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Abstract—We analyze the sum rate performance in multicell assignment methods which exploit the fading informatione D
single-hop networks where access points are allowed to cooperateto a heavy legacy from voice-centric network, the majority
in terms of a joint resource allocation. The resource alloca- of existing techniques are designed with the aim of achiev-

tion policies considered here combine power control and user . . . | to interf | . tio (SINR
scheduling. Although promising from a conceptual point of view, ing a given signal to interference plus noise ratio ( ),

the optimization of the sum of per-link rates hinges on tough €ommon to all users, rather than maximizing the spectral
issues such as computational complexity and the requirement for efficiency in Bits/Sec/Hz per area [4], [5]. However rate-

heavy receiver-to-transmitter and cell-to-cell channel infornation  maximizing resource allocation has been addressed before,
feedback. In this paper, however, we show that simple distributed in game theoretic power control algorithms with pricing, [6]

algorithms can scale optimally in terms of rates, when the number 71, iterative/ dv techni bini ot
of users per cellU is allowed to grow large. We use extreme value [7], iterative/greedy techniques combining power con&m

theory to provide scaling laws for upper and lower bounds for Scheduling [8] to name just a few.
the network sum-rate (sum of single user rates over all cells), In this paper, we look at interference suppression from the

corresponding to zero-interference and worst-case interferece point of view of the diversity benefits provided by resource
scenarios. We show that the scaling is either dominated by path allocation techniques. We do not assume advanced multiuser

loss statistics or by small-scale fading, depending on the regime . . . .
and user location scenario. A key result is that the well known ©OF Multicell encoding or decoding. In particular, MIMO (mul

loglog U rate behavior exhibited in i.i.d. fading channels with tiple input multiple output) based joint encoding at muip
maximum rate schedulers is transformed into alogU behav- base stations, such as the one considered e.g. in [9], [10],

ior when path loss is accounted for. Additionally, by showing [11], [12] is left out, in order to emphasize less complex
that upper and lower rate bounds behave in fact identically, and less signaling hungry coordination schemes whereugrio

asymptotically, our results suggest, remarkably, that the impact . . .
of multicell interference on the rate (in terms of scaling) actually transmitters need not exchange the user data information to

vanishes asymptotically, when appropriate resource allocation achieve cooperation.
policies are used. The impact of scheduling on so-called multiuser diversity
Index Terms— Cooperation, cellular networks, extreme value has been researched extensively for the single cell secgnari

theory, sum rate scaling, interference, coordination, distributel, ~With or without interference, with single or multiple anters.
scheduling. Here we revisit the advantages of multiuser diversity for
multicell networks, where some level of cooperation betwee
the transmitters is allowed in the form of joint power cohtro
and user scheduling across the cells. The positive impact of
The performance of wireless cellular networks with reusscheduling in multicell networks is intuitively well under

of the spectral resource is limited by the problem of interfestood and has been addressed, sometimes in conjunction with
ence. Traditional ways to tackle this problem include adrefbeamforming [11], [13]. In [14], the gain related to intdice
planning of the spectral resource and the use of interferersacheduling is analyzed with the means of extreme value yheor
mitigation or advanced coding/detection techniques castbi with the emphasis on the extra multi-user diversity exedct
with fast link adaptation protocols at the physical laye}, [1from intercell scheduling when interference is assumed to
[2]. In a typical approach to resource planning, the systebe eliminated, either with the help of joint multicell DPC
designer aims at the fragmentation of the network geogecaphiencoding/decoding, or orthogonal dynamic frequency reuse
area into smaller zones (reuse patterns) using orthogonaHere we explore how the scaling of rates (when increasing
spectral resources. Static orthogonal multiple accesscis the number of users per cell) is impacted by interference in a
ceptable (although suboptimal) at the cell level but is vetypical cellular network, under joint power control and use
inefficient across cells because it neglects the naturdityabi scheduling. Single user encoding/decoding is used and no
of wireless propagation to alleviate interference thropgkth frequency reuse is assumed (i.e. all cells are fully interfg.
loss and random fading. More efficient resource allocatiofe are targeting the maximization of the network throughput
protocols include power control [3] and dynamic channgbum of rates over the cell). Scaling laws for single cellSI@I

and MU-MIMO channels have been analyzed in the recent
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I. INTRODUCTION



model) that the same scaling is obtained for multicell nekso
with joint linear MIMO precoding as for an optimal precoder,
both of these coinciding with the scaling reached in a singl
cell network (i.e. inlog log U). However other channel models
accounting for the path loss effects and cell user locatio
require additional tools and bring fundamental changes i
the scaling performance. Interestingly, there is otherkwor
the scaling law of capacity in interference-limited netisr
for which path loss is a key factor, including [18]. Up to
our knovv_ledge the .eXiSting analysis_ considers the rate WiIging 1. A two-cell network diagram example. Direct and ingeirig links
asymptotically growing number of links (cells) rather tha'ﬂ)vv.arci the scheduled user (black) are indicated in solid dashed arrows
users, thus yielding quite different interpretations, tiyos respectively. Users are located randomly over a cell of saiitaround their
targeting ad hoc networks. access point.

Specific contributions of this paper include the finding of

scaling laws of rates in different interference scenarios | _ . .
cellular networks. We show in particular that the impact e flat fading channel model may be obtained at the subcarrie

multicell interference on the scaling of rates in the netWOIJevel in an OFDM setting. The local channel state infornmatio

asymptotically vanishes when sum rate-optimal resouree é?SII) IS ?Sju?ei perf(fect ?t the rﬁcelver S|d|e. T_h's mfounaél
location strategies are used. Another important point & tHfS aiso fe 6I1IC per ect.yh to.t € controll uglt re;poplsll €
while aloglogU scaling law is obtained for networks with or resource allocation, either in a centralized or d

symmetric i.i.d Rayleigh channels (much akin to single ceffranner (this point crucial when it comes to applicab_ility,_
results [15], [16]), a much higher growth rate Ing U is as discussed later). The study of how much degradation is
achieved wr,1en pa;th loss is accounted for incurred by the capacity in the case of imperfect feedback is

interesting, yet beyond the scope of this paper. The regeive
signalY,,, at useru,, is given by

Scheduled
users

II. NETWORK AND SIGNAL MODELS

N
We consider a wireless network featuring a numbeér Yo, = Qu, nXu, + Z%MXUVLY + Zu,
of transmit-receive active pairs, which are simultanepusl i#n

selected for transmission by the scheduling protocol at
considered instant of time, others remaining silent. Ativac
links interfere with each other. This setup, an instancehef t
interference channel [19] can be observed in e.g. a cellu
network with reuse factor one, such as the upcoming IEE

802.16e (WiMax) and 3GPP (LTE) wireless standards. Z.. |2 = 0. Note that a single power level is applied at each

assume each of th' cells |s'eqU|pp.ed with an access p'omkp in this notation. This will allow us to ease the expositain
(AP) and that APs communicate with the users in a smglg-

. ) 2 oyr analysis. In the OFDMA case however, a possibly unequal
hop f_ashlon. We also assume the APs are tlme-synchron_lz a‘/\/er level may be applied on each subcarrier, leading to the
In this paper we focus on the performance of downlin

cation f the AP to th H beli §timization of apower vector under sum power constraint,
communication from tne 0 the USErs. HOWeVer we belI€YE o than &calarpower level at each AP. The analysis in that
our analysis carries over to the uplink without great diffizu

> case however leads to similar conclusions on the rate gcalin
Let U,, be the number of users randomly distributed Vel 4 is skipped in this paper

cell n, forn = 1,...,N. We will assume these users are
uniformly randomly distributed over either a circle or aldis
around their access point.

Since we focus on the impact of inter-cell rather than intra- As stated above, intra-cell multiple access is orthogonal,
cell interference, we consider an orthogonal multiple ascewhile intercell multiple access is simply superposed, due
schemawithin the cellso that asingleuser per cell is supportedto full reuse of spectrum. The resource allocation problem
on any given spectral resource slot (time slot, frequenoy siconsidered here consistspower allocationanduser schedul-
code slot, etc.). For instance, in OFDMA-based WiMax dng subproblems. Importantly we focus oate maximizing
LTE standards, a resource slot is represented by a unid@gource allocation policies, rather thi@irness-orientednes
time/frequency slice. For ease of exposition, single araen[20]. As is the case with known single cell protocols, mutic
devices are considered. On any given spectral resource siheduling protocols can be enhanced to offer some desired
shared by allN cells, we denote byu, < {1,...,U,} performance-fairness trade-off, however this is outside t
the index of the user that is granted access to the slot (fecus of this paper. Fairness issues are touched upon im[8].
scheduled) in celk. An example of such a situation is depictedur setting the optimization of resource in the various vese
for a simple two cell network in Fig.1. slots decouples and we can consider the power allocation

We denote the complex downlink flat-fading channel gai@nd user scheduling maximizing the rate in any one slot,
between the-th AP and user,, of cell n by a,,, ;. In practice independently of other slots. A few useful definitions fallo

Ahere X, is the message-carrying signal from the serving
AP, subject to a peak (per block) power constraify,,,.

Ln o, i Xy, 1S the sum of interfering signals from other
lls andZ,,, is the additive noise or extra interferencg,,
modeled for convenience as white Gaussian with power

1. THE MULTICELL RESOURCE ALLOCATION PROBLEM



Definition 1: A scheduling vector U contains the set of The problem in (3) presents us with many degrees of
users simultaneously scheduled across\altells in the same freedom for optimizing system capacity but also with selvera
slot: serious challenges. First the problem above is non convex

U=[ujug - Up - un] (as a mixed integer-non linear problem) and standard opti-
) ~mization techniques do not apply directly. On the other hand
where U, = u,. Noting thatl < u,, < U,, the constraint 4 exhaustive search of té/, P) pairs over the constraint
set of scheduling vectors is given by = {U | 1 < un < gt is prohibitive. Finally, even if computational issuesrev
Un ¥ n= L...,N}. ] ) to be resolved, the optimal solution still requires a cdntra

Definition 2: A transmit power vector P contains the controller updated with instantaneous inter-cell charyaghs

transmit power values used by each AP to communicate Wikich would create acute signaling overhead issues inipeact

Its respective user: The central question addressed by this paper can be formulat
P=I[P, P, - P, - Py as follows: Can_ we gp_proach the gains relqted to multicell

resource allocation within reasonable complexity andaligg
where [P], = P,, = E|X,,|>. Due to the peak power constraints? Our study provides a positive answer to this

constraint0 < P, < Pax, the constraint set of transmitproblem, at least from the point of view of rate scaling.
power vectors is given b = {P |0 < P, < Ppax Vn =

L,...,N}. IV. NETWORK SUM-RATE: MODELS AND BOUNDS

Let us consider a system with a large number of users
A. Rate optimal resource allocation in each cell. For the sake of exposition we shall assume

The merit (or utility) associated with a particular choide oU» = U for all n, whereU is asymptotically large, whileV
a scheduling vector and power allocation vector is measuréimains fixed. We expect a growth of the sum-&&/*, P*)
via the set of SINRs observed by all scheduled users simwith U thanks to themulticell multiuser diversity gaih Thus
taneouslyI'([U],,, P) refers to the SINR experienced by theve are interested in how thexpectedsum-rate scales with
receiveru,, in cell n as a result of power allocation in all cells,U. To this end we shall use several interpretable bounding
and is given by: arguments. We consider two channel gain models. The first
G . p considers a symmetric distribution of gains to all usersnfro

‘;V"’" Un , (1) their serving AP. Although not very practical, this assuiompt

9 has the merit of creating a strong parallel with the singlé ce
ot ZGuz i MU-MIMO rate analysis carried out in [15], [16], allowing us
to readily exploit these results. Later on, we are congigeri
where Gy, i = |au,:|* is the channel power gain froma more general model where an additional random distance-
cell 7 to receiveru,. This expression corresponds to thelependent path loss is accounted for. In this case however,
use of orthogonal multiple-access schemes (TDMA, FDMAgxisting analysis does not apply and special extreme value
etc.) within the cell but non orthogonal access from cell ttheoretic tools are developed.
cell. This might be considered as a first step toward a more
gengral analysis tgking into account both intra-cell artdrin A. Bounds on multicell sum-rate
cell interference simultaneously. ) ) )

Assuming that (i) the transmitters cannot afford to perform '€ Simple bounds below hold in the asymptotic and non
cooperative encoding, (ii) single user decoding, and Ganss@Symptotic regimes as well.

interference, we consider the average of rates achieved oveYPPer bound: An upper bound (ub) on the rate for a given
all cells as our utility [19]: resource allocation vector (not necessarily an optima) e

obtained by simply ignoring intercell interference effect

I([U]n, P) =

iF#EN

N
c.p) = % leog (147 P). @ CU.P)< — ZN: log (1+ L””;P“") )
n= 7 N n=1 g .

The sum-rate optimal resource allocation problem can now i ) )
be formalized simply as: In the absence of interference, the optimal rate is clearly
reached by transmitting at a level equal to the power canstra
(U*, P*) = arg maxC(U, P) 3) i.8.Prraw = [Pmaz, - - - » Pmaz) @nd selecting the user with the
’ UeY e largest channel gain in each cell (maximum rate scheduler),

thus giving the following upper bound on rate:
The optimization above can be seen as generalizing known ap-

proaches in two ways. First the capacity maximizing schedul C(U*, P*) < Cu (5)
ing problem has been considered (e.g. [21]), but in general
not jointly over multiple cells. Second, the problem above where
extends the classical multicell power control problem @hhi 11h _ , . _ o
e multicell multiuser diversity gain can be seen as a geizatain

_us_ua”y '_’at_her_aims_ at achieving SINR balancing) to includg e conventional multiuser diversity [21] to multicell sgios with joint
joint optimization with the scheduler. scheduling

PcQ



each cell must collect the worst case SINR for each of itssuser
N .
oub _ 1 Zlo (1 n F“") ©6) The worst case SINRs are computed during e.g. a common
N —~ & ny: preamble phase where all APs are asked to transmit pilot or
"= N data symbols at full power. This makes the scheduler of (11)
and where the upper bound on SINR? is given by the also distributed. Note that "worst case" is here understood
maximum rate scheduler: terms relative to the power control policy, not the schedule

ub __ 2
Tn _unrﬂgf.x..U{G“'“”}Pm““”/U ™ C. Channel models

Lower bound: A lower bound (Ib) on the optimal rate (in We now detail our assumptions regarding the fading and
the presence of interferenc@jU*, P*) can be derived by re- path loss models. Some of these assumptions are mainly
stricting the domain of optimization. Namely, by restnigtithe technical, serving to simplify the analysis but could bexeld
power allocation vector to full poweP,,.. in all transmitters, without altering the fundamental results, as discusseul. |as
we have mentioned above we assume a cellular network where APs are

c(U*, P*) > ctt (8) regularly located with cell radiug. In this sense, the cells are

assumed to be circular with each base being at the center of
it, although this assumption is not critical to this studye (i
b _ * similar conclusions can be obtained for hexagonal cel) et.
C" =C(UFp: Prmaz) ©) explained below.

and whereU%, denotes the maximum rate scheduling The basic channel model consists in the product between a

vector when assuming full power everywhere. This scheduliariable representing the path loss and a variable reptragen

where

vector is defined by the fast fading coefficient: Le€.,, i = vu,, ilhu, i|*, un =
1...U,i =1...N be the set of power gains whetg_ ; is
Uk p = argmax C(U, Pag), (10) the path loss between usey, (selected in celln) and the

Uer

access point in cell. h,,, ; is the corresponding normalized
Note that the user selected in theth cell, designated by complex fading coefficient. A generic path loss model is give
[U%pln, is found via: by [22]:

Pm —€
[Uppln = argmax {Gumn} = (11) VYun,i = ﬁdun,i (14)

UET g2 + ZN Gu iPma:E . . .
i#n T where is scaling factorg is the path loss exponent (usually
The SINR corresponding to the selected user, denoted Rith ¢ > 2), andd,_ ; is the distance between usey, and

I'’® | is therefore given by: AP i.
(Gu. )P, Note that we assume as preamble a user-to-AP assignment
'’ = max . Lol (12) strategy resulting in all users being served by the AP with
un=1-U g2 + Ziyﬁn G, iPmas the smallest path loss. This means, as is usually the case in

current network design, that the AP assignment operates on a

Finally the lower bound on raté’® may be rewritten as: *“ o e OPS ,
time scale which is not fast enough to provide diversity aggi

1 & fast fading.
' = N > log (1 + Tff) (13)  We consider in turn two basic user location scenarios, and
n=1 a hybrid one. As it will be made clear later, the user location
o ] ] scenario has significant impact on the analysis of the nétwor
B. Distributed vs. centralized scheduling sum-rate. In the first scenario, denotedsgmmetric network

For large networks, it is important that scheduling algall users served by a given AP are assumed to be located at the
rithms can operate on a distributed mode, that is, the chaficesame distance from that AP. This idealized situation resalt
the optimal user set should be done by each cell on the basialbfusers experiencing the same average signal-to-notae ra
locally available information only. This is in principlefficult (SNR), an assumption often made by previous authors in this
task because the achievable rates observed in differelst catea, and for which several interesting results of the iexjst
are coupled together through the interference terms. Tarere literature can be reused. This scenario is illustrated i
a crucial question is how much performance can one reachn the second, more realistic, scenario, denoted simply as
by sticking to power control and scheduling algorithms thaton symmetric networkhe users are located randomly over
only require local CSI? This problem is a difficult one ima cell given by a disk of radiug& around each of the serving
the general case, but some light is shed in some asymptdies. Finally, a hybrid scenario mixing the two scenariosvabo
cases. A first step in this direction consists in noting tliat is discussed later in the paper.
the scheduler is based on maximizing the upper bound ofNote that the actual cell shape will not be a disk in reality.
network sum-rate given by (6), then each cell only needifowever we argue that, when it comes to studying the scaling
to know the realization of the direct gai&¥,,, ,, and the laws of network sum-rate with maximum-rate user scheduling
scheduler is trivially distributed. Alternatively, to aih a the actual shape taken by the cell borders has in fact little
scheduler maximizing the lower bound of rate given by (13)mpact on the result. The main reason is that since the user’s



where the symbok means that the ratio of the left hand side
and right hand side terms converges to one almost surely, as
U goes to infinity.

Proof: This result is a reuse of a now well known result
for single cell opportunistic scheduling. This states ttie
maximum of U i.i.d. x?(2) random variables behaves like
log U for large U. See for instance [15], itself building on
classical extreme value theory results [23]. We omit theopro
here and refer the readers to these references.

Scheduled
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Fig. 2. A two-cell idealized symmetric network diagram examidérect

and interfering links toward the scheduled user (black)iadéated in solid From the SNR scaling we obtain the scaling of the
and dashed arrows respectively. In this idealized cases astcated over a !

circle, a fixed distance away from their access point. interference-free rate shown in (6). This is stated in the
following theorem, again building on known single cell riksu
but stated here for convenience, with our own notations:

direct links is subject to a location dependent path loss, th Theorem l:iLet Gu, n = Yu, nlhu, nl? un =1...Un =

distance to the serving AP will affect its chances of being--- N, wherey,, , = 7. This means that all cells are

selected by the scheduler. As a consequence the usersdocagsumed to enjoy an identical link budget. Assufig, |

in the inner region of the cell (i.e. close to the access poirie Chi-square distributed with 2 degrees of freedogi(2)).

bear the vast majority of the traffic and are the drivers fdxssume theh,, »|* are i.i.d. across users. Then for fixd

the rate scaling laws. Therefore an accurate modeling for tAnd U asymptotically large, the average of the upper bound

location of cell-edge users is unimportant here. on the network sum-rate scales like
E(C") ~ loglog U (16)
V. NETWORK SUM-RATE: SCALING LAWS where the expec_tation i_s taken over the. gomplex fading gains
A. Capacity scaling with largé/ in symmetric network (G)I?roof. Under isotropic network conditions, we have from
We analyze the scaling of ratKU ", P*) via the scaling of E(C*) =E <1og (1 4 sz)) (17)

the boundC®* and C“?, with increasingl/. We just focus on
the performance in cell, as other cells are expected to behave Once the scaling of:* is obtained, the scaling of the
similarly under equal number of usets and isotropic con- expected value oflog(1 + I'i’) is readily obtained from
ditions throughout the network. For the symmetric networleublished results in the context of single cell maximum rate
users experience an equa| average SNR, m%% = Yn isa user scheduling, found in [15], [16] among others. For a
constant independent of the user index. detailed proof, see e.g. [16], Theorem 1.

Interestingly, for this particular case, we show we can eeus

extreme value theory results [23] developed specificalthen  2) Scaling laws for full-powered interference caskVe
context of single cell opportunistic beamforming [15], [16now turn to the behavior of interference limited networks by
and transposed here to the case of networks with mU'tiC@upbring the lower bounds given for SINR and rates. The
interference. For the case asymmetric network, specifidtees initial intuition would be that the analysis of the lower b
are developed in later sections. given in (12) provides us with a very pessimistic view of the
First, the following results provide insight into thenetwork performance as it assumes interference cominglat fu
interference-free scaling of SINR and rates respectively. power from every AP in the network. The interesting aspect
1) Scaling laws for interference-free case:The behind our findings below is that it is not. In fact the negativ
interference-free  multicell rate scaling boils down taémpact of interference at the user on network sum-rate can be
studying the scaling in each cell independently. Furthemade arbitrarily small while not sacrificing transmissiaerss
assuming an isotropic network (i.e. all cells experience tho the assigned APs, as shown per the following theorems. In
same channel statistics) we can simplify the analysis llye results below, remember we assume each user is assigned
exploiting known results on single cell rate scaling, asedono a serving AP which is the one with minimum path loss.
below. As a consequence, since the region of coverage under study
Lemma 1:Let Gu,.n = Yun.nlhu,nl? un = 1...U,n = is limited to a disk of radiusk around the serving AP, the
1...N, wherev,, » = v.. Assume|h,, »|*> is Chi-square distance between a user and any interfering AP is greatar tha
distributed with 2 degrees of freedomy*(2)) (i.e. hy, » is R. As a result we have from (14):
a unit-variance complex normal random variable). Assume
the |h,, ,»|* are independent and identically distributed (i.i.d.) Gy, i < BR™€|hy, | foranyi#n (18)

across users. Then for fixelf z?md U asymptptically large, The lemma below gives the scaling law for the worst case
the upper bound on the SINR in cellscales like SINR (12)

2

. 2

Praz Lemma 2:Let G, ;i = Vu,,ilhu, il vn = 1...U,n =
b v Yn

e ~ 7'”;; " logU (15 1...N,whereyu, n = Yo Yu,.i = Bd,, ¢ ; for i # n. Assume




|hu, i|* is Chi-square distributed with 2 degrees of freedom Proof: From the result in Lemma 2, this result is proved in
(x*(2)). Assume theh,,, ;|* are i.i.d. across users, cells. Thera way identical with that of ([16], Theorem 1). Therefore the
for fixed N and U asymptotically large, the lower bound onproof is omitted here for space considerations.

the SINR in celln scales like

T ~ Pma;c’Yn log U (19) From bounding arguments and from theorems 1 and 2

Proof: To obtain this res‘ﬂlt, one uses the fact that use?sbove’ the fo!lowmg conclusion is ”O‘Q’ obtained:
Theorem 3:Let G, i = Yu,,.ilPu, il* un = 1...U,n =

in cell n are served by their closest AP. Following (18) N, where~y o A = 3= for i # n. Assume

anNupper_ bound 20n the iqterfgrence power then given %R/u . i 2 is Chi-saﬁ%re d?étriut;ai[ed Wituﬁ’ZZ degrees; of freedom
Zi?;’bﬁﬁ |hg"“i Praz. This gives a further lower bour]d(><2(2)). Assume theh,,, ;|* are i.i.d. across users, cells. Then
onty, given by for fixed N and U asymptotically large, the average of the

b b2 network sum-rate with optimum power control and scheduling
Iy =1y (20)  scales like

whereI'!2 is corresponds to the SINR assuming pessimisti- E(C(U", P")) ~ loglog U (29
cally that all sources of interferences are located on tiygeed Proof: The result is readily obtained from writing:

of the cell of interest, calculated by: E(C") < E(C(U*, P*)) < E(C™) 27)

T'%? = Yo Praz max ~wy, (21)  Then, invoking (25) and (16) exhibiting the same scaling, law

o we obtain a similar law in (26).
wherew,,, denotes the normalized SINR at user:

_ s,y | (22) Theorems 1 and 2 suggest that, in a multicell network
02/Ppaz + BR™€ Zgén | P, |2 with symmetric users, the rate obtained with optimal meltic
] _ o ~scheduling in both an interference-free environment and an
The scaling law of}?? is also that ofv,,,, which is the ratio  enyironment with full interference power have identicailsty
of a Chi-square (2 degrees of freedom) distributed variabte |as in loglog U. This result bears analogy to the results by
the sum of a fixed noise term and a Chi-square (2N-2 degregg] which indicate that in a single cell broadcast channel
of freedom) variable. Thus the scaling af,, is similar \ith random beamforming and opportunistic scheduling, the
to the scaling of the SINR in the single cell opportunistigegradation caused by inter-beam interference tends lescom
beamforming problem withV antennas at the transmitterpegligible when the number of users to choose from becomes
studied in [16]. In there, the SINR is the ratio of a direcigrge. Here the multicell interference becomes neglighie
beam power and a noise plué — 1 interfering beam power cayse the optimum scheduler tends to select users on an

wun

term. In particular we can find its distribution as: instantaneous basis who have both a strong direct link io the
o2 serving AP andsmallinterfering links from surrounding APs.
F(w)=1— e (23) Interestingly, the minimization of the multicell intertarce

(1+wB(N — HR-<)N-1

([16], Lemma 4) shows that the SINR then scales likeU.
This gives in our context:

term should take away some degrees of freedom in choosing
the users with best direct links, however not sufficientlytso
affect the overall rate scaling.
Another interpretation of this result is in terms of our
%2~ Ppgwyn log U/o? (24) ability to find distributed scheduling schemes for maximggi
) o ) the network sum-rate. The optimal multicell scheduler and
Note that the scaling above is identical to the one reported fpower control solution would be hard to implement in pragtic

the interference-free case (15). However from the observations above, a simple scheme based

Thus,_l“ﬁf is bounded above anolI) below by two expressiong, each cell measuring the worst case SINR of each of its users
(respectively the interference-frég; a”drlr_fﬁ) which exhibit - (j,ring e.g. a preamble) and selecting the users with the bes
the same scaling law. Therefdrd must satisfy itself the same yorst case SINR as per (12), will result in an quasi optimal
scaling law. behavior asymptotically (again, from a scaling perspedtiv

Such a scheme does not require any exchange of information

The following theorem gives the scaling law for the lowebetween the cells and the worst case SINR can be measured
bound on rate for an isotropic network. in one shot by each user and fed back to its serving AP.

Theorem 2:Let G, i = Yu, ilhu, il? un = 1...Un = These results come as a complement to previously reported
L...N, wherevy,, n =, Yu,.i = ﬂd;j,i for i # n. Assume findings [24], [18] which propose a near optimal power
|hu, > is Chi-square distributed with 2 degrees of freedomllocation scheme, for fixed number of users, where a fractio
(x%(2)). Assume theh,,, ;| are i.i.d. across users, cells. The®f the transmitters are selected to be turned off while tisé re
for fixed N and U asymptotically large, the average of theperate at full power. It was observed experimentally [24]
lower bound on the network sum-rate scales like there that the fraction of off cells would go to zero when the

number of users grows large. Thus in a network with full reuse
E(C") ~ loglog U (25) and greedy user scheduling, the optimal power control polic




should be for all cells to operate at the power constraine Th Lemma 3:Let X = ~,, ,. X is regularly varying with

analysis of scaling of rates provides a theoretical justiomn exponent—%.

to this intuitive result. Proof: A direct application of the definition above, with a
We now turn to a non symmetric network where users calistribution obtained from (29):

experience different average SNR values depending on their

position and conduct a similar analysis. However we will see Fx(z)=1- (7)—: z > . (31)

that different capacity scaling rates are obtained contparth g

the symmetric network case.

An interesting aspect of regularly varying distributed-ran
B. Capacity scaling with largé/ in non symmetric network dom variable (R.V.) is that they are stable with respect té-mu
We assume the path loss is determined by the user’s distafipication with other independent R.V. with finite momeats
to the emitting AP, both serving and interfering. We consale pointed out by the following theorem shown by Breiman [25]:
uniform distribution of the population in each cell. Thag, ,, Theorem 4:Let X andY be two independent R.V. such
(distance between user,, and its serving AP) is a randomthat X is regularly varying with exponenta. AssumingY
variable with non uniform distributiorfy (d). For a cell radius has finite momenE(Y %), then the tail behavior of the product
R, we find easily: Z = XY is governed by:

fp(d) =2d/R* de€[0,R] (28) 1-Fz(z) =E(Y*)(1-Fx(2))(14+0(1)) whenz — co (32)
The idea behind this theorem is that when multiplying a

Furrther, ther ranr(]jc(j)m ?Imc;s&"’"r C?: be rc;onslllderred clirld regularly varying R.V. with another one with finite moment,
across users and Cells, It users each cell are GdropRGt optains a heavy tailed R.V. whose tail behavior is simila
randomly in each diskAssumingR = 1 for normalization,

L) e o . . to the first one, up to a scaling. In other words, heavy talil
_ €
Lhe?S'_StrlbUtlon OPyu,,.n = Bd,,, ; 1S given by (details omitted behavior tends to dominate over other distribution.

, We now apply this result t&X = ~,,_, andY given by
£(g) = %(%)‘25 with g € [3, 00) (29) Y = |hy, »|? for the interference free case ahd= w,, for
W= with g ¢ [5, ) the full-powered interference case, respectively. Nog th

both casesY has finite moments. The tail behavior &f =

In. order to ggt upper and.lower bounds on performance, VX(gy can then be characterized by the following lemma:
are interested in the behavior of the following extreme &alu e ]
Lemma 4:Let X = v,, » be a R.V. with distribution given

of product of independent random variables: i 5
by (29). LetY be an independent R.V. such th&fy <) < .
max Yunn|hu,n|? for the interference-free case andrhen the tail ofZ = XY is governed by:

Up=1...

max Yu,, nWu, fOr the full-powered interference case

unp=1...U 2 ﬂ ©
wherew,,, is again defined as per (22). L= Fz(z) = E(Y9) (z) (14o(1)) whenz — oo (33)
1) Extreme values of heavy-tail random variableShe Proof: A direct application of Theorem 4 using the distri-
distribution of ,, , shown in (29) is remarkable in thatbution of X' shown in (31).
it differs strongly from fast fading distributions, due tts i

heavy tailbehavior. Tail behavior clearly plays a fundamental Tha |emma above indicates that the tail behavior of the

role in shaping the limiting distribution of the maximumy;stripution of X — ~u. n, Characterized by Lemma 3, carries
value, hence also the scaling of rate. Note that heavy tgiler to that of the prSéIch — XY. As a consequence, is
is also observed idarge scalefading models such as log /54 regularly varying with the same exponen?.

normal shadowing for instance. In order to study the extreme\ . now complete our study by reviewing existing results

value of a product of random variables involving one heavtyn the extreme value of regularly varying R.V. Following
tailed variable, we need first to review the properties of s%

lled larl . d ables. S 231 f 23], a regularly varying variable can be classified to be of
caledregularly varyingrandom variables. See €.g. [23] for rechettype. Extreme values of Frechet (or regularly varying)
definition of such variables, restated below:

L . . ST variables are characterized by use of the Gnedenko theorem,
_Deflnltlon 3 A. rand_om variableX,, with d|s_tr|but|on (C_df) given in appendix |. For comparison, note that the random
given bthX (f: ) '3 Salld t;) be regularly varying (at) with variables involved in the analysis of previous sections(%e
exponent—a 1t and only it A and therein), belong to the so-called Gumbel category. In
1-F i :
x () 4% when 2 — oo (30) our context, we have the following result:

1 — Fx(tx) o ~ Lemma 5:Let Z,,, = 7,, Y WhereY is a R.V. with finite
The lemma below shows how the definition above appliggoments, independent of, ,,. Then we have:

to our situation:

o

2
€

. 2\€,,€ _
2The considered coverage region can be assimilated with sieimrea of ~ limPr{ max Z, < BE(Y<)2U2t} =e" vt > 0,
each disk, in a disk-packing region of the 2D plane. Userppid outside un=1..U 34
the disks can dropped from the analysis, as these will nectthe scaling ( )

law. whenU — oc.



Proof: We invoke Gnedenko’s theorem [26] given in apeonventionalscaling law for the upper bound on rdiéc®?),
pendix I. It is easy to find that; = BE(Y ¢)2U2 whereay  as shown per the theorem below:
is defined in the appendix. Theorem 6:Let hy,, 5, up, =1...U be ii.d. Gaussian dis-
tributed unit-variance random variables. Assuming that ,,
is i.i.d., distributed as per (29), far=1... N. Then for fixed
N andU asymptotically large, the interference-free rate scales
like (i.e. the ratio of the two quantities converges to 1 aimo

2) Scaling law for interference-free cas&he inequality in
(5) allows us to characterize the scaling law of rate. Altjtou
a characterization in terms similar to those of previousisec
(i.e. finding a scaling la(U) for the SINR, such that the ratio surely). €
of the SINR andi(U) converges towards 1 wheii — oc) E(C"") ~ §logU for large U (38)
may possible when analyzing the rate, such a task is not easy
and mgthematically invoIved._ Using existing.extreme value poof: See appendix II.
theoretic tools, we proceed in two steps. First we analyze
the wide-sense scaling of SINR in a way that allows us to
directly exploit Lemma 5, where the notion of wide-sense We now proceed to determine the scaling laws in the case
scaling is defined precisely. In the second step we proceed®{dfull-powered interference.
characterize the scaling of rate, this time in the conveatio 3) Scaling law for full-powered interference casefe can
sense of scaling used earlier in this paper, so we can stdemalerive the scaling laws for the lower bound of SINR and
key interpretations. rate by following a strategy similar to Sec.V-B.2, simply by

The theorem below gives the wide sense scaling law Biplacing the R.VJh,, ,|*> by the R.V.w,, which also has
SINR for the interference-free case in a non symmetric ndtounded moments. We obtain the following result:
work. First we give the following definition of wide sense Theorem 7:Let hy, ;, un, = 1...U,i = 1...N be iid.
scaling: Gaussian distributed unit-variance random variablesuss

Definition 4: Let U > 0. Let g(U) be a random variable ing thaty,, ,, is i.i.d., distributed as per (29), for=1... N.
whose distribution depends on parame&ér Let Z(U) be a Then for fixedN andU asymptotically Ial’ge, the lower bound
deterministic function of/. g(U) is said toscale asi(U) in  on SINR scales in the wide sense like:
the wide sensewhich is denoted by(U) ~ I(U), U — oo
when Tt ~Us (39)

Proof: We use the same proof as for Theorem 5, with=
Prig(U) >v(U)) —0,  whenl — oo .. bUt this timeY = w, .

>v
Prig(U) < w(U)) — 0, whenU — oo

(35) Finally, from Theorem 7, we infer that the upper bound
for any two functionsy(U) andw(U) such that'¥) _, o on rate for a non symmetric network exhibits @anventional

qeO) g ivel v(U) scaling law defined as:
and 773 — 0, respectively.

Note that this notion of scaling can be interprete €
grows neither significantly fastergthai(\U), not sz)es i(zgglri)w E(C") ~ 2 log U (40)
significantly slower thari(U). A typical application of wide e proof for (40) is identical to that of Theorem 6 in
sense scaling is that(U) and any other function of the typeAppendix II, but simply replacing” with w,_, which clearly
g9(U)O(U) have the same wide sense scaling law. (565 not change the scaling. "

_Theorem SiLet hy,, ., un =1...U be iid. Gaussian dis-  gemarkably, as in the case of the symmetric network, the
tributed unit-variance random variables. Assuming that, esuits above (38) and (40) suggest that multicell interfee,

is i.id., distributed as per (29), foo = 1...N. Then for o mager how strong, does not affect the scaling of the
fixed N andU asymptotically large, the interference-free SNR o1 vork sum-rate, if enough users exishd rate-optimal

scales in the wide sense like: scheduling is applied. Furthermore, by virtue of the upper
rgb ~Us3 (36) bound and lower bound exhibiting the same scaling law in
Proof: Let »(U) be any function growing faster than(38) and (40) respectively, the rate under optimal schaduli
Uz, i.e. such thatlimy_. U2 /v(U) = 0. Then lett = and power allocation must behave like

1)(U)/(ﬂE(Y%)§U§) From Lemma 5 we have that C(U*,P*) ~ glogU (41)

_2
P{ max Z, <v(U)}— lime?* =1 37)
U U—oo

up=1...

Two remarks are in order. First, in the symmetric network
case, a suboptimal but fully distributed resource allarati
based on constant (full) power transmission at all trartensit
and scheduling policy based on (11) will actually resulthe t
best possible scaling law of sum-rate for the network. Secon
we observe that we obtain a much greater rate growth than in
the case of the symmetric network. This is due to the amplified
From the wide sense scaling of SNR above, we can infer thaultiuser diversity gain due to the presence of unequal path

Equivalently, we have that Bnax,,,—1..v Z,, > v(U)) — 0.
Similarly, we can prove that any functiom(U) growing
slower thanU2 will be such that Pfmax, —i. .y Z,, <
w(U)} — 0. Thusmax,, -1y Z,, scales a¥/# in the wide
sense.



loss across the user locations in the cell. This results faomconsider cells with users located on a circle with distanée 0
scheduler which, in a quite unfair fashion admittedly, 'etml away from the AP (symmetric network). Then we consider a
select users closer to the access point as more users agk adde symmetric distribution of average SNR by drawing users
to the network. randomly in the cell. Finally we consider an hybrid scenario
where users are drawn uniformly randomly over the cell but
C. Discussion on channel models and exclusion area aroulfgPt outside an exclusion disk of radius 0.1 around the AP. In
the AP all cases, we evaluate the upper and lower bound on per-cell
data rates (see Fig.3, Fig.4, Fig.5 and observe the idériea

L , rowth of the lower and upper rate bounds. This also shows
ulates that multiplication of the path loss variables by arj

I le fadi iable with finit s will at the rate obtained with exhaustive user and power level
small scale fading variable with finite moments Wil pré&EiVeg o otion also has the same growth rate. The observed rate
its heavy tail behavior. This means that our result shown

tﬂowth inloglog U for the symmetric network and itog U

(41)hls n E‘Ctkva“d f_orRa_ W'de: C|Ei)SS of ?glng cthan?el mmelfor the non symmetric network confirms our earlier theosgtic
such as Nakagami, Rice, €lc. Un a diflerent note, oneé Mgy g | Fig.5, we observe a scaling behavior with two

wonder how close users can be assumed to get to the actfistinct regimes with dog U in the moderate number of users

point in practice. Let us imagine that a small disk of exausi U7 andlog log U for high number of users, thus confirming our
with the AP at its center, prevents users to getting too clos |

o the AP. As a by product, the disk also serves the purpoﬁjéwtlon for what could happen in a realistic network.
of maintaining the validity of the path loss model, which may
not be reasonable in the close vicinity of the AP. In this case
one may expect two successive regimes for the rate scalingVe present an extreme value theoretic analysis of network
asU grows. In the first regime, when the number of users gim-rate for maximum sum rate multicell power allocatiod an
still moderate, the scaling is dominated by the path lossceff user scheduling. We derive scaling laws of rates when the num
with a behavior such as shown in (41). In the second reginf€r of users per cell grows large, both in cases where the user
when enough users are already accumulated near the exclu§idve same average SNR and path loss dependent SNR. We
circle, it is the turn of the tail behavior of small scale faglto Show that in both cases, 1-the effect of intercell interieeson
dominate and the scaling will be characterized by (26). Thigte scaling tends to be negligible asymptotically, anti@ud
situation is investigated briefly in one simulation example intercell interference be considered, an asymptoticgiiynaal

As the growth would be ultimately limited by that the tail ofallocation procedure is given based on full power allocatio
the small-scale random fading in practical situations, mag all transmitters, which is furthermore completely distitid.
also wonder how accurately Chi-square distributions modéle show that the growth of rates is exponentially faster & th
reality in real-world wireless channels. Clearly, thisalission case of a system with unequal distance-based average SNR.
is inherent in all previous studies dealing with scalingdamd
asymptotic performance analysis. Nevertheless it is itapor 0
to keep in mind the basic law of power preservation which
indicates that no matter how many users are considered, the
most favorable users cannot receive more power than what
was actually transmitted. This simple fact will impose adchar
limit on the SNR which in turn limits the domain of validity
of our scaling in terms of the number of usédrs Although
we believe a specific analysis of the validity domain willyrel

Interestingly, the theory on regularly varying variabléip-s

VIl. CONCLUSIONS

Number of Bits/Sec/Hz/Cell
@

Interference—free optimum capacity

on yet unexplored channel model properties (tail propexie 1+ [~ Optmum capaciy assuming ul-povered resorancs|
the pdf are less explored than the behavior near zero which il ]
characterize outage) and is outside the scope of this piper, 1 % 100 150 200

number of users per cell

remains clear that this domain is wide enough for the armlysi
to be meaningful since the pO\_Ner_pr_eservanon limit is r_edCh Fig. 3. Scaling of upper and lower bounds of rate vef§u®r a symmetric
only when the S_ma” scale fad!ng is in the orde.r of the INVErS$fetwork (V = 4). The observed scaling for both curves isli log U.

of path loss, which would require very large fading coeffitge

in practice (several tens of dB).
APPENDIX I

. _ . _ The following theorem is due to Gnedenko [26] and states
We validate the asymptotic behavior of the multicell surthe following property for regularly varying distributien

rate whenU grows Iarge with Monte Carlo simulations. We Theorem 8:Let Z; an i.i.d. random process. Th@ has a

use a network withV = 4 cells, unit cell radius and the regularly varying distribution with exponentif and only if

following parametergl = 1/16, ¢ = 4, Pyaz = 1, 02 = 0.02. .

Lid. flat Rayleigh fading is considered in addition to the imPr{ max Z; <ayt} =e™ = Vt>0 whenU — co

path loss based power decay. We consider three scenarios for (42)

user location, as mentioned previously in this paper. Rivet whereay is a sequence such that- Fz(ay) = %

VI. NUMERICAL EVALUATION

t—a
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Fig. 4. Scaling of upper and lower bounds of rate versugor a non
symmetric network (unequal average SNRYJ & 4). The observed scaling
for both curves is inog U.

(4]
(5]

(6]

(7]

(8]

Number of Bits/Sec/Hz/Cell

Interference-free optimum capacity q
— - — - Optimum capacity assuming full-powered interference|

2 A‘ J [9

—

. I
100 150
number of users per cell

0 56 200

[10]
Fig. 5. Scaling of upper and lower bounds of rate versugor a non
symmetric network with an exclusion disk around each AP ofumd.1.

(N = 4).The observed scaling in the transitory regime iddg U, then in [11]
loglog U in the asymptotic regime.
[12]
APPENDIX I
[13]

From Lemma 5 we have that

lim P < BE(Y#)5U %t} = ™" © ¥t >0, whenU — oo 1)
(43)

Since the SNR™“* is growing large in each cell by virtue of 15

Theorem 5, the rate can be approximated by: [13]

(16]

N
1
C¥ N E log I‘Zb. (44)
n=1

(17]
whenU grows large. From (43), we write

lim Pr{log I'** < log(ﬂE(Y%)g) +logt+ % logU} =et °,
(45)
vt > 0, whenU — oo. Now, takingt = log U we infer that

o

(18]

(19]

(20]

logT“? < log(BE(Y ¢)%) + loglog U + glog U (46)

almost surely whei/ — oo. [21]

On the other hand, taking= 1/log U, we obtain that

[22]
log 0 > %log U—loglogU} almost surely whenU — oo,

(47)

10

20 : : : From (46) and (47), we conclude that

log ['u?

- — 1 almost surely when U — oo
5 logU

(48)

From the isotropy of the network, this shows tig&f (anda
fortiori its average) scales dslog U.
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