λ), ∀Λ ⊂ C,

∑
i∈C T

(β)
i = v(β)(C).

(21)

Sinceγ(β) satisfies property 5, then (17) is verified, withn = 1. By left multiplying
each set of inequalties in (17) by the nonnegative matrix(I− βP(β))−1, we obtain
the system of inequalities in (21).

In this section we showed how appealing the single step cooperation mainte-
nance property is. For Theorem 6, if our MDP-CPDPγ

(β) fulfills it, then each
coalition always prefers to withdraw from the grand coalition in the future, other
than at the current stage.

In the case we consider the Core as the terminal cooperative solution (T ≡

Co), Corollary 3 suggests that the point of the CoreT
(β)

used to compute the

MDP-CPDPγ
(β) in equation (8) should be picked such thatT

(β)
also satisfies the

single step cooperation maintenance property. In this sense, property 5 isalso a
Core selectioncriterion.

7.2.1 Counterexample for the converse of Corollary 3

It is natural to ask whether the converse of Corollary 3 is true. We will show
in the following example that it does not hold in general, i.e. if a MDP-CPDPγ

(β)

satisfies (21), then not necessarily the single step cooperation maintenance prop-
erty 5 holds.

Let us consider a cooperative MDP with only two players (P = 2), four states
(N = 4) and with perfect information, i.e. in each state at most one player has more
than one action available. Player 1 controls states(s1, s2), and the remaining states
(s3, s4) are controlled by player 2. Let the discount factorβ = 0.8. The immediate
rewards for each player and the transition probabilities for each state/action pair
are shown in Table 1.
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(s, a) r1 r2 p(s1|s, a) p(s2|s, a) p(s3|s, a) p(s4|s, a)

pl. 1

(s1,a1) 1 3 0.1 0.4 0.1 0.4
(s1,a2) 2 1 0.4 0.1 0.1 0.3
(s1,a3) 1 0 0.4 0.2 0.4 0.1
(s2,a4) 2 1 0.1 0 0.4 0.4
(s2,a5) 3 1 0.2 0.2 0.2 0.5
(s2,a6) 4 3 0.2 0 0.2 0.3

pl. 2

(s3,a7) 5 1 0.3 0.6 0.4 0.1
(s3,a8) 1 3 0.3 0.4 0.2 0
(s3,a9) 2 6 0.3 0.3 0.1 0
(s4,a10) 0 1 0.5 0 0.1 0.1
(s4,a11) 2 2 0.1 0.3 0.5 0.2
(s4,a12) 3 0 0.1 0.5 0.3 0.6

Table 1: Immediate rewards and transition probabilities for each player, state, and strategy.

In this case, the state-wise value vectors for all the possible coalitions{1}, {2}
andC = {1, 2}, rounded off to the second decimal, are

v(0.8)({1}) ≈




8.73
10.03
7.34
7.16


 , v(0.8)({2}) ≈




9.57
8.65
10.93
11.23


 , v(0.8)({1, 2}) ≈




33.08
30.78
33.77
30.83


 .

In order to contradict the converse of Corollary 3, it is sufficient to finda specific

long run allocationT
(0.8)

such that

[T
(0.8)
1 (sk) T

(0.8)
2 (sk)] ∈ Co(Γsk

), k = 1, 2, 3, 4, (22)

but for which the4-by-1 MDP-CPDP:

γ
(β)
j =

[
I − βP(β)

]
T

(β)
j , j = 1, 2

does not respect the single step cooperation maintenance property for some initial

states. In other words, we look for(T
(0.8)
1 ,T

(0.8)
2 ) such that





T
(0.8)
1 ≥ v(0.8)({1})

T
(0.8)
2 ≥ v(0.8)({2})

T
(0.8)
1 + T

(0.8)
2 = v(0.8)({1, 2})

(23)

and such that there exists at least one playeri and an integerk ∈ [1; 4] such that

T̃
(0.8)

i (k) < ṽ
(0.8)
k ({i})
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where

T̃
(0.8)

i =
[
I − βP(β)

]
T

(0.8)
i

ṽ(0.8)({i}) =
[
I − βP(β)

]
v(0.8)({i}) i = 1, 2. (24)

Since the values are component-wisely superadditive by construction, then the
CoreCo(Γs) for the two-player case always exists, for alls ∈ S. Hence, there

always exist(T
(0.8)
1 ,T

(0.8)
2 ) ∈ R

2 satisfying (23). Let us pick:

T
(0.8)
1 = v(0.8)({1}) +




0.7 0 0 0
0 0.4 0 0
0 0 0.2 0
0 0 0 1



[
v(0.8)({1, 2}) − (v(0.8)({1}) + v(0.8)({2}))

]

T
(0.8)
2 = v(0.8)({2}) +




0.3 0 0 0
0 0.6 0 0
0 0 0.8 0
0 0 0 0



[
v(0.8)({1, 2}) − (v(0.8)({1}) + v(0.8)({2}))

]

Substituting the values ofv(0.8), we obtain

T
(0.8)
1 ≈

[
19.07 14.87 10.44 19.60

]T

T
(0.8)
2 ≈

[
14.01 15.91 23.32 11.23

]T

By computingT̃
(0.8)

andṽ(0.8) we find that:

T̃
(0.8)

1 (2) ≈ 2.92 < ṽ
(0.8)
2 ({1}) ≈ 3.65

T̃
(0.8)

1 (3) ≈ −0.75 < ṽ
(0.8)
3 ({1}) ≈ 0.51

T̃
(0.8)

2 (1) ≈ 0.48 < ṽ
(0.8)
1 ({2}) ≈ 1.61

T̃
(0.8)

2 (4) ≈ 0.90 < ṽ
(0.8)
4 ({2}) ≈ 3.00

Therefore, the converse of Corollary 3 is not true. On the other hand,it is interest-

ing to observe that in this example, by randomly generating vectors(T
(0.8)
1 ,T

(0.8)
2 )

and fulfilling the relation (22), in about the99.45% of the trials the converse of
Corollary 3 was verified.

7.3 Strictly convex single stage games

In the spirit of Section 6, we show that condition 1 on the single stage games
ensures the MDP-CPDPγ(β) to satisfy property 5 for all discount factors small
enough.
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Theorem 7. Suppose that the strict convexity condition 1 on the single stage games
{Ωs}s∈S is valid. ConsiderT ≡ Sh. Then the single step cooperation mainte-
nance property 5 is valid for allβ close enough to 0.

Proof. Thanks to the linearity property of coalition values (see (6)) we can refor-
mulate property 5 as
∑

i∈Λ

γ
(β)
i (s) ≥

∑

s′∈S

[
δs,s′ − βp(s′|s, f

(β)∗
C )

]
v(β)(Γs′ , Λ), ∀Λ ⊂ C, s ∈ S.

From (8), consideringT ≡ Sh,
∑

i∈Λ

γ
(β)
i (s) =

∑

s′∈S

[
δs,s′ − βp(s′|s, f

(β)∗
C )

]∑

i∈Λ

Sh
(β)
i (Γs′).

By hypothesis, for alls ∈ S the Shapley valueSh(Ωs) = Sh(0)(Γs) belongs to the
strict CoresCo(β)(Ωs) for all β sufficiently close to0. Hence, by right continuity
of the Shapley value and of coalition values inβ = 0 (see proof of Lemma 2), we
conclude that, for allβ sufficiently close to0,

∑

s′∈S

[
δs,s′ − βp(s′|s, f∗C)

] [∑

i∈Λ

Sh
(β)
i (Γs′) − v(β)(Γs′ , Λ)

]
≥ 0,

wheref∗C is the optimal strategy for grand coalition for allβ sufficiently small.
Hence, the thesis is proved.
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